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ABSTRACT

Objective: We propose a computational framework for integrating diverse patient measurements into an aggre-

gate health score and applying it to patient stability prediction.

Materials and Methods: We mapped retrospective patient data from the Multiparameter Intelligent Monitoring

in Intensive Care (MIMIC) II clinical database into a discrete multidimensional space, which was searched for

measurement combinations and trends relevant to patient outcomes of interest. Patient trajectories through

this space were then used to make outcome predictions. As a case study, we built AutoTriage, a patient stability

prediction tool to be used for discharge recommendation.

Results: AutoTriage correctly identified 3 times as many stabilizing patients as existing tools and achieved an

accuracy of 92.9% (95% CI: 91.6–93.9%), while maintaining 94.5% specificity. Analysis of AutoTriage parameters

revealed that interdependencies between risk factors comprised the majority of each patient stability score.

Discussion: AutoTriage demonstrated an improvement in the sensitivity of existing stability prediction tools,

while considering patient safety upon discharge. The relative contributions of risk factors indicated that time-se-

ries trends and measurement interdependencies are most important to stability prediction.

Conclusion: Our results motivate the application of multidimensional analysis to other clinical problems and

highlight the importance of risk factor trends and interdependencies in outcome prediction.

Key words: patient discharge, medical informatics, length of stay, computer-assisted diagnosis, clinical decision support

systems

BACKGROUND AND SIGNIFICANCE

The increased use of electronic health records in clinical practice has

provided an opportunity to translate knowledge into practice at the

point of care. Clinical decision support (CDS) systems provide pa-

tient-specific information, presented to the care provider at appro-

priate times during the clinical workflow, to help with decisions that

enhance the health of the patient. Based on the clinical context, CDS

systems take on a variety of forms, including alerts, reminders, and

risk scores.1

Risk-scoring systems quantify a patient’s degree of homeostatic

stability and augment the clinician’s ability to determine the appro-

priate care setting for treatment. However, the most common CDS

scoring systems can fail to identify nearly 60% of unstable patients.2

As a result, many unstable patients are not transferred to appropri-

ate care until after they have experienced a life-threatening homeo-

static failure like anaphylaxis, heart failure, or kidney failure.

Moreover, patients are sometimes misidentified as stable and are

transferred to less acute care or are discharged and subsequently
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undergo homeostatic failure.3 Collectively, these mistakes are re-

ferred to as patient transfer and discharge (TD) errors.

Each year, TD errors cost the US health care system billions of

dollars and are partially responsible for at least 46 000 deaths.4–8

Existing CDS scoring systems are weakly tuned to the underlying

homeostatic physiologies of patients, which limits their ability to

support TD decisions. In particular, these systems assume risk fac-

tors are independent of one another. Moreover, they are unable to

account for chronic conditions, variations in physiology among pa-

tients, and trends in patient information. Here, we present a general

methodology for homeostatic analysis that addresses the shortcom-

ings of existing CDS scoring systems by considering interactions be-

tween risk factors as well as their changes over time. We

demonstrate this technique with AutoTriage, a patient stability pre-

diction tool. We compare AutoTriage results to the Medical

Emergency Team (MET) calling criteria, the most prevalent tool for

identifying at-risk patients, as well as the Modified Early Warning

Score (MEWS 4), a state-of-the-art CDS scoring system in clinical

use.9,10

METHODS

Preparation of datasets for training and testing
We used a dataset of 4000 patient records from the MIMIC II data-

base.11 This subset consisted of anonymized clinical documentation

of adult patients admitted to an ICU at the Beth Israel Deaconess

Medical Center (BIDMC) with a variety of chief complaints. The

Institutional Review Boards of BIDMC and the Massachusetts

Institute of Technology waived the requirement for individual pa-

tient consent, as the study did not impact clinical care and all data

were de-identified.

Inclusion criteria for this study were:

I. Adult (ie., age �18 years) admitted to the cardiac, medical, sur-

gical, or trauma Intensive Care Unit (ICU)

II. Documented length of stay and survival for at least 48 hours

following admission

The first 48 hours of each patient’s stay were available for analysis,

and we utilized both patient demographic information and dynamic

physiological measurements with 1-hour resolution. In particular,

we used age, blood oxygen saturation, Glasgow Coma Score, heart

rate, respiration rate, systolic blood pressure, temperature, and

white blood cell count. These measurements were chosen due to the

practical considerations of implementing a discharge recommenda-

tion tool in a clinical setting and to facilitate comparison of our re-

sults with MET and MEWS, which also rely on vital signs. In

particular, these measurements were chosen because they are fre-

quently sampled and widely available, ensuring that our predictions

are current and less susceptible to missing data.

Gold standard
The length of stay in the ICU and the number of days survived fol-

lowing ICU admission were known for each patient and were used

to define the gold standard for patient stability. In particular, pa-

tients were defined to be stable if they (1) were discharged within

the 24 hours following our last observation period, and (2) lived for

at least 30 days following discharge (Table 1). A random selection

of half the patients formed the training set; the remaining patients

were reserved for testing. The partitioning was done with a built-in

MATLAB (MathWorks, Natick, MA, R2014a) function, which

randomized the patients being placed in each group based on their

anonymized medical record number (AMRN). In MIMIC-II,

AMRNs were assigned in a randomized fashion to meet the Health

Insurance Portability and Accountability Act (HIPAA) privacy rule

in de-identified clinical data.

Identifying and weighting groups of risk factors
To discretize the possible ranges of each biological measurement

of interest, the measurement ranges were first partitioned into a

finite number of bins. In this study, we partitioned the 6 vital

signs according to a custom heuristic table that incorporates re-

cent findings in the scientific literature and is similar in structure

to the MEWS partitioning table. For measurements not covered

by existing heuristic tables (eg, white blood cell count), partitions

were set to make the number of patients in each bin roughly equal,

which is sometimes referred to as statistical binning. Patient tra-

jectories (time-parameterized evolution or coevolution of physio-

logical parameters) were then constructed from the progression of

the binned measurements and inserted into a finite discrete hyper-

dimensional (FDHD) space (Figure 1). Further, to analyze trends

in patient physiology over time, we computed and binned the

trends in measurements hour by hour. These differences were

treated in the same way as other patient observations. For exam-

ple, just as a patient would have a heart rate (HR) observation ev-

ery hour, they would also have a DHR (change or trend in HR)

observation every hour (difference in HR between the current

hour and the previous one).

We then used custom MATLAB scripts to search each subset of

the FDHD space for groupings of risk factors that have significant

correlation with patient stability. We searched all individual mea-

surements and groupings of 2 measurements (denoted S1 and S2)

and the equivalent for trends (denoted D1 and D2) for the combina-

tions that were most significantly correlated with patient stability

(see Figure 1 for examples of S2 and D2 analyses). Specifically, we

searched through the time-parameterized evolution of 8 S1 measure-

ments (the 8 physiological values used in this study) and 28 S2 mea-

surements (all possible pairs of physiological values). D1 and D2

also had 8 and 28 measurements, respectively, because there is 1

trend measure (eg, DHR) for each physiological value (eg, HR).

Each measurement of S1, S2, D1, or D2 type was then assigned a

weight between 0 and 1 that indicated its relative impact on patient

stability. The weights of the 16 individual measurements and the 56

pairs of measurements were fixed after this step.

Assigning AutoTriage scores for patient stability
After weighting individual measurements by their correlation with

patient stability, S-types and D-types (categories) were scaled and

combined according to Eq. 1.

Table 1. Breakdown of patients satisfying the gold standard for

stability

Gold Standard Met Training Set Testing Set

Y 99 92

N 1901 1908

Y indicates the number of patients that were discharged within the 24

hours after observation ended and were alive for at least 30 days after dis-

charge from the ICU.
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Stability score ¼
X

i2G

aiPi (1)

MEWS, where normalized values of each vital sign are summed,

motivated Eq. 1. The normalized sum-based structure is extended in

Eq. 1 to include interdependencies and trends among measurements.

The stability score is the sum of trajectory groupings, weighted by

coefficient ai. Pi denotes the correlation between measurement

grouping i and patient stability. The index, i, takes on values from

the set of possible groupings G¼ {S1, S2, D1, D2}. Note that while

Eq. 1 is a linear combination, the Pi values already contain informa-

tion on higher-dimensional correlations between risk factors. The ai

was chosen by an interior-point optimization algorithm to maximize

the partial area under the training set receiver operator characteristic

curve, corresponding to specificities above 90%, which are within

the clinical operating range for discharge specificity.4,12 This optimi-

zation criterion was selected to ensure that AutoTriage would

achieve high sensitivity (to facilitate early discharge for as many sta-

ble patients as possible) with a low false positive rate (to ensure that

patients who are not stable are not erroneously discharged). In order

to better ensure that the optimized solution was a global maximum,

the optimization was performed for 1000 random initializations of

coefficients, with values ranging from �0.5 to 0.5. Each coefficient

was constrained to lie within �1 to 1.

RESULTS

Prediction performance comparison
When applied to the test set, AutoTriage assigned stability scores

ranging from 0.0020 to 0.1533, with an average score of 0.1282.

The discharge prediction comparison is shown in Figure 2, yielding

area under the ROC curve (AUC) receiver operator characteristic

(ROC) values of 0.81, 0.68, and 0.68 for AutoTriage, MET, and

MEWS, respectively. To illustrate AutoTriage performance within

the range of acceptable erroneous discharge rates, a stability score

cutoff of 0.1312 identified 57.7% (95% CI: 55.4–59.8%) of all sta-

ble patients while maintaining an erroneous discharge rate of

�5.5% (95% CI: 4.5–6.6%). AutoTriage identified roughly 3 times

the number of stable patients recognized by MET (18.5%) and

MEWS (14.1%) at the same discharge error rate. K-fold cross-

Figure 1. Representative schematic of S2-type and D2-type analyses. (A) Sample patient physiological data. (B) Heart rate (HR) and systolic blood pressure

(SysBP) coevolve over time and (C) DHR (change or trend in HR) and DSysBP (trend in SysBP) coevolve over time. In panel (A), observations of HR and SysBP, as

well as their hourly changes, are tabulated and normalized according to a heuristic lookup table (bolded numbers in parentheses). These normalized values are

then mapped into finite discrete hyper-dimensional space as time-parametrized curves in panels (B) and (C).

Clinical Operating Range

Figure 2. Discharge prediction comparison receiver operating characteristic

(ROC) curve of AutoTriage, MET, and MEWS. The clinical operating range,

which is the region with an acceptable discharge error rate, is highlighted in

yellow.3,11 At an erroneous discharge rate of 5.5% (vertical dotted line), stable

patient discharge rates of AutoTriage, MET, and MEWS are 0.578, 0.185, and

0.141, respectively.
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validation (with K¼10) yielded a similar improvement in perfor-

mance over MET and MEWS, with AutoTriage identifying 55.2%

of stable patients while maintaining an erroneous discharge rate of

93.4%. This corresponded to an average AUC of 0.75, as well as av-

erage positive and negative predictive values of 29.7% and 96.7%,

respectively. Notably, the AUC performance metric was robust to

changes in the time binning interval; choices of 30-, 90-, or 120-min-

ute intervals yielded AUCs similar to that of our default 60-minute

bin.

Table 2 lists the correctly and incorrectly identified patients from

the test set, using the stability score cutoff described above. Ŷ indi-

cates the number of patients predicted to be discharged by

AutoTriage, while Ydenotes the set of patients satisfying the gold

standard. Thus, the top-left table entry (Ŷ ,Y), for example, lists the

number of true positives. At a score cutoff of 0.1312, AutoTriage ac-

curately identifies 92.9% (95% CI: 91.6–93.9%) of test set patients.

Contributions of individual trajectory groupings to

patient score
In order to determine the most important measurement types (cate-

gories) for stability prediction, we analyzed the distribution of static

(S) and trend (D) type score contributions on a patient-by-patient

basis. Averaging the fraction of each patient score from S-type and

D-type over all patients revealed that, for AutoTriage, patient stabil-

ity scores were mostly determined by higher-dimensional and time-

series trend measurement types, as opposed to MET and MEWS,

which are S1-type (1-dimensional and static) analyses (Figure 3). In

particular, S1 accounted for 18.8% (95% CI: 18.6–19.0%), D1 for

19.1% (95% CI: 18.9–19.3%), D2 for 28.3% (95% CI: 28.2–

28.5%), and S2 for 33.8% (95% CI: 33.6–34.0%) of each patient’s

score.

DISCUSSION

The homeostatic analysis framework described here has expanded

functionality as compared to existing CDS systems. Diverse patient

information sources are made interoperable in FDHD space and

used to explore risk factor interdependencies. Moreover, while exist-

ing risk scoring systems focus on predicting mortality, our frame-

work can be used to predict any binary clinical outcome. This was

demonstrated with the creation of AutoTriage, a patient stability

prediction tool that can quantify imminent patient discharge 24

hours in advance.

Making sound discharge recommendations requires high specif-

icity, to protect against the erroneous discharge of an unstable pa-

tient. Because typical 30-day unplanned rehospitalization rates tend

to range from 10% to 20%, we aimed to keep the AutoTriage erro-

neous discharge rate below 10%.4,12 However, while maintaining

patient safety, improving sensitivity for discharge recommendations

could greatly reduce costs from unnecessary testing and extended

length of stay in the ICU and reduce the risk of contracting hospital-

acquired infections. Further, early discharge can accelerate patient

recovery in some cases, because rest at home is unhindered by the

cacophony of medical alarm noise ever present in the ICU.13 The

concern for patient safety and the benefit of early discharge were

both incorporated during stability score training, where measure-

ment types were weighted to improve sensitivity while maintaining

high specificity. The resulting receiver operator characteristic curve

demonstrated that AutoTriage recommendations could ensure pa-

tient safety while doubling the number of patients correctly recom-

mended for early discharge. High specificity will also encourage the

acknowledgment of AutoTriage recommendations in the clinical set-

ting, as low specificity can cause an estimated 96% of computerized

alerts to be disregarded.14

AutoTriage, while built for patient stability prediction, sits atop

a general CDS framework. Within this framework, the many possi-

ble parameter combinations are searched for those that show the

greatest improvement in prediction metrics. This flexibility is critical

for developing robust prediction tools, as was demonstrated by the

differential weighting of discharge predictor types. Notably, the re-

sulting parameter weightings for S2 and D2 analyses were much

higher than the simpler 1-dimensional analyses. These results can

help explain the difference in predictive capabilities between

AutoTriage, which considers low- and high-dimensional trends, and

MET/MEWS, which rely solely on 1-dimensional S-type predictors.

In addition, the D-type trend measurements played a large role in

stability scoring, which demonstrates the value of including time-se-

ries data in predictions.

While AutoTriage was specifically used to recommend discharge,

the general CDS framework may also be well suited for applications

where early intervention in serious conditions could mitigate mor-

bidity and mortality. For example, it has been shown that mortality

from traumatic brain injuries is doubled when patients experience

more than 2 hypotensive episodes in the emergency department.15 A

time-series analysis of vital sign data could predict a trajectory

trending toward a second episode of hypotension and warn the

Figure 3. Average percent contribution of each measurement type on patient

score. S1 are individual measurements and D1 are the trends of individual mea-

surements. S2 are the groupings of 2 measurements and D2 are the equivalent

groupings of 2 trends. 95% confidence interval error bars are shown.

Table 2. Confusion matrix for patient stability analysis

Y N

Ŷ 53 104

N̂ 39 1804
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clinician to intervene before a life-threating secondary brain insult

occurs. In a similar fashion, it has been shown that hypertension in

stroke victims results in a worse neurologic outcome and that ac-

counting for the duration and intensity of hypertension can lead to a

more accurate prediction of neurologic outcome.16 Thus, by consid-

ering the trajectory of multiple influences on blood pressure and

other vital signs, this methodology may be able to warn the clinician

much earlier in the patient’s clinical course, when an intervention

can reduce the severity of an adverse neurologic outcome. These are

2 examples of the potential application of this methodology to be

not only a warning, but a guide to early intervention. Other high-

need cases that may be targeted are early detection of sepsis onset,

early detection of cardiogenic shock in acute myocardial infarction,

and early detection of herniation in traumatic brain injuries and

stroke.

In this study, the same medical center (BIDMC) provided the data

for both the training and testing of AutoTriage. For patient popula-

tions with demographics different than those of BIDMC, it is possible

that AutoTriage results may vary. In addition, regional and institu-

tional differences in medical policy and practice could affect the num-

ber and types of measurements available for use in making

predictions. While the AutoTriage stability score is designed to adapt

to changes in patient populations through retraining and the system

uses widely used and frequently recorded physiological measurements

as inputs, these sources of variation call for future validation studies

on more comprehensive datasets. We are currently arranging to vali-

date our results with retrospective patient datasets collected from

other hospital systems in geographically distinct regions of the USA.

In addition to providing patient information from diverse institu-

tions and regions, these datasets will contain much longer time se-

ries. In the dataset used here, due to data availability, we were

limited to using the first 48 hours of patient measurements after ICU

admission. This limitation manifested as a sparseness in discharge

positive patients (upper row of Table 1) and a low positive predic-

tive value, and threatened the generalizability of our results. To

compensate for the lack of positive test patients, we performed ex-

tensive cross-validation analysis, which suggests that our results are

robust. However, with more longitudinal information, we will be

able to expand our gold standard definition to include all patients

who eventually stabilize, not just those who stabilize within 3 days

of ICU admission, and further validate AutoTriage discharge

recommendations.

Currently, our discharge recommendations act on only the most

widely available and frequently sampled patient measurements. This

benefits AutoTriage’s performance, as data are less frequently missing

or unavailable, and allows the higher-dimensional risk factors to be

computed more quickly. Further, the challenge of data unavailability

will be exacerbated during prospective clinical implementation.

However, there are many other measurements, such as additional lab

tests and ICD-9 codes, that could be useful in making AutoTriage pre-

dictions. But because the number of possible risk factors increases ex-

ponentially with the number of measurements, this may lead to large,

time-consuming computations. In addition, we anticipate that the in-

clusion of many new measurements would lead to our model overfit-

ting the data, making our performance less robust to new datasets.

One possible solution is to implement a statistical method like least

absolute shrinkage and selection operator (LASSO), which would re-

move risk factors that contribute little to discharge recommendations,

thus reducing computation time and overfit. We hope to explore this

possible improvement, among the others discussed above, in future

work.

The methodology described here integrates information from

multiple systems to better inform the clinician of the patient’s trajec-

tory by elucidating patterns among complex correlations among

large sets of medical data. While AutoTriage was used to reduce

ICU length of stay, we believe that the same CDS framework could

identify dangerous patient trajectories in a myriad of other medical

syndromes and disease cases and empower the clinician to intervene

more effectively.
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