Skip to main content
. 2020 Nov 9;21:771. doi: 10.1186/s12864-020-07181-x

Table 1.

Hyperparameters considered in the neural architecture search of deep neural networks (DNN)a

Hyperparameter Space
Number of units 1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000
Hidden layers 1, 2, 3, 4
Dropout rateb 0.5, 0.6, 0.7, 0.8, 0.9, 1
L2c 0.0000, 0.0025, 0.0050, 0.0075, 0.0100, 0.0125, 0.0150, 0.0175, 0.0200, 0.0225, 0.0250, 0.0275, 0.3000, 0.0325, 0.0350, 0.0375, 0.0400, 0.0425, 0.0450, 0.0475, 0.0500, 0.0525, 0.0550, 0.0575, 0.0600, 0.0625, 0.0650, 0.0675, 0.0700, 0.0725, 0.0750, 0.0775, 0.0800, 0.0825, 0.0850, 0.0875, 0.0900, 0.0925, 0.0950, 0.0975, 0.1000

aThe hyperparameters were randomly select and combined to find the optimal DNN architecture

bThe dropout rate was applied in all layers, except for the output layer

cL2 = ridge regularization