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Abstract

A versatile synthetic protocol of aza-Friedel-Crafts alkylation has been developed for the synthesis 

of quaternary α-amino esters. This operationally simple alkylation proceeds under ambient 

conditions with high efficiency, regioselectivity, and an exceptionally broad scope of arene 

nucleophiles. A key feature of this alkylation is the role associated with the silver(I) salt 

counteranions liberated during the reaction. Taking advantage of a phase-transfer counteranion/

Brønsted acid pair mechanism, we also report a catalytic enantioselective example of the reaction.
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α,α-Disubstituted α-amino acids found in carbonaceous chondritic meteorites1 have been 

suggested to be at the origin of symmetry breaking (up to 20% ee) on earth, eventually 

leading to the homochirality (single enantiomeric form) of terrestrial proteinogenic α-amino 

acids.2 Although several aspects of abiogenesis remain unclear, the role of α,α-disubstituted 

amino acids in transferring chirality to other proteinogenic α-amino acids renders these 

building blocks unique in nature. α,α-Disubstituted “quaternary” α-amino acids are also 

essential motifs of small molecules and nonribosomal peptides having a variety of biological 

activities (e.g., enzyme inhibitors, ion-channel blockers, or antibiotics).3 Given that these 

building blocks are highly constrained compared to monosubstituted α-amino acids 

(Thorpe-Ingold effect), they impart valuable conformational rigidity when embedded in 

synthetic molecules.4 Notably, α,α-disubstituted amino acids have a remarkable influence 

on peptide secondary structures, often producing well-defined helical conformations 

characteristic of many classes of biomolecules.5 Even so, the asymmetric synthesis of this 

class of noncanonical amino acids remains mostly untapped and complicated.6 On the other 

hand, fluorinated amino acids have recently attracted considerable attention owing to their 

unique medicinal and physicochemical properties (i.e., high stability to metabolic 

degradation, increased lipophilicity, and hydrogen bond acceptor ability).7 Therefore, 

establishing a scalable and practical (optically active) synthesis of α,α-disubstituted α-

trifluoromethyl amino esters is desirable.

In stark contrast to the activation of α-iminoglycinate A into iminium B, which is one of the 

most studied and versatile enantioselective strategies for synthesizing monosubstituted 

nonproteinogenic α-amino esters,8 few diastereo-9 and enantioselective10 methods are 

currently available for the synthesis of acyclic α,α-disubstituted α-trifluoromethyl amino 

esters 4. Indeed, the important electrophilicity of α-imino ester 3 results in a weak Lewis 

basicity of the imine nitrogen, seemingly contributing to a lack of reactivity toward Lewis 

and Brønsted acid catalysts (Scheme 1). Of particular interest, the synthesis of α,α-

trifluoromethyl-aryl amino esters by Friedel-Crafts reactions remains challenging by both 

diastereo-11 and enantioselective strategies.12 Seemingly, the relatively harsh acidic 

conditions required for condensing amines with α-trifluoromethyl ketoesters often limit the 

choice of N-protecting groups, leading to a two-step condensation/dehydration with water 

scavengers via hemiaminal 1.13 A milder alternative was also devised from the direct aza-

Wittig reaction with phosphazenes to prepare the most moisture-sensitive α-imino ester 3.14 

The lack of convenient synthesis and reactivity of α-trifluoromethyl α-imino esters 3 (weak 
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Lewis basicity) combined with a high moisture sensitivity (hydration, 3 → 1) are factors that 

largely hindered the use of this approach. To address this methodological gap, we initially 

envisioned avoiding the isolation of 3 by studying the direct reactivity of chloroaminal 2. 

Given that glycinyl chloroaminals were successfully exploited as effective surrogates of α-

iminoglycinates A by halide abstraction and anion binding catalysis for carbon-carbon bond 

formation at the α-center,15 we intuitively hypothesized that if a similar maneuver could be 

achieved from a tetrasubstituted chloroaminal 2, several classes of α,α-disubstituted α-

trifluoromethyl amino esters 4 could become synthetically accessible. Herein, we report a 

highly practical and general Friedel-Crafts alkylation via a silver(I)-mediated halide 

abstraction combined with hydrogen bonding that enables the addition of a broad range of 

arene nucleophiles to the α-trifluoromethyl α-iminopyruvate 3.16

The starting material, α-trifluoromethyl chloroaminals (±)-2a and (±)-2b bearing common 

N-carbamoyl protecting groups (Cbz or Fmoc), can be synthesized in >90% yield and kept 

intact for >8 weeks under low-moisture conditions. In collaboration with scientists from Eli 

Lilly, a silver(I)-mediated Friedel-Crafts alkylation of chloroaminal (±)-2a was extensively 

assessed through the screening of solvents, nucleophiles, and other reaction parameters on 

the Automated Synthesis laboratory (ASL) platform.17,18 As a result of this screen, a couple 

of silver(I) salts emerged as efficient stoichiometric reagents capable of generating Friedel-

Crafts products cleanly via a putative halide abstraction mechanism.19 The initial results 

obtained via the robot synthesizer were further optimized manually to study both reaction 

intermediates (e.g., 3) and any potential byproducts formed during the reaction by 1H and 
19F NMR (Table 1). Indeed, using Ag2CO3 as a promoter, the halide abstraction took place 

rather slowly, leading to ~60% conversion of imine 3 after 4 h (entries 1 and 2). The reaction 

carried out without a desiccant (entry 1) produced imine 3, which rapidly transformed into 

hemiaminal 1 (~1:1 ratio after 4 h), leading to a >95% yield of 1 after 24 h. The same 

reaction in the presence of molecular sieves delivered imine 3 in a quantitative manner as the 

sole reaction product (entry 2). Initial Friedel-Crafts conditions were tested with rather weak 

π-nucleophile arenes (entries 3 and 4) such as furan 5a (N ~ 1.3) and 1,3-dimethoxybenzene 

5b (N ~ 2.5).20 In both cases, the desired arylation did not take place as suggested by the 

large amount of imine 3 being formed over time (>95% NMR yield). These results suggest 

that arenes 5a and 5b are not nucleophilic enough to engage in the Friedel-Crafts alkylation 

with imine 3. Therefore, a stronger nucleophile, N-methylindole 5c (N ~ 5.8), was tested 

under the same reaction conditions. While small amounts of imine 3 were observed, the 

desired product 4c formed rapidly over the course of the reaction (entry 5, ≤98% NMR yield 

after 24 h). To circumvent the lack of reactivity of weak arene nucleophiles and expand the 

initial success to a broader scope of arenes, other common silver salts were evaluated.18 

While reactions with AgOAc or the more ionizing AgBF4 and AgSbF6 do not deliver the 

desired Friedel-Crafts products, several silver salts such as AgNO3, AgOTs, and AgOTf 

enabled the reaction to occur with 5b as the nucleophile. Optimum reactivity was observed 

with AgOTf, leading to the formation of arylated product 4b in a 36% yield (entry 6). 

Reaction conditions were further optimized by evaluating several solvents and 

concentrations.18 Reactions in diethyl ether showed a cleaner profile, leading to the 

formation of 4b in 54% and 71% yields at concentrations of 0.1 and 0.3 M, respectively 

(entries 7 and 8, respectively). The presence of molecular sieves in addition to AgOTf did 
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not affect the reaction outcome, leading to the full conversion of (±)-2a after only 1 h, but 

significant amounts of hemiaminal intermediate 1 persisted [entries 6–8 (vide infra)]. The 

fact that imine 3 was not observed in these reactions suggested that AgOTf or TfOH, a 

byproduct of halide abstraction, might account for activating imine 3 in the Friedel-Crafts 

alkylation.

Two silver-mediated methods therefore emerged to cover a broad scope of arene 

nucleophiles encompassing (a) electron-rich substrates using Ag2CO3 and (b) electron-poor 

arenes by switching the reagent to AgOTf (Scheme 2). For reactions mediated by Ag2CO3 

(0.75 equiv), reaction times varied from 18 to 72 h to deliver the quaternary α-

trifluoromethyl amino esters 4c-j in a range of yields of 56–89% with high regioselectivity 

in most cases. Using the same method, Fmoc-chloroaminal (±)-2b can also be functionalized 

in good yield, as shown by the synthesis of 4f in 89% yield. Interestingly, reactions with 1,3-

dimethoxybenzene (N ~ 2.5) did not proceed after 3 days under these conditions, or at a 

higher temperature, thus delineating the limit of reactivity of Ag2CO3-mediated Friedel-

Crafts alkylation. Even so, the reactivity of 3 with weaker π-nucleophiles (N ≤ 2.5) requires 

the use of AgOTf (2.0 equiv) to promote the Friedel-Crafts reactions. Under the optimum 

reaction conditions described in Scheme 2, reaction times could be decreased (<3 h) and α-

trifluoromethyl amino esters 4a, 4b, and 4k-p were obtained in a remarkable range of yields 

of 71–90% with high regioselectivity.

Given the innate sensitivity of the 19F nucleus, and the large chemical shift dispersion 

δF(CF3) observed among the starting material 2 (−76.14 ppm), products 4b and 4c (−71.20 

and −71.70 ppm, respectively), imine 3 (−70.05 ppm), and hemiaminal 1 (−80.63 ppm), 

reactions can be easily and quantitatively monitored by 19F NMR spectra calibrated on C6F6 

(see Scheme 3A).21 To test our reactivity hypothesis, imine 3 was synthesized, isolated 

(highly hydroscopic → 1), and further reacted with the moderately reactive arene 5b (N ~ 

2.5) and stoichiometric amounts of either AgOTf, Ag2CO3, or catalytic TfOH (Scheme 3B). 

Analysis of reaction progress by 19F NMR revealed no measurable formation of 4b in the 

presence of silver salts, while using 30 mol % TfOH afforded product 4b in 37% yield. The 

innate electrophilicity of imine 3 was further evaluated with arenes 5b, 5h, and 5i without 

any external additive. Arenes 5b and 5i were shown to be unreactive, while pyrrole 5h (N ~ 

4.6) reacted adequately with 3 (20% yield). The electrophilicity factor of imine 3 can 

therefore be roughly estimated to be E = −5.0 − [(3.6 + 4.6)/2] = −9.1,20b which is in line 

with some of the most electrophilic imines reported to date in the empirical Ofial-Mayr 

reactivity scale.22 Taken together, these results suggest that the TfOH byproduct formed 

during halide abstraction on 2 plays a pivotal role in catalyzing the Friedel-Crafts 

alkylations.11a With this piece of mechanistic information, a catalytic enantioselective 

activation of imine 3 was evaluated with (R)-TRIP as the Brønsted acid catalyst and indole 

5d as the arene nucleophile.23 While the uncatalyzed reaction yielded (±)-4d in 20% as a 

single C3 regioisomer, the TRIP-catalyzed reaction delivered the same regioisomer product 

(+)-4d (79:21 er) along with the C2 regioisomer in a 86:14 ratio. The C2/C3 regioisomers 

could not be separated by either silica gel chromatography or reverse-phase HPLC, but the 

comparable er and rr suggest that (+)-4d might be obtained with high enantiomeric purity.18
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Given the role played by TfOH and (R)-TRIP as Brønsted acid catalysts in the key C-C 

bond-forming step from imine 3,24 we became interested in evaluating such a catalyst in 

combination with Ag2CO3 for halide abstraction. In principle, the cooperative action of an 

achiral transition metal with a chiral Brønsted acid could translate into a chiral counteranion 

catalysis approach (Scheme 4).25 In this reaction, (R)-TRIP should be easily deprotonated 

by Ag2CO3, leading to a transient silver phosphate catalyst which could further achieve the 

halide abstraction and a phase transfer resulting in a chiral iminium-phosphate pair 6. An 

iminium/imine equilibrium 6/6′ might be operating due to the low Brønsted basicity of 

imine 6′, likely leading to a H-bonding catalysis for the facial enantiodiscrimination of 

imine 6′. The addition of indole 5d was selected as a model reaction. We tested this 

approach with the enantiopure (R)-TRIP phosphoric acid catalyst (10 mol %) and observed 

that lower loadings of Ag2CO3 (0.6 equiv) and molecular sieves (50 wt %) reduced the 

proportion of the undesired C2 regioisomer.18 Under the optimized conditions, (+)-4d was 

obtained in 85% yield with a 90:10 er and a 91:09 rr. Crystallization of an EtOAc/EtOH 

solution of 4d by slow evaporation delivered (+)-4d in the mother liquor as a single 

regioisomer with an er of >99.5:0.5. The residual solid was analyzed and shown to be rich in 

the C2 regioisomer (80:20 rr), similar to the measured er of 78:22. Taken together, these 

results suggest that the enantiodiscrimination induced by the TRIP catalyst is remarkable at 

rt (>99% ee), yet further optimizations will be necessary to avoid the formation of 

regioisomers. The Friedel-Crafts alkylation with indole 5d was successfully scaled up to 1.0 

mmol of (±)-2a with 5 mol % TRIP catalyst loading to afford product (+)-4d in 70% yield 

and >99% ee, which is more efficient than the original reaction of Bolm at −78 °C.11 In 

comparison to this study, the absolute configuration of α-amino ester (+)-4d should be (R) 

as depicted.

In summary, a versatile aza-Friedel-Crafts alkylation has been developed for the synthesis of 

quaternary α-trifluoromethyl-aryl amino esters. The combined halide abstraction/alkylation 

process is operationally simple under ambient conditions, highly efficient, regioselective, 

and amenable to a remarkable broad scope of arenes, spanning 6 orders of magnitude in 

nucleophilicity (indole, 5.5 ≥ N ≥ −1.2, anisole). The key feature of this reaction is the role 

associated with the silver(I) salt counteranions. In the course of silver-mediated halide 

abstraction, the silver counteranion is liberated as a conjugated Brønsted acid, likely 

resulting in an H-bond activation of the trifluoromethyl imine intermediate. This putative 

mechanism was exploited by replacing the achiral silver counteranion with a chiral 

phosphate in a catalytic enantioselective phase-transfer counteranion/Brønsted acid pair 

system to achieve an initial example of halide abstraction and aza-Friedel-Crafts alkylation 

with high stereoinduction (>99% ee). Further development of this asymmetric aza-Friedel-

Crafts methodology for the synthesis of novel quaternary α-amino esters is of ongoing 

interest to our group. Ultimately, we anticipate that the present study will offer a useful new 

approach for the asymmetric synthesis of several classes of quaternary α-trifluoromethyl α-

amino esters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Challenging Activation of α-Trifluoromethyl Imino Pyruvate versus the Typical Imino 

Glycinate Reactivity
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Scheme 2. Substrate Scope for the Synthesis of α,α-Disubstituted Amino Esters 4a-p by Friedel-
Crafts Reactionsa–b–c

aStandard reactions carried out on a 0.2 mmol scale for 2 (1.0 equiv) with arenes 5a-o (2.0 

equiv) in CH2Cl2 (0.2 M) with Ag2CO3 (0.75 equiv). Isolated yields reported. bStandard 

reactions carried out on a 0.2 mmol scale for 2 (1.0 equiv) with arenes 5a-o (2.0 equiv) in 

CH2Cl2 (0.2 M) with AgOTf (2.0 equiv). Isolated yields reported. cMajor regioisomers 

drawn for the sake of simplicity. Regioisomers separated by chromatography (see the 

Supporting Information).
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Scheme 3. (A) Reaction Profile Monitored by 19F NMRa and (B) Mechanistic Information from 
Control Experimentsb

aCrude reactions analyzed by 1H and 19F NMR with C6F6 as the internal chemical shift 

reference set at −161.64 ppm in CDCl3. bReagents and conditions for imine 3 (1.0 equiv) 

with arenes 5b, 5d, 5h, and 5i (2.0 equiv) at rt: (a) AgOTf or Ag2CO3 (Ag+, 1.5 equiv) in 

CDCl3, no reaction observed; (b) TfOH (30 mol %) in CDCl3; (c) 4 Å molecular sieves (50 

wt %) in CDCl3; (d) 4 Å molecular sieves (50 wt %) with (R)-TRIP (10 mol %) in CDCl3 

for 24 h, C3/C2 rr of 86:14, (+)-4d er determined by chiral NP-HPLC analysis.
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Scheme 4. Application to an Enantioselective Catalytic Aza-Friedel-Crafts Transformationa–c

aer determined by NP-HPLC using an enantiodiscriminating Chiralcel OD-H stationary 

phase, and rr determined by 19F NMR. bThe estimated er should be corrected on the basis of 

the measured rr given that the minor C3 regioisomer co-elutes with the minor enantiomer 

(−)-4d in NP-HPLC (see the text for explanations). cReactions carried out at −20 and −78 °C 

afforded product (+)-4d with a similar er.
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Table 1.

Reaction Optimization
a,b

conversion ratio (2:3:1:4)
b product yield

b,c

(%)

entry arene silver source 1 h 4 h 1 day

1
d - Ag2CO3 66:34:0:0 25:40:35:0 >95 (1)

2 - Ag2CO3 61:36:3:0 39:59:2:0 98 (3)

3 5a Ag2CO3 53:45:2:0 17:78:5:0 >95 (3)

4 5b Ag2CO3 70:2:2:0 26:70:1:0 >98 (3)
e

5 5c Ag2CO3 54:9:5:32 36:9:5:50 98 (4c)

6 5b AgOTf 42:0:17:20 0:0:16:15 36 (4b)

7
f 5b AgOTf 0:0:32:42 0:0:52:33 54 (4b)

8
f,g 5b AgOTf 0:0:40:39 0:0:24:53 71 (4b)

a
Reactions were carried out under argon with 2 (0.10 mmol) with arenes 5a-c(2.0 equiv), silver reagent [1.5 equiv in Ag(I)], and 30 mg of 4 Å 

molecular sieves in CDCl3 (2.0 mL).

b
NMR ratios and yields determined for the crude reaction mixture by 19F NMR with C6F6 as the internal standard.

c
NMR yields determined for the crude reaction mixture by 1H NMR with mesitylene as the internal standard.

d
Reaction carried out without 4 Å molecular sieves.

e
The reaction was also carried out at higher temperatures (up to 60 °C), and the formation of 4b was not observed.

f
Reaction carried out in anhydrous Et2O.

g
Reaction carried out at 0.3 M.
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