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Abstract

Background: The clinicopathological classification of breast cancer is proposed according to therapeutic purposes.
It is simplified and can be conducted easily in clinical practice, and this subtyping undoubtedly contributes to the
treatment selection of breast cancer. This study aims to investigate the feasibility of using a Fisher discriminant
analysis model based on radiomic features of diffusion-weighted MRI for predicting the clinicopathological
subtypes of breast cancer.

Methods: Patients who underwent breast magnetic resonance imaging were confirmed by retrieving data from
our institutional picture archiving and communication system (PACS) between March 2013 and September 2017.
Five clinicopathological subtypes were determined based on the status of ER, PR, HER2 and Ki-67 from the
immunohistochemical test. The radiomic features of diffusion-weighted imaging were derived from the volume of
interest (VOI) of each tumour. Fisher discriminant analysis was performed for clinicopathological subtyping by using
a backward selection method. To evaluate the diagnostic performance of the radiomic features, ROC analyses were
performed to differentiate between immunohistochemical biomarker-positive and -negative groups.

Results: A total of 84 radiomic features of four statistical methods were included after preprocessing. The overall
accuracy for predicting the clinicopathological subtypes was 96.4% by Fisher discriminant analysis, and the
weighted accuracy was 96.6%. For predicting diverse clinicopathological subtypes, the prediction accuracies ranged
from 92 to 100%. According to the cross-validation, the overall accuracy of the model was 82.1%, and the
accuracies of the model for predicting the luminal A, luminal Byggro., luminal Byeroy, HER2 positive and triple
negative subtypes were 79, 77, 88, 92 and 73%, respectively. According to the ROC analysis, the radiomic features
had excellent performance in differentiating between different statuses of ER, PR, HER2 and Ki-67.

Conclusions: The Fisher discriminant analysis model based on radiomic features of diffusion-weighted MRI is a
reliable method for the prediction of clinicopathological breast cancer subtypes.
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Background
Breast cancer is the second most common cancer cause
of cancer death in females [1]. Based on gene expression
profiling, four intrinsic molecular subtypes can be de-
fined: luminal A, luminal B, human epidermal growth
factor receptor 2 (HER2)-enriched, and basal-like [2—4].
One clinicopathological classification of breast cancer
focused on therapeutic purposes has been adopted by
the 12th International Breast Cancer Conference [5].
These clinicopathological subtypes are similar but not
identical to the intrinsic molecular subtypes. There are
five clinicopathological subtypes including luminal A, lu-
minal Bygro. (luminal B/HER2 negative), luminal Bygro,
(luminal B/HER2 positive), HER2 positive and triple
negative [5] (Table 1). Four immunohistochemical (IHC)
biomarkers, including oestrogen receptor (ER), proges-
terone receptor (PR), HER2, and Ki-67, are recom-
mended to define the clinicopathological subtypes. This
classification is aimed at systematic therapy: luminal A
cases require endocrine therapy; luminal Bygr,. cases re-
quire endocrine therapy with or without cytotoxic ther-
apy; luminal Bygg,, cases require cytotoxic, anti-HER2
and endocrine therapy; HER2 positive cases require
cytotoxic and anti-HER2 therapy; and triple negative
cases require cytotoxic therapy. At least two advantages
of the clinicopathological subtypes are as follows: first,
in contrast to high cost and time-consuming gene ex-
pression array testing, clinicopathological subtyping is
simplified and can be conducted easily in clinical prac-
tice; second, this subtyping undoubtedly contributes to
the treatment selection of breast cancer.
Diffusion-weighted imaging (DWI) is an essential se-
quence that can monitor the mobility of water mole-
cules. With restricted water diffusion, breast cancer
usually shows hyperintensity on DW images [6]. DWI
contributes to the differential diagnosis of breast lesions
and may be a promising tool in breast cancer detection
[7]. In differentiating malignant and benign breast
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lesions, the diagnostic performance of contrast-
enhanced magnetic resonance imaging (MRI) with DWI
is higher than that of contrast-enhanced MRI with time-
intensity curves [8]. In addition, DWI also has the po-
tential to monitor radiation-induced treatment response
and neoadjuvant treatment response [9, 10]. More im-
portantly, DWI can be an alternative for breast cancer
screening without contrast media [6].

Radiomics is a process of converting digital medical
images into mineable high-dimensional data [11]. It has
been used in the detection and diagnosis of cancer, as-
sessment of prognosis, prediction of response to treat-
ment, and monitoring of disease status [11, 12]. The
applications of radiomics in breast cancer include the
prediction of molecular classification [13, 14], assess-
ment of tumour recurrence [15], and response to treat-
ment [16]. Recently, radiomics, by using the image
phenotyping of breast cancers and their surrounding
parenchyma on dynamic contrast-enhanced MRI, was
used to identify triple-negative breast cancer [13]. An-
other radiomic study showed a positive trend between
the molecular cancer subtype and breast tumour pheno-
type of size and enhancement texture based on dynamic
contrast-enhanced (DCE) MRI [14]. Unfortunately, the
differential diagnosis of diverse molecular subtypes was
not explored in this study. Mammographic radiomic fea-
tures could also be used for the prediction of breast
cancer molecular subtypes with oversimplified classifica-
tions such as triple-negative and non-triple-negative,
HER2-enriched and non-HER2-enriched, and luminal
and non-luminal [17]. Radiogenomics is a novel ap-
proach that can correlate imaging characteristics with
underlying genes, mutations and expression patterns at
the genetic level [18]. Radiogenomics can be imaging
surrogates for genetic tests and can reflect tumour
biology [19]. One recent study demonstrated that
radiogenomics of breast cancer could infer underlying
gene expression by using RNA sequencing [20]. Breast

Table 1 Clinicopathological Subtypes and Clinical Decision-Making [Ref [5]

Clinicopathological Subtype

IHC status

Clinical Decision-Making

Luminal A

2Luminal BHERZ-

PLuminal Bygras

HER2 positive

Triple negative

ER and/or PR positive
HER2 negative
Ki-67 low (< 14%)

ER and/or PR positive
HER2 negative

Ki-67 high

ER and/or PR positive
any Ki-67

HER2 over-expressed
HER2 over-expressed

ER and PR absent
HER2 negative

Endocrine therapy

Endocrinetcytotoxic therapy

Cytotoxics + anti-HER2 + endocrine therapy

Cytotoxics + anti-HER2

Cytotoxics

2Luminal Bygr,- luminal B/HER2 negative, bLuminal Byggy, luminal B/HER2 positive, IHC immunohistochemistry
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tumours with higher expression levels of the JAK/STAT
and VEGF pathways had more intratumour heterogen-
eity in image enhancement texture detected by using dy-
namic contrast-enhanced MRI. Fan et al. showed that
the image features of DCE-MRI were associated with
gene expression modules and could predict the progno-
sis of breast cancer patients [21]. In addition, for breast
cancer subtyping, the combination of correlated miRNAs
and imaging features has better classification power in
differentiating luminal A and other breast cancer sub-
types than using miRNAs or imaging alone [22]. By
means of deep learning or novel algorithms, the breast
cancer molecular subtypes were differentiated based on
image features from DCE-MRI [23, 24].

As mentioned above, the clinicopathological subtypes
of breast cancer are essential for treatment selection.
Thus, it is urgent to develop a reliable method for the
prediction of the clinicopathological subtypes. Diffusion-
weighted imaging has high sensitivity in detecting breast
cancer and is widely used in clinical practice. Herein,
our study aims to verify the feasibility of using a radio-
mic approach based on DWTI for the prediction of clini-
copathological breast cancer subtypes.

Methods

Study population

This retrospective study was approved by our institu-
tional ethics committee of The Affiliated Hospital of
Qingdao University, and the informed consent was
waived. A total of 112 patients that underwent breast
MRI were confirmed by retrieving data from our institu-
tional picture archiving and communication system
(PACS) between March 2013 and September 2017. The
inclusion criteria were as follows: (1) patients who had
suspected breast tumours and underwent breast MRI;
(2) patients with malignant breast tumours confirmed by
histopathological examination; (3) patients with ER, PR,
HER2 and Ki-67 status obtained from immunohisto-
chemical analysis; and (4) high-quality DW images used
for outlining the lesions, without a size threshold for the
lesions. The exclusion criteria were as follows: (1) pa-
tients with breast lesions who underwent any treatment
before breast MRI, including surgery, chemotherapy,
radiotherapy, or anti-HER2 therapy; (2) patients with bi-
lateral breast lesions; (3) patients with suspected meta-
static breast tumours; (4) DW images were illegible for
assessment; (5) patients with pseudotumours or tumour-
like lesions, including chronic inflammatory nodules,
adenosis of the breast, and fat necrosis nodules; and (6)
patients with tumours located in the skin and areola.

Clinicopathological subtyping
The immunohistochemical data of 112 patients were ob-
tained by retrieval from the hospital information system.
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The statuses of ER, PR, HER2 and Ki-67 were deter-
mined by immunohistochemical tests. ER and PR ex-
pression were considered positive if at least 1% of
tumour cells showed positive nuclear staining [25].
HER?2 status was defined as positive if it presents an im-
munohistochemical score of 3+ and/or if in situ
hybridization is positive [26]. A Ki-67 index higher than
14% is regarded as being at a high level [27]. There are
five clinicopathological subtypes of breast cancers [5]:
luminal A, ER and/or PR positive, HER2 negative and
Ki-67 low (<14%); luminal Bygro. (luminal B/HER2
negative), ER and/or PR positive, HER2 negative and Ki-
67 high; luminal Bygro, (luminal B/HER2 positive), ER
and/or PR positive, any Ki-67 and HER2 overexpressed
or amplified; HER2 positive, HER2 overexpressed or
amplified, ER and PR absent; triple negative, ER and PR
absent, HER2 negative.

Imaging data

All 112 patients underwent breast MR examinations on
a 30T MR system (MAGNETOM Skyra, Siemens
Healthineers). Only diffusion-weighted MRI was used in
this study. The DW imaging was performed with a 4-
channel breast coil while the patients were in the prone
position: axial imaging plane; repetition time/echo time,
5400/55 ms; field of view, 350 mm; voxel size, 1.8 x 1.8 x
5.0 mm; slice thickness 5 mm; spacing 0 mm; NEX 2; ac-
quisition matrix 128 x 128; b value (s/mm?), 0 and 800.
The acquisition time of DWI was approximately 125s.
Other imaging protocols were as follows: (1) axial T2-
weighted imaging with fat-suppression/SPAIR: repetition
time/echo time, 3500/68 ms; field of view, 350 mm; voxel
size, 0.5 x 0.5 x 5.0 mm; slice thickness 5 mm; flip angle
80°% NEX 1; (2) sagittal T2-weighted imaging with fat-
suppression: repetition time/echo time, 3200/66 ms; field
of view, 260 mm; voxel size, 0.8 x 0.8 x 4.0 mm; slice
thickness 4 mm; flip angle 120°; NEX 1; (3) axial T1-
weighted imaging without fat-suppression: repetition
time/echo time, 6/2.46 ms; field of view, 340 mm; voxel
size, 0.8 x 0.8 x 1.6 mm; slice thickness 1.6 mm; flip angle
15% NEX 1; (4) 3D T1-weighted pre-contrast imaging
with fat-suppression: repetition time/echo time, 4.49/
1.68 ms; field of view, 340 mm; voxel size, 1.0 x 1.0 x 1.2
mm; slice thickness 1.2 mm; flip angle 10°; NEX 1; and
(5) 3D-DCE T1-weighted imaging with fat-suppression
by injection of Gd-DTPA (0.1 mmol/kg), acquiring seven
phases after injection. The entire acquisition time was
approximately 26 min.

Image segmentation and feature extraction

The diffusion-weighted images of each patient were
saved and transferred to a radiomics analysis package,
i.e., Artificial Intelligent Kit (A.K.) software (GE Health-
care, Shanghai, Version 3.0.1). The T2-weighted images
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and DCE-MR images were reviewed for lesion validation.
The segmentation of breast tumours on DW images (b
value, 800) was performed by using a two-step approach:
first, the tumour margin was delineated manually slice
by slice, and regions of interest (ROIs) were obtained;
second, these ROIs were merged automatically by the
A.K. software, and the volume of interest (VOI) of a
tumour was finally completed. During ROI determin-
ation, both cystic and necrotic areas of the tumour were
included in the ROI. Moreover, only the largest lesion
was selected in patients with multiple unilateral
tumours.

A total of 396 radiomic features could be derived from
the VOI of the DW image by A.K. software, as shown in
Fig. 1. These features were categorized into six statistical
methods, including texture parameters, grey level size
zone matrix (GLSZM), grey level co-occurrence matrix
(GLCM), form factor parameters, run length matrix
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(RLM) and histogram. Texture parameters represent the
appearance of the surface and how its elements are dis-
tributed. GLSZM provides a statistical representation by
the estimation of a bivariate conditional probability
density function of the image distribution values. GLCM
represents the joint probability of certain sets of pixels
with certain grey-level values. RLM is defined as the
number of runs with pixels of grey-level i and run length
j for a given direction 0.

Pre-processing

The training dataset was built by 396 radiomic parame-
ters from 112 breast cancer cases. To eliminate redun-
dant radiomic parameters, the pre-processing of the
training dataset was performed as follows (Fig. 2). First,
if one value of a certain radiomic feature was out of the
range of the mean + standard deviation (SD), it would be
considered an outlier and then removed from the

-
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dataset. Second, Pearson correlation analysis was con-
ducted on two radiomic features in the training dataset,
and if the correlation coefficient between pairwise
features was above 0.9, one of the two features would be
removed by random selection. Third, the mean centre
and standard deviation scale were used to standardize
the variables to the same value range. Finally, noise pro-
cessing with linear smoothing filtering was automatically
performed by A.K. software [28, 29].

Classifier building

Fisher discriminant analysis was used for clinicopatho-
logical subtyping by using a backward selection method
[30]. An approach of 104 iterations and 84 variables
were used to establish the Fisher discriminant model
(Function 1 to Function 5).

To illustrate the process of building the Fisher dis-
criminant model for the differential analysis of the five
clinicopathological subtypes of breast cancer, the equa-
tions shown below were used, where X; was the radiomic
feature used for the function building, and Y; was the
class of one specified unbeknown patient. To ensure the
accuracy of the model, we used the whole data set to
calculate functions of Fisher discriminant model. Fisher
discriminant model was trained by (n-1) samples and
validated by the remaining sample.

Y1 = 143.07X; + 132.35X5 + ... + 153.22Xg3 — 58.30X g4 — 1273.19

Y, = 180.48X, + 163.90X, + ... + 180.05Xg3 — 96.49X g, — 1668.82

Y3 =168.72X, + 138.75X, + ... +209X¢g3 + 7.66Xg4 — 1630.72

Y4 = 232.37X1 +198.77X5 + ... + 241.92Xg3 — 76.65X g4 — 2236.77

Y5 = 187.87X, 4 143.57X, + ... + 185.89Xg3 — 37.95X g4 — 1505.12

The leave-one-out cross-validation method was used for
testing the Fisher discriminant analysis model. If the
sample size was #, leave-one-out cross-validation was ac-
complished by the prediction of the remaining samples
with the discriminant model established by #-1 samples,
and the final prediction results for all samples would be
obtained after the iterations (n times) and then was

regarded as the criteria standard for the prediction of
the model [31].

To overcome the shortcoming of data imbalance, the
mean class-weighted accuracy (CWA) was performed
following the method proposed by Cohen et al. [32]. The
equation for k-class setting is as follow:

1 k
owa = _——— E o wiaccu;

> i Wi

Where w; is the weight assigned to class i and accy; is
the accuracy rate computed over class i.

Predicting different statuses of IHC biomarkers

To predict the different statuses of immunohisto-
chemical biomarkers, the diagnostic performance of
radiomic features was assessed by receiver operating
characteristic (ROC) curve analysis with a two-step
approach. Radiomic features after pre-processing
were included to calculate the predicted value of ER
status, PR status, HER2 status and Ki-67 index by
binary logistic regression. Then, ROC analysis was
performed by using those predicted values. Based on
the predicted values, ROC analyses were performed
to differentiate between the ER positive and negative
group, PR positive and negative group, HER2 posi-
tive and negative group, and Ki-67 low and high
group. The comparison of the areas under two ROC
curves was calculated by MedCalc software (Version
11.4.2, Mariakerke, Belgium) following the method-
ology of DeLong et al. [33].

Binary logistic regression and ROC analyses were
performed using IBM SPSS software version 19.0 (IBM
Corporation, New York). A p-value <0.05 was consid-
ered statistically significant.

Results
There were 29 luminal A cases, 31 luminal Bygr. cases,
17 luminal Bygg, cases, 24 HER2-positive cases and 11
triple-negative cases in our study (Table 2).

A total of 162 radiomic features of four statistical
methods were included after preprocessing. Of the
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Table 2 General features and clinicopathological subtypes
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Characteristic Patients Clinicopathologic subtypes
(n=112) Luminal A Luminal Bygga- Luminal B yegras HER2 positive Triple negative

Age 46.5(25~72) 46.1 (25~ 69) 474 (32~67) 446 (26 ~ 69) 458 (28 ~72) 49.5 (30~61)
ER status

Positive 75 29 29 17 0 0

Negative 37 0 2 0 24 1
PR status

Positive 69 27 29 13 0 0

Negative 43 2 2 4 24 1
HER2 status

Positive 41 0 0 17 24 0

Negative 71 29 31 0 0 1
Ki-67

2 14% 81 0 31 16 23 1"

< 14% 31 29 0 1 1 0

162 radiomic features, there were 42 histogram pa-
rameters, 18 texture parameters, 52 GLCM parame-
ters and 50 RLM parameters. Each of 162 features
would be evaluate in the Fisher discriminant ana-
lysis to determine its contribution, with which fea-

ture contributed to modelling would be held.
Finally, 84 features were used for the model-
building.

The overall accuracy for predicting the clinico-
pathological subtypes was 96.4% by Fisher discrim-
inant analysis. Based on class-weighted accuracy
calculating, the overall weighted accuracy was
96.6%. For predicting diverse clinicopathological
subtypes, the prediction accuracies ranged from 92
to 100%. When predicting subtypes of luminal

Table 3 Fisher discriminant analysis and cross-validation

Byero. and triple negative, both accuracies were
100% (Table 3).

A leave-one-out cross-validation was performed to
test the Fisher discriminant analysis model. The over-
all accuracy of the model was 82.1% in the prediction
of the clinicopathological subtypes of breast cancer.
The accuracies of the model for predicting the lu-
minal A, luminal By, luminal Bye,,,, Her2-positive
and triple-negative subtypes were 79, 77, 88, 92 and
73%, respectively (Table 3).

The areas under the ROC curve (AUROCs) of
histogram parameters, texture parameters, GLCM pa-
rameters and RLM parameters for predicting different
IHC biomarkers are shown in detail in Table 4 and
Fig. 3. Furthermore, the AUROCs of histogram

Subtypes/ Training dataset Prediction

n 1 5 3 4 5 accuracy
Fisher discriminant analysis 1 28 0 1 0 0 97%

2 0 31 0 0 0 100%

3 0 0 16 0 1 94%

4 1 1 0 22 0 92%

5 0 0 0 0 1 100%
Total - - - - - - 96.4%
Leave-one- out cross- validation 1 23 4 0 0 2 79%

2 1 24 0 1 5 77%

3 1 0 15 1 0 88%

4 0 2 0 22 0 92%

5 3 0 0 0 8 73%
Total - - - - - - 82.1%

Subtypes: 1, luminal A; 2, luminal Byggry; 3, luminal Byeroy; 4, HER2 positive; 5, triple negative
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Table 4 ROC analysis of radiomic features in prediction of
immunohistochemical status

IHC status Radiomic feature AUROC

ER(+) VS. ER(-) Histogram 0.973 (0.949-0.997)
Texture 0.762 (0.674-0.851)
GLCM 0.963 (0.929-0.998)
RLM 0.967 (0.937-0.997)

PR(+) VS. PR(-) Histogram 0.925 (0.879-0.972)
Texture 0.731 (0.637-0.824)
GLCM 0.939 (0.892-0.986)
RLM 0.923 (0.875-0.971)

HER2(+) VS. HER2(-) Histogram 0.902 (0.847-0.957)
Texture 0.722 (0.627-0.818)
GLCM 0911 (0.860-0.962)
RLM 0.974 (0.944-1.000)

Ki-67 low VS. high Histogram 0.926 (0.870-0.981)
Texture 0.718 (0.615-0.820)
GLCM 0.975 (0.949-1.000)
RLM 0.946 (0.905-0.988)

parameters, GLCM parameters and RLM parameters
were higher than those of texture parameters in
assessing the status of ER, PR, HER2 and Ki-67 (p<
0.001) (Table 5).

Discussion

Our study has shown that the Fisher discriminant ana-
lysis model with radiomic features of DW images can be
used for predicting the clinicopathological subtypes of
breast cancer. Furthermore, the model had excellent ac-
curacies ranging from 92 to 100% in the prediction of
clinicopathological subtypes. Based on the leave-one-out
cross-validation, the overall accuracy was 82.1% when
testing the Fisher discriminant analysis model.

In our study, each clinicopathological subtype could
be distinguished from others with high accuracy.
Furthermore, we applied Fisher’s discriminant analysis
to resolve a multiple classification problem, i.e., five clin-
icopathological subtypes of breast cancer. The clinico-
pathological subtypes of breast cancer are defined
according to their therapeutic purposes. Our findings
may contribute to decision-making and treatment selec-
tion in clinical practice, such as endocrine therapy, cyto-
toxic therapy, and anti-HER2 therapy [5]. As mentioned
above, the molecular luminal B subtype is divided into
two new clinicopathological subtypes, luminal B with or
without HER2 overexpression (i.e., luminal Byggr,. and
luminal Byggro,). Luminal Byggp, cases require cyto-
toxics, endocrine therapy and anti-HER2 therapy,
whereas a luminal Bygr,. cases does not require anti-
HER2 therapy. Therefore, the clinicopathological
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subtype can provide detailed therapeutic information.
Moreover, compared with molecular subtypes from gene
assays, the clinicopathological subtypes from immuno-
histochemistry can be easily obtained with lower costs.

In addition, leave-one-out cross-validation was per-
formed to evaluate the accuracy of the Fisher discrimin-
ant analysis model. Our results showed that the overall
accuracy of the model was 82.1% in predicting the clini-
copathological subtypes. The accuracy for predicting
HER?2 positivity was up to 92%. We confirmed that the
Fisher discriminant analysis model is a reliable method
that can be used for predicting the clinicopathological
subtypes of breast cancer. More importantly, our study
validated the feasibility of using the Fisher discriminant
analysis model to settle a multi-classification problem.

In our study, we provided a noninvasive method for
the prediction of the clinicopathological subtypes of
breast cancer by using radiomic features of DWI. DWI
is a widely used method that can measure the Brownian
motion of water molecules. The motion of water mole-
cules in tissue can be affected by tissue cellularity and
membrane integrity [6]. DWI has been applied in the de-
tection of breast cancer [34], differentiation of benign
and malignant lesions [35], and monitoring the response
to neoadjuvant chemotherapy [36, 37]. However, there is
no consensus that DWT is a reliable stand-alone method.
One recent study showed that the combination of T2-
weighted fat suppression and DWI textural features
could predict sentinel lymph node metastasis [38]. By
using diffusion MRI, a radiomic signature was shown to
differentiate malignant from benign lesions [39]. Fur-
thermore, another study showed that ADC values correl-
ate with the biological features of breast cancer [40]. In
addition to DWI mentioned above, a number of studies
have focused on radiomic analysis from DCE-MRI The
imaging features from DCE-MRI can predict the luminal
A and luminal B molecular subtypes [24] and can also
differentiate between the histological and immunohisto-
chemical subtypes of breast cancer [41]. One DCE-MRI
feature that quantifies the relationship between lesion
enhancement and background parenchymal enhance-
ment is associated with the luminal B subtype of breast
cancer [42]. However, these imaging feature-based stud-
ies provide insufficient information for the differential
diagnosis of the five clinicopathological subtypes of
breast cancer. To resolve this problem, our study fo-
cused on the prediction of clinicopathological subtypes
by using DW imaging features and showed a high diag-
nostic performance with an overall accuracy of 96.4%.

For predicting breast cancer receptor status and mo-
lecular subtyping, Leithner et al. showed that the breast
tumour segmentation approaches could affect the classi-
fication accuracy by using radiomic signature of DWI
[43]. In their study, two segmentation approaches
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included: (1) segmentation ROI performed on high b
value DWI and copied to ADC map; (2) segmentation
ROI drawn directly on ADC map. The results indicated
that tumour segmentation directly on ADC map was of
better classification accuracy. However, in their study,
some lesions could not be identified on ADC map. Our
study only drawn segmentation ROI on DWI without
ADC map, on which distinct tumour margin could easily
be confirmed.

The multiparametric MR radiomics using DCE and
DWI can also be performed for predicting breast cancer
subtypes [44]. Text features were extracted form DCE
images of six contrast-enhanced phases and DWI with
three b-values. The best accuracies of multiparametric
MR radiomics model were 72.4 and 91.0% for the 4-IHC
classification task and for the TN vs. non-TN cancers,
respectively. However, for 4-IHC classification task, the
accuracy of DWI with linear discriminant analysis model
was 53.7% by using minor dependence emphasis on

Kendall-tau-b. And for differentiating triple negative
(TN) from non-TN tumours, the accuracy of DWI was
83.6% by using the maximum of variance. It indicated
that the multiparametric MR radiomics performed well
than DWI for 4-IHC classification task and for the TN
vs. non-TN cancers.

Recently, Leithner et al. apply artificial intelligence
(AI) to breast cancer molecular subtyping with multi-
parametric MR radiomics [45]. Texture features ex-
tracted from DCE images and ADC maps and a multi-
layer perceptron feed-forward artificial neural network
(MLP-ANN) were used for differentiation of TN and lu-
minal A breast cancers from other subtypes. Their re-
sults indicated that multiparametric MR radiomics could
provide prognostic and predictive information derived
from the entire tumour before and during treatment.

In predicting the different statuses of IHC biomarkers,
excellent diagnostic performance of radiomic features
was found in differentiating between the ER-positive and
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Table 5 Comparison of ROC analysis results

IHC status AUROC Z statistic  p value
ER(+) VS. ER(-) Histogram VS. Texture  4.531 <0.001
Histogram VS. GLCM 0462 0.644
Histogram VS. RLM 0312 0.7548
Texture VS. GLCM -4.147 <0.001
Texture VS. RLM —4.322 <0.001
GLCM VS, RLM -0.171 0.864
PR(+) VS. PR(-) Histogram VS. Texture  3.676 <0.001
Histogram VS. GLCM -0412 0.680
Histogram VS. RLM 0.058 0.954
Texture VS. GLCM -3.941 <0.001
Texture VS. RLM —-3.607 <0.001
GLCM VS. RLM 0462 0.644
HER2(+) VS. HER2(-)  Histogram VS. Texture ~ 3.189 0.001
Histogram VS. GLCM —-0.236 0814
Histogram VS. RLM —2.267 0.023
Texture VS. GLCM —3.407 <0.001
Texture VS. RLM —4918 <0.001
GLCM VS. RLM —2.099 0.036
Ki-67 low VS. high Histogram VS. Texture 3493 <0.001
Histogram VS. GLCM —1.542 0.123
Histogram VS. RLM -0.559 0.576
Texture VS. GLCM —4.795 <0.001
Texture VS. RLM —4.066 <0.001
GLCM VS, RLM 1.174 0.240

-negative group, PR-positive and -negative group, HER2-
positive and -negative group, and Ki-67-low and -high
group. However, there were relatively low AUROCs of
texture parameters in assessing the status of these bio-
markers. This result may be ascribed to a small number
of 18 texture parameters. Compared with our results,
one study using 38 radiomic features showed a less
powerful result, with AUROCSs ranging from 0.641 to
0.789 in predicting ER, PR and HER2 statuses [46].
Another study showed a similar result with AUROCs
ranging from 0.65 to 0.89 [14]. Therefore, radiomics-
based approach can serve as a non-invasive method for
predicting breast cancer receptor status.

In our study, histogram, GLCM and RLM features had
high diagnostic performance in differentiating different
IHC biomarkers. For differentiating ER-positive and ER-
negative cases, PR-positive and PR-negative cases,
HER2-positive and HER2-negative cases, and Ki-67-low
and Ki-67-high cases, the AUROCs of histogram, GLCM
and RLM features were 0.963—-973, 0.923-0.939, 0.902—
0.974 and 0.926-0.975, respectively. Furthermore, the
Fisher discriminant analysis model had high accuracy in
predicting the five clinicopathological subtypes of breast
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cancer. We concluded that radiomic features of DWI
were highly associated with IHC biomarkers and could
be emerging surrogates for IHC biomarkers. With the
Fisher discriminant analysis model, we provided a new
radiomic approach for breast cancer subtyping, and its
findings contribute to treatment selection.

Our study has some limitations. First, the main limita-
tions of the study are its small sample size and lack of
independent external validation, which makes the results
difficult to reproduce in other populations. We will en-
large the sample size and apply other methods for the
clinicopathological classification of breast cancer.
Second, the automatic segmentation method was not
applied in our study. Hence, the ROI delineation was
time-consuming. Third, the apparent diffusion coeffi-
cient (ADC) value for each breast tumour was not ac-
quired. Therefore, we failed to compare the diagnostic
performance of ADC with that of radiomic features.
Fourth, the lack of morphological features could limit
our results. Our future work will focus on resolving
these limitations.

Conclusions

Our study demonstrated that the Fisher discriminant
analysis model based on radiomic features of diffusion-
weighted MRI could be used for the prediction of the
clinicopathological subtypes of breast cancer with high
accuracy. Moreover, the radiomic features had excellent
diagnostic performance in differentiating between the
ER-positive and -negative groups, PR-positive and -nega-
tive groups, HER2-positive and -negative groups, and
Ki-67-low and -high groups. More breast cancer cases
will be enrolled in our future work to validate this radio-
mic approach.
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