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A B S T R A C T

Objective: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now a global
pandemic. Emerging results indicate a dysregulated immune response. Given the role of CCR5 in immune
cell migration and inflammation, we investigated the impact of CCR5 blockade via the CCR5-specific
antibody leronlimab on clinical, immunological, and virological parameters in severe COVID-19 patients.
Methods: In March 2020, 10 terminally ill, critical COVID-19 patients received two doses of leronlimab via
individual emergency use indication. We analyzed changes in clinical presentation, immune cell
populations, inflammation, as well as SARS-CoV-2 plasma viremia before and 14 days after treatment.
Results: Over the 14-day study period, six patients survived, two were extubated, and one discharged. We
observed complete CCR5 receptor occupancy in all donors by day 7. Compared with the baseline, we
observed a concomitant statistically significant reduction in plasma IL-6, restoration of the CD4/CD8
ratio, and resolution of SARS-CoV2 plasma viremia (pVL). Furthermore, the increase in the CD8
percentage was inversely correlated with the reduction in pVL (r = �0.77, p = 0.0013).
Conclusions: Our study design precludes clinical efficacy inferences but the results implicate CCR5 as a
therapeutic target for COVID-19 and they form the basis for ongoing randomized clinical trials.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
merged as a global pandemic and increasing numbers of severe and
ritical cases have required invasive external ventilation, which
hreatens to overwhelm health care systems (World Health Organiza-
ion, 2020). It remains unclear why COVID-19 patients experience a
pectrum of clinical outcomes ranging from asymptomatic to severe
isease, where the features of critical COVID-19 include rampant
flammation and cytokine release syndrome (CRS) leading to acute
espiratory distress syndrome (ARDS) (Mehta et al., 2020; Qin et al.,
020). Indeed, excessive immune cell infiltration into the lung, CRS, and
RDS have previously been described as defining features of severe
isease in humans infected with the closely related betacoronaviruses
ARS-CoV and MERS-CoV (Channappanavar and Perlman, 2017;
icholls et al., 2003). SARS-CoV-infected airway epithelial cells and
acrophages express high levels of CCL5 (Law et al., 2005; Yen et al.,
006), which is a chemotactic molecule that can amplify inflammatory
esponses toward immunopathology, so we hypothesized that
isrupting the CCL5–CCR5 axis via the leronlimab-mediated CCR5
lockade might prevent pulmonary trafficking of pro-inflammatory
ukocytes and dampen pathogenic immune activation in COVID-19.
Leronlimab, formerly known as PRO 140, is a CCR5-specific

uman IgG4 monoclonal antibody in development for HIV therapy
s a once weekly, at home subcutaneous injection. In five
ompleted and four ongoing HIV clinical trials where over 800
ndividuals received leronlimab, no drug-related deaths, serious
njection site reactions, or drug–drug interactions were reported
Jacobson et al., 2008, 2010a; Jacobson et al., 2010b; Dhody et al.,
018). Subcutaneous, self-administration of leronlimab by patients
acilitates simple, once weekly dosing. In contrast to the small
olecule CCR5 inhibitors that prevent HIV Env binding to CCR5 via
llosteric modulation, leronlimab binds to the CCR5 extracellular
oop 2 domain and N-terminus, thereby directly blocking the
inding of HIV Env to the CCR5 co-receptor via a competitive
echanism. Leronlimab does not downregulate CCR5 surface
xpression or deplete CCR5-expressing cells, but it does prevent
CL5-induced calcium mobilization in CCR5+ cells with an IC50 of
5 mg/mL (Olson et al., 1999). This ability to specifically prevent
CL5-induced activation and chemotaxis of inflammatory CCR5+
acrophages and T cells suggests that leronlimab might be
ffective in mitigating pathologies involving the CCR5-ligand
athway.

ethods

atients

All leronlimab-treated patients were enrolled in this study
nder an individual patient emergency use investigation new drug
EIND) via a United States Food and Drug Administration (FDA)
mergency use authorization. The Albert Einstein College of
edicine Institution Review Board reviewed and approved this
tudy. One 8 mL ethylenediaminetetraacetic acid (EDTA) tube and
ne 4 mL plasma preparation tube were drawn by venipuncture at
ay 0 (pre-treatment) and day 3, day 7, and day 14 post-treatment.
eripheral blood mononuclear cells (PBMCs) were isolated from
eripheral blood using a Lymphoprep density gradient (STEMCELL
echnologies, Vancouver, Canada). Aliquots of cells were frozen in
edia that contained 90% fetal bovine serum (Hyclone, Logan, UT,
SA) and 10% dimethyl sulfoxide (Sigma–Aldrich, St. Louis, MO,
SA), and stored at �70 �C. The five COVID observational control

of their normal clinical care. All samples were collected at the time
of enrollment, which was during or immediately following
evaluation in a medical facility. The study was reviewed and
approved by the Washington University Saint Louis Institutional
Review Board (WU-350 study approval # 202003085). The study
complied with the ethical standards of the Helsinki Declaration.

Assessment of plasma cytokine and chemokine levels

Fresh plasma was employed for cytokine quantification using a
customized 13-plex bead-based flow cytometric assay (Legend-
Plex, Biolegend, Inc., San Diego, CA, USA) conducted with a
CytoFlex flow cytometer. Raw data were analyzed using Legend-
Plex software (Biolegend Inc., San Diego, CA, USA). Samples were
run in duplicate. In addition, split sample confirmation testing was
performed by enzyme-linked immunosorbent assay (MDBioscien-
ces, Minneapolis, MN, USA). Samples falling outside the linear
range of the appropriate standard curves were diluted and
repeated, where the dilution factor was incorporated into the
final average. The cytokines, chemokines, and growth factors
analyzed comprised: sCD40L, EGF, eotaxin, fibroblast growth factor
(FGF)-2, fms-like tyrosine kinase 3 (Flt-3), fractalkine, granulocyte
colony-stimulating factor (G-CSF), granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF), growth-regulated oncogene
(GRO)-α, FNα2, interferon (IFN)g, interleukin (IL)-1α, IL-1β, IL-1ra,
IL-2, IL-3, Il-4, IL-5, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-2 (p40), IL-12
(p70), IL-13, IL-15, IL-17A, IL-17E/IL-25, IL-17F, IL-18, IL-22, IL-27,
interferon gamma-induced protein 10 (IP-10), monocyte chemo-
attractant protein (MCP)-1, monocyte-chemotactic protein (MCP)-
3, macrophage colony-stimulating factor (M-CSF), macrophage-
derived chemokine (MDC), monokine induced by IFN-g (MIG),
macrophage inflammatory protein (MIP)-1α, MIP-1β, platelet-
derived growth factor (PDGF)-AA, PDGF-AB/BB, RANTES (regulated
on activation, normal T cell expressed and secreted), transforming
growth factor (TGF)-α, tumor necrosis factor (TNF)-α, TNF-β, and
vascular endothelial growth factor (VEGF).

Flow cytometry

PBMCs were isolated from peripheral blood using a Lympho-
prep density gradient (STEMCELL Technologies, Vancouver,
Canada). Each sample received a cocktail containing 10 mL Brilliant
Stain Buffer (BD Biosciences, Franklin Lakes, NJ, USA), 5 mL True-
Stain Monocyte Blocker (BioLegend, San Diego, CA, USA), and the
following surface marker antibodies: anti-CD19 (PE-Dazzle594),
anti-CD3 (APC), anti-CD16 (Alexa700), HLA-DR (APC/Fire750), and
anti-CTLA-4 (PE-Cy7). The following antibodies were then added to
each tube individually: anti-CD8 (BUV496), anti-CD4 (BUV661),
anti-CD45 (BUV805), anti-CD103 (BV421), anti-TIM3 (BV605), anti
CD56 (BV650), anti-LAG-3 (BV711), anti-CD14 (BB785), and anti-
PD-1 (BB700), before incubating at room temperature for 30 min.
Cells were fixed and permeabilized in 1� incellMAX (IncellDx, San
Carlos, CA, USA) for 60 min at room temperature in the dark. Cells
were washed once with 2% bovine serum albumin (BSA) solution,
and analyzed using a Cytoflex LX system with 355 nm (20 mW),
405 nm (80 mW), 488 nm (50 mW), 561 nm (30 mW), 638 nm (50
mW), and 808 nm (60 mW) lasers (Beckman Coulter Life Sciences,
Indianapolis, IN, USA). Analysis was performed with Kaluza version
2.1 software. The panel used in this study is shown in
Supplementary Table 1.
atients were part of a prospective observational cohort of subjects
ith viral respiratory illness symptoms who presented to Barnes

ewish Hospital, St. Louis Children’s Hospital, or affiliated Barnes
ewish Hospital testing sites located in Saint Louis, MO, USA.
nclusion criteria required that subjects were symptomatic and
ad a physician-ordered SARS-CoV-2 test performed in the course
2

CCR5 receptor occupancy

We determined CCR5 receptor occupancy by leronlimab using
phycoerythrin-labeled leronlimab (IncellDx Inc.) in a competitive
flow cytometry assay. CCR5-expressing immune cells including
6
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CD4+, CD45RO+ T-lymphocytes, CD4+, FoxP3+ T-regulatory cells,
and CD14+, CD16+ monocytes/macrophages were included in the
panel using the appropriate immunophenotypic markers for each
population in addition to phycoerythrin-labeled leronlimab. Cells
were incubated for 30 min in the dark at room temperature and
washed twice with 2% BSA solution. Flow acquisition was
conducted with a three-laser CytoFLEX fitted with 405 nm (80
mW), 488 nm (50 mW), and 638 nm (50 mW) lasers (Beckman
Coulter, Indianapolis, IN, USA). Receptor occupancy was deter-
mined based on the loss of CCR5 detection over time in the
subpopulations, and calculated using the following equation: 1–A/
B � 100, where A is day 0 and B is day 7.

Measurement of plasma SARS-CoV-2 viral loads

A QIAamp Viral Mini Kit (Qiagen, Catalog #52906) was used to
extract nucleic acids from 300 to 400 mL of plasma sample
according to the manufacturer’s instructions and eluted in 50 mL of
AVE buffer (RNase-free water with 0.04% sodium azide). The
purified nucleic acids were tested immediately with a Bio-Rad
SARS-CoV-2 ddPCR Kit (Bio-Rad, Hercules, CA, USA). The panel was
designed for specifically detecting 2019-nCoV (two primer/probe
sets). An additional primer/probe set was used to detect the human
RNase P gene in control samples and clinical specimens. RNA
isolated and purified from the plasma samples (5.5 mL) was added
to a master mix comprising 1.1 mL of 2019-nCoV triplex assay, 2.2
mL of reverse transcriptase, 5.5 mL of supermix, 1.1 mL of
dithiothreitol, and 6.6 mL of nuclease-free water.

The mixtures were then fractionated into up to 20,000
nanoliter-sized droplets in the form of a water-in-oil emulsion
in a QX200 Automated Droplet Generator (Bio-Rad, Hercules, CA).
The 96-well real-time-digital droplet polymerase chain reaction
(RT-ddPCR) ready plate containing droplets was sealed with foil
using a plate sealer and thermocycled to reverse transcribe the
RNA, before PCR amplification of cDNA in a C1000 Touch
thermocycler (Bio-Rad, Hercules, CA, USA). After PCR, the plate
was loaded into a QX200 Droplet Reader (Bio-Rad, Hercules, CA,
USA) and the fluorescence intensity of each droplet was measured
in two channels (FAM and HEX). The fluorescence data were then
analyzed with QuantaSoft 1.7 and QuantaSoft Analysis Pro 1.0
Software (Bio-Rad, Hercules, CA, USA) to determine the presence of
SARS-CoV-2 N1 and N2 in the specimen. The limit of detection
(LOD)was determined as shown in Supplementary Figure 1.

Bio-Rad SARS-CoV-2 RT-ddPCR Thermal Cycling Protocol
Cycling Step Temperature (�C) Time Number of Cycles

Reverse 50 60 min 1
Transcription
PCR Enzyme 95 10 min 1
Activation
Template 94 30 s 40
Denaturation
Annealing/Extension 55 60 s
Droplet Stabilization 4 30 min 1
Hold (Optional) 4 Overnight 1

10. � Genomics 50 single-cell RNA sequencing

NextSeq 500 instrument. The healthy control reference data were
obtained from public 10� genomics data sets (“5k_pbmc_v3” and
“pbmc4k” from https://support.10xgenomics.com/single-cell-
gene-expression/datasets, and “vdj_nextgem_hs_pbmc3” from
https://support.10xgenomics.com/single-cell-vdj/datasets). Raw
FASTQ reads for the experimental samples and reference data
were processed using 10� Genomics Cellranger version 3.1.0,
where the data were aligned with human genome build GRCh38.
p13, including unplaced contigs. The Ensembl release 98 gene build
was used for feature counting. The raw count matrix provided by
Cellranger was filtered using EmptyDrops, and processed using
Seurat version 3.1.4. Briefly, count matrices were imported for each
sample, merged, and processed using a standard Seurat pipeline.
Cells were filtered based on the following criteria: less than 200 or
more than 3000 distinct genes, more than 15% unique molecular
identifiers from mitochondrial genes, and a maximum library size
of 20,000. Log normalization was then performed and the top
variable genes were identified using the “vst” method. Differential
expression (DE) analysis was performed using the Wilcoxon rank-
based test based on the normalized counts. Only pertinent cells
were used in the contrast for the cell-type DE level. In each
comparison, the inclusion criteria for significant genes were set
with the Bonferroni adjusted p-values generated with Seurat’s
FindMarkers function, with an error rate less than 0.1.

Statistical analysis

We performed statistical analyses between groups using the
nonparametric Kruskal–Wallis test followed by Dunn’s multiple
comparison correction to control the experiment-wise error rate.
We compared categorical variables using Fisher’s exact test and
continuous variables with the Mann–Whitney U test We assessed
data based on the repeated measure correlation (rmcorr).

Results

Ten critical COVID-19 patients at the Montefiore Medical Center
received leronlimab via FDA-approved EIND requests for individual
patient use (Table 1). These confirmed SARS-CoV-2 positive
patients had significant pre-existing co-morbidities and were
receiving intensive care treatment, including mechanical ventila-
tion or supplemental oxygen for ARDS. Consistent with previous
reports of severe COVID-19 disease (Huang et al., 2020), these
patients showed evidence of lymphopenia with liver and kidney
damage (Supplementary Figure 2) (Akalin et al., 2020). Four of the
patients died during the 14-day study period due to a combination
of disease complications and severe constraints on medical
equipment culminating in medical triage. Although this EIND
study lacked a placebo control group for comparison, a recent
study of other critically ill COVID-19 patients in the New York City
area indicated mortality rates as high as 88% (Richardson et al.,
2020).

Hyper-immune activation and CRS are present in cases of severe
COVID-19 (Mehta et al., 2020). Indeed, at leronlimab treatment
baseline, signatures of CRS were present in the plasma of all 10
patients in the form of significantly elevated levels of the
inflammatory cytokines IL-1β, IL-6, and IL-8 (Figure 1A–C)
compared with the healthy controls. In contrast to patients with
mild or moderate COVID-19, only IL-6 was present at significantly
higher levels in the critically ill patients. It should be noted that the
Cells were then diluted to a concentration of 1 million cells per
mL before loading onto the 10� chip. A single-cell RNA sequencing
library was prepared with Chromium Next GEM Single cell
Immune Profiling (v.1.1 Chemistry) according to the manufac-
turer’s protocols using a Chromium Controller instrument. The
library was sequenced using a High Output Flowcell and Illumina
27
plasma CCL5 levels of the 10 critically ill patients were markedly
elevated compared with those of both the healthy controls and
mild or moderate COVID-19 patients (Figure 1D). High levels of
CCL5 can cause acute renal failure and liver toxicity (Yu et al., 2016;
Chen et al., 2020), which are both common findings with COVID-19
infection. Indeed, the critically ill patients presented with varying

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-vdj/datasets


Table 1
Leronlimab-treated critical COVID-19 patient summaries.

Day relative to
leronlimab

Patient Age/
Gender

Pre-existing conditions Renal
transplant
year

Dialysis in
hospital

Onset
Sx

PCR
+

Admit Treatments for COVID
and concomitant
infections

Vasopressors
used

Baseline
status

Extubated
(day relative
to leronlimab)

Respiratory
outcome

Subject status
(day relative to
leronlimab)

L1 74/M AKI, HTHD, Prostate CA (s/p
prostatectomy), DM, Gout

N/A Yes �14 �8 �8 CQ, HCQ, TZP, AZT Yes Intubated TBD Remains
intubated

Still admitted

L2 74/F ESRD, HTHD, DM, HLD 2018 Yes �3 �2 �2 HCQ, CQ, AZM, LPV/RTV Yes Intubated No Worsened Deceased (8)
L3 54/M RF, HTHD, HLD N/A Yes �1 �1 �1 CQ, HCQ, TZP, VAN Yes Venture mask, same

day intubated
TBD Remains

intubated
Still admitted

L4 56/M HTHD, Skin CA, Papillary thyroid CA
(s/p thyroidectomy), DM

N/A Yes �1 2 �8 CQ, LPV/RTV Yes Intubated Yes (1) RA by day 8 Still admitted

L5 58/M ESRD, CKD stage 3 in renal allograft,
recurrent UTI with MDR E.coli, DM,
DR, HTHD, HLD

2016 Yes �8 �5 �6 AZM, HCQ Yes Intubated Yes (13) Improving Still admitted

L6 42/M FSGS, CKD stage 3, DVT/PE, Gout 2005, 2016 No �4 �1 �1 HCQ, AZM, CAX, VAN,
CEF

No On 2 L NC N/A Stable on
RA

Discharged (13)

L7 68/M ESRD, Hydronephrosis (s/p stent
placement), HTHD, HLD, DM with
retinopathy and neuropathy

2018 Yes �13 �10 �10 AZM, HCQ, VAN, TZP Yes On NRB TBD Improving Still admitted

L8 56/F ESRD, lung CA (s/p bilateral upper
lobectomy), COPD, Asthma, DM,
HTHD, HLD, Hepatitis C

2009 No �7 �5 �5 CAX, AZT, HCQ, CEF, VAN No 3�4 L NCa No Worsened Deceased (6)

L9 51/F AKI, HTHD, OSA (on Bilevel Positive
Airway Pressure)

2006 Yes �6 �5 �6 HCQ Yes Intubated No Worsened Deceased (4)

L10 79/M AKI, CAD, Prostate CA, GERD, HTHD,
HLD

N/A Yes �13 �6 �6 HCQ Yes Intubated No Remained
intubated

Deceased (7)

N/A = not applicable, s/p = status post-, AKI = acute kidney injury, HTHD = hypertensive heart disease, DM = diabetes mellitus, HLD = hyperlipidemia, ESRD = end-stage renal disease, HD = hemodialysis, CA = cancer, COPD = chronic
obstructive pulmonary disease, LUL = left upper lobe, RUL = right upper lobe, MDR = multi-drug resistant, CKD = chronic kidney disease, UTI = urinary tract infection, FSGS = focal segmental glomerulosclerosis, DVT = deep vein
thrombosis, PE = pulmonary embolism, OSA = obstructive sleep apnea, CAD = coronary artery disease, GERD = gastroesophageal reflux disease, RF = renal failure, DR = diabetic retinopathy, HCQ = hydroxychloroquine, CQ =
chloroquine, AZM = azithromycin, VAN = vancomycin, CAX = ceftriaxone, LPV/RTV = lopinavir/ritonavir, TZP = piperacillin-tazobactam, CEF = cefepime, NC = nasal canula, NRB = non-rebreather mask, TBD = to be determined.

a Patient declined intubation due to poor baseline pulmonary status.

B.K
.

 Patterson,
 H

.
 Seetham

raju,
 K
.

 D
hody

 et
 al.

 /
 International

 Journal
 of

 Infectious
 D

iseases
 103

 (2021)
 25

–
32

28



B.K. Patterson, H. Seethamraju, K. Dhody et al. / International Journal of Infectious Diseases 103 (2021) 25–32
plasma SARS-CoV-2 viremia at baseline. SARS-CoV-2 was found in
the plasma of all 10 critically ill patients, but no viremia was
detected in the healthy controls and in only one patient with mild/
moderate COVID-19, thereby highlighting the critical nature of
COVID-19 in these patients (Figure 1E).

At study day 0, all 10 critically ill patients received a
subcutaneous injection of 700 mg leronlimab following baseline
blood collection. Subsequently, the patients received a second
subcutaneous injection of 700 mg leronlimab at study day 7. The
defining features of severe COVID-19 disease include the plasma
IL-6 and T cell lymphopenia (Huang et al., 2020; Lescure et al.,
2020), so we longitudinally monitored these parameters for 2
weeks after the first leronlimab treatment. A reduction in the
plasma IL-6 was observed as early as 3 days following leronlimab
with a return to healthy control levels by day 14 (Figure 2A). In
contrast to IL-6, the levels of other cytokines and chemokines
were more variable after leronlimab treatment (Supplementary
Figure 3). Following leronlimab administration, a marked
restoration of CD8+ T cells (Figure 2B) and normalization of
the CD4+ and CD8+ T cell ratio were observed in the blood
samples (Figure 2C). These immunological changes occurred
concomitant with leronlimab CCR5 receptor occupancy on the
surface of CCR5+ T cells and monocytes (Figure 2D and E). The
percentage of other CCR5-expressing cell types (CD4 T-cells, NK
cells, and monocyte/macrophages) did not change significantly
over 14 days of leronlimab treatment. Following leronlimab
administration, SARS-CoV-2 plasma viremia decreased in all
patients at day 7, and all but one patient had resolved SARS-CoV-2
plasma viremia to undetectable levels by day 14 (Figure 2F left, p =
0.0012). Finally, SARS-CoV-2 plasma viremia in leronlimab-treated
COVID-19 patients was inversely correlated with the frequency of
CD8+ T cells in the blood, which suggested immune restoration
(Figure 2G).

To establish an unbiased gene repertoire for these COVID-19
patients, we performed 10� Genomics 50 single cell RNA
sequencing for PBMCs from two of the severe COVID-19 patients
(L2 and L4) for which sufficient baseline, pre-leronlimab treatment
COVID-19 samples were available. We also performed scRNA-seq
for the same patients at day 7 post-treatment, and included three
reference PBMC scRNA-seq data sets from healthy controls
provided by 10� Genomics. After quality control, our longitudinal
COVID-19 single cell data set profiled a total of 3785 cells at
baseline, 5056 cells at the 7-day post-leronlimab time point, and
18,603 cells from healthy controls. We were able to assign cell
types to most cells based on a combination of the expression of
known marker genes and automated cell type classification using
the SingleR package (Aran et al., 2019) to identify five primary
clusters that corresponded to monocytes, B, T, and NK cells, and
some platelets (Figure 3). We initially compared the baseline
COVID samples with the healthy controls. We detected a total of 75
DE transcripts (Wilcoxon adjusted p < 0.1) (Supplementary
Table 2). The top pathways enriched in this set included multiple
TCR signaling pathways, such as the genes LCK, CD3E, and NFKBIA
(Figure 3). Differences in cellularity between donors will confound
global gene expression analyses, so we extracted the myeloid cell
cluster and performed DE analyses using only these cells. We
identified 131 DE transcripts between the healthy controls and
COVID-19 on day 0 (Supplementary Table 2 and Figure 3). This gene
set was enriched for genes involved in interferon signaling (IFITM2,
IFNGR2, and NFKBIA), and cytokine signaling (HSP8A, JUN, and

Figure 1. Elevated cytokine, chemokine, and SARS-CoV-2 levels in critically ill
COVID-19 patients. (A–E) Plasma levels of IL-1β (A), IL-6 (B), IL-8 (C), CCL5 (D), and
SARS-CoV-2 RNA copies (E) in patients with mild/moderate (purple symbols, n = 8)
and critical (red symbols, n = 10 in panels a–d, and n = 7 in panel e) COVID-19 disease
compared with healthy controls (black symbols, n = 10). Dashed line indicates the
LOD. Graphs show p-values calculated using Dunn’s Kruskal–Wallis test: *p � 0.05,
** p � 0.01, ***p � 0.001, ****p � 0.0001.
degrees of kidney and liver injury, although many had also
previously received kidney transplants (Akalin et al., 2020) (Table 1
and Supplementary Figure 2). Low levels of SARS-CoV-2 have been
detected but not yet quantified in the plasma of COVID-19 patients
(Lescure et al., 2020). We used high sensitivity, ddPCR to quantify
29
TIMP1). We found that several downstream targets of IL-6 were
also upregulated: ZFP36L2, CEBPB, and LY6E.

To identify markers that could inform effective leronlimab
treatment, we then compared gene expression within the two
severe COVID-19 participants by contrasting the baseline and day 7
post-leronlimab. After performing bulk DE based on the total
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BMCs, we identified 14 DE genes, although this could also have
een confounded by the differences in the cell compositions. It
hould be noted that this set included a significant drop in CD44, a
ownstream target of IL-6 signaling (Vincent and Mechti, 2004),
nd a number of genes involved in neutrophil degranulation
ITGB2, EEF2, HSP90AA1, and ALDOA). Next, we performed DE
pecifically based on myeloid cells and identified 73 DE transcripts
n this subset (Wilcoxon adjusted p < 0.1; Supplementary Table 2).
n agreement with the decrease in the IL-6 protein levels observed
n plasma, we observed significant decreases in the expression of
any IL-6 responsive genes, including TGFB1, IFI30, and LY6E,
hich are consistent with previous reports of monocyte/macro-
hages repolarization following CCR5 blockade (Halama et al.,
016). We also observed myeloid cells expressing chemokine and
FN-related genes, such as IFNGR2, IFITM2, and TALDO1, which
ere significantly downregulated at day 7 post-leronlimab
ompared with baseline (Supplementary Table 2). These tran-
criptomic findings further highlight the potential impact of
eronlimab-mediated CCR5 blockade on the inflammatory state in
OVID-19.

iscussion

In this study, we investigated the involvement of the chemokine
eceptor CCR5 in COVID-19 and obtained data from 10 critically ill
atients with severe COVID-19 that demonstrated reductions in
nflammation, restoration of T cell lymphocytopenia, and reduced
ARS-CoV-2 plasma viremia following leronlimab-mediated CCR5

was elevated to a greater extent than the other CCR5 binding
chemokines MIP-1α and MIP-1β, probably due to the production of
RANTES in respiratory epithelial cells (in addition to immune cells)
in respiratory viral infections (Schroth et al., 1999). We also found a
profound reduction in the CD8 percentage with concomitant
increases in the CD4/CD8 ratio. In this cohort of critical COVID-19
patients, SARS-CoV-2 RNA was detectable and quantifiable in
plasma samples from all patients. For the first time, we
demonstrated that restoration of the CD8 T-cell numbers was
significantly correlated with decreases in the plasma viral load.
Overall, our results showed that therapy with a CCR5 antagonist
could reduce the cytokine storm, resolve the profound CD-8 T-cell
lymphopenia, and reduce the plasma viral load to undetectable
levels by day 14. These data support recent studies that suggested
the potential for targeting CCR5 as a therapeutic in COVID-19 (Chua
et al., 2020).

Recent studies showed that a significant number of COVID-19
patients had increased risks of strokes, blood clots, and other
thromboembolic events (Grillet et al., 2020). Platelet activation
leads to initiation of the coagulation cascade and it can be
triggered by chemokines including CCL5/RANTES (Machlus
et al., 2016), thereby suggesting that leronlimab treatment
may be beneficial beyond its immunomodulatory effects on
inflammation and hemostasis in COVID-19 patients.
Given medical triage resulting in patient death and the
lack of a placebo control group, we cannot comment on
the impact of leronlimab on the clinical outcomes in
these patients. Anecdotal evidence has been reported of

igure 2. Reversal of immune dysfunction, CCR5 receptor occupancy, and decrease in SARS-CoV-2 plasma viral loads in critically ill COVID-19 patients after leronlimab
dministration. (A–C) Plasma levels of IL-6 (A), and peripheral blood CD8+ T cell percentages of CD3+ cells (B) and CD4/CD8 T cell ratio (C) at days 0 (n = 10), 3 (n = 10), 7 (n = 7),
nd 14 (n = 6) post-leronlimab administration. Healthy controls (n = 10) are shown in black triangles. Critically ill COVID-19 patients not treated with leronlimab are shown in
anel A (right, open symbols, n = 5). Graphs show p-values calculated using Dunn’s Kruskal–Wallis test: not significant p > 0.05, *p � 0.05, ** p � 0.01, ***p � 0.001, ****p �
.0001. (D–E) CCR5 receptor occupancy on peripheral blood bulk T cells (D), and monocytes (E). (F), SARS-CoV-2 plasma viral loads at days 0, 7, and 14 post-leronlimab (left
anel, closed symbols, n = 7). Critically ill COVID-19 patients not treated with leronlimab are shown in panel F (right panel, open symbols, n = 5). Horizontal dashed line
dicates the LOD. Graph show p-values calculated using the Mann–Whitney test: *p � 0.05, ** p � 0.01, ***p � 0.001, ****p � 0.0001. (G) Plot showing CD8 percentages in blood
nd SARS-CoV- 2 plasma viral load in seven critically ill COVID-19 patients at days 0, 7, and 14 post-leronlimab (n = 20). Graph shows rho (r) and p- values calculated by
epeated measures correlation: *p � 0.05, ** p � 0.01, ***p � 0.001, ****p � 0.0001. The 95% confidence interval for the repeated measures correlation was �0.93 to 0.35.
lockade. We found statistically significant increases in IL-1β, IL-6,
L-8, and RANTES in these critically ill patients compared with
ealthy controls. The increases in these cytokines are the hallmark
f COVID-19 and elevation of the chemokine CCL5/RANTES has
een demonstrated across the COVID-19 disease spectrum from
ild (Zhao et al., 2020) to severe (Li et al., 2020) patients. RANTES
3

clinical improvements in COVID-19 patients following leronli-
mab treatment (Mottet, 2020), but randomized
controlled trials are required to determine the efficacy of
leronlimab in COVID-19. Indeed, randomized, double blind,
placebo controlled clinical trials are underway to assess the
efficacy of leronlimab treatments in patients with mild to
0
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moderate (NCT04343651) (ClinicalTrials.gov, 2020) and severe
to critical (NCT04347239) COVID-19 (ClinicalTrials.gov). In
summary, our results suggest the involvement of CCR5 in the
pathology of SARS-CoV-2, and that inhibiting the activity of
CCL5 via CCR5/RANTES blockade represents a novel therapeutic
strategy for COVID-19 with both immunological and virological
implications.
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Figure 3. Phenotyping and differential gene expression analyses based on scRNA-seq data. (A) Graph showing the proportion of each cell type in healthy control and
leronlimab-treated COVID patient samples. (B) Heatmap of significantly differentially expressed genes (Wilcoxon adjusted p < 0.1) by contrasting either COVID day 0 vs.
healthy control (HC) or COVID day 9 vs day 7 post-leronlimab treatment. (C) Venn diagram showing the overlap between genes identified from the contrasts shown.
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