Table 1.
Hyperparameter | Space |
---|---|
Number of units | 1, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000 |
Hidden layers | 1, 2, 3, 4 |
Dropout rateb | 0.5, 0.6, 0.7, 0.8, 0.9, 1 |
L2c | 0.0000, 0.0025, 0.0050, 0.0075, 0.0100, 0.0125, 0.0150, 0.0175, 0.0200, 0.0225, 0.0250, 0.0275, 0.3000, 0.0325, 0.0350, 0.0375, 0.0400, 0.0425, 0.0450, 0.0475, 0.0500, 0.0525, 0.0550, 0.0575, 0.0600, 0.0625, 0.0650, 0.0675, 0.0700, 0.0725, 0.0750, 0.0775, 0.0800, 0.0825, 0.0850, 0.0875, 0.0900, 0.0925, 0.0950, 0.0975, 0.1000 |
aThe hyperparameters were randomly select and combined to find the optimal DNN architecture
bThe dropout rate was applied in all layers, except for the output layer
cL2 = ridge regularization