Table 2.
Size (%) | Deep neural network architecture | |||||
---|---|---|---|---|---|---|
Number of layers | Number of units per layera | L2b | Dropout ratec | Accuracy | MSEPd | |
1 | 4 | 5000(1)-1(2)-600(3)-800(4) | 0.0600 | 1.0 | 0.090 | 30,589.3 |
3 | 4 | 5000(1)-300(2)-200(3)-4000(4) | 0.0675 | 1.0 | 0.137 | 29,649.9 |
5 | 3 | 400(1)-200(2) -900(3) | 0.0100 | 0.5 | 0.145 | 30,408.7 |
7 | 2 | 500(1)-2000(2) | 0.0450 | 0.8 | 0.166 | 29,062.4 |
10 | 2 | 800(1)-100(2) | 0.0025 | 0.6 | 0.200 | 28,440.9 |
15 | 2 | 800(1)-900(2) | 0.0050 | 0.5 | 0.236 | 27,755.0 |
20 | 4 | 600(1)-100(2)-500(3)-700(4) | 0.0325 | 0.5 | 0.226 | 28,849.5 |
30 | 1 | 1000(1) | 0.0100 | 0.7 | 0.274 | 27,025.5 |
40 | 1 | 2000(1) | 0.0800 | 0.6 | 0.285 | 26,877.4 |
50 | 3 | 600(1)-4000(2) -100(3) | 0.0975 | 0.5 | 0.285 | 27,250.3 |
60 | 1 | 300(1) | 0.0800 | 0.8 | 0.304 | 26,622.3 |
70 | 1 | 400(1) | 0.0800 | 0.5 | 0.309 | 26,506.4 |
80 | 1 | 800(1) | 0.0925 | 0.7 | 0.308 | 26,484.5 |
90 | 1 | 400(1) | 0.0800 | 0.5 | 0.307 | 26,710.1 |
100 | 1 | 500(1) | 0.0600 | 1.0 | 0.322 | 26,264.8 |
aThe number in parenthesis represents the corresponding hidden layer
bL2 = ridge regularization
cDropout rate was applied in all layers, except for the output layer
dMSEP = mean square error of prediction