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Multiple myeloma (MM) is a currently incurable blood cancer. Here
we tested the effects of a small compound bigelovin on MM cells,
and reported that it caused cell cycle arrest and subsequently
induced apoptosis. Bigelovin triggered proteolysis of E2F1, which
could be inhibited by caspase inhibitor. To investigate the clinical
relevance, the expression of E2F1 in MM specimens was tested,
and the results showed that E2F1 was overexpressed in 25–57% of
MM patients and was associated with higher International Staging
System (ISS) stage. These results suggest that E2F1 may be impor-
tant for MM pathogenesis, and bigelovin could serve as a lead
compound for the development of E2F1 inhibitor. (Cancer Sci 2013;
104: 1697–1704)

M ultiple myeloma (MM) is a type of blood cancer
formed by malignant plasma cells and characterized by

monoclonal protein in the blood or urine and associated organ
dysfunction. It can be stratified into three stages by an Interna-
tional Staging System (ISS) based on the serum b2-microglob-
ulin (b2M) and albumin, which is helpful for predicting
treatment response and outcome.(1) High morbidity, difficulty
to diagnose at an early stage, and palindromia, are the major
features of this currently incurable disease.
Aberration in cell cycle has been shown to be one of the

major features of human cancers. Normally in late G1 phase
and prior to entering S phase, cells pass through the restriction
point, which is mainly controlled by the retinoblastoma (Rb)
and E2F family proteins.(2,3) When Rb is inactivated by cyclin
D1 ⁄CDK4 ⁄ 6-mediated phosphorylation and subsequent degra-
dation, E2F transcription factors are released, resulting in tran-
scription of a range of targets including cyclin E, cyclin A,
proliferating cell nuclear antigen (PCNA), dihydrofolate reduc-
tase (DHFR), thymidylate synthase (TS), DNA polymerase a
and others, and progression into S phase.(3–5) In MM cells, Rb
protein is expressed mostly in its phosphorylated form,(6) and
its deletion does not result in a shortening in the survival of
MM patients,(7) suggesting that its target proteins, the E2Fs,
may be de-regulated and thus promoting MM progression.
Abnormal E2F1 gene expression and ⁄or E2F1 amplification
are seen in many types of human cancers,(4,5) and a few stud-
ies showed that in the bone marrow (BM) biopsy specimens of
MM cases, E2F-1 was concurrently expressed with cyclin
D1.(8,9) However, the role of E2F1 in MM pathogenesis
remains unclear, and whether E2F1 inactivation could lead to
MM recession or not warrants further investigation.
Bigelovin is a sesquiterpene lactone (Fig. 1a) isolated from

Inula helianthus-aquatica C. Y. Wu or Inula britannica L. var.

chinensis (Rupr.) Reg. (Compositae) which are used in
traditional medicine to treat asthma, chronic bronchitis, and
acute pleurisy in China and Korea.(10) Bigelovin was identified
as a selective RXRa agonist,(11) and was shown to be able to
inhibit inflammatory monocyte adhesion to endothelial
cells,(12) and have anti-emetic activity.(13) Bigelovin exhibits
cytotoxic effects against human cancer cells including COLO
205, HT 29, HL-60, K562 and U937 cells.(14–16) In this study
we test the effects of bigelovin on MM cells and investigate
the underlying mechanisms of action.

Materials and Methods

Reagents. Bigelovin was prepared and provided by Professor
Ning-Hua Tan and was dissolved in dimethyl sulfoxide at a
concentration of 1910�2 M and stored at �20°C.(16) Cyclohex-
imide (Chx), MG132, phenylmethylsulfonyl fluoride (PMSF),
pepstatin A and 1,10 – phenanthroline (Phe) were purchased
from Sigma (St. Louis, MO, USA). PS341, chloroquine (Chl)
and ammonium chloride (NH4Cl) were attained from Millen-
nium Pharmaceutical (Cambridge, MA, USA), Shanghai Yuanji
Chemical (Shanghai, China) and Qianhui (Guagnzhou, China),
respectively. Iodoacetamide (IAA) was purchased from Amre-
sco (Solon, OH, USA), Z-VAD-fmk was purchased from Pro-
mega (Southampton, UK), and Calpeptin was purchased from
Tocris Bioscience (Minneapolis, MO, USA).

Patient samples. Use of patient samples was approved by the
Institutional Review Board of the Nanfang Hospital Affiliated
to Nanfang Medical University and Institute of Zoology,
Chinese Academy of Sciences. All BM and peripheral blood
samples were obtained with written informed consent from
patients or healthy donors at the Department of Hematology,
Nanfang Hospital. These BM samples included nine from
healthy donors, four from Non-Hodgkin lymphoma (NHL) and
27 from MM patients. The mononuclear cells were separated
by Ficoll-Hipaque density sedimentation, and CD138+ cells
were isolated using positive immunomagnetic column separa-
tion (Miltenyi Biotech, Auburn, CA, USA) from BM mononu-
clear cells (BMMCs) from 13 patients with MM, four patients
with non-Hodgkin’s Lymphoma (NHL), and three healthy
donors. Bone marrow stromal cells (BMSCs) were obtained
from a MM patient-derived CD138-negative BM mononuclear
cells cultured for 5 weeks.(17)

Immunohistochemical analysis as well as the scoring of
immunoreactivity was performed using the rabbit polyclonal
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anti-E2F1 or anti-cyclin D1 antibody.(18) The immunofluores-
cence assay was conducted using anti-E2F1 and a FITC-conju-
gated secondary antibody (Santa Cruz Biotechnology, Dallas,
TX, USA).(19)

Cell culture, cell viability, apoptosis and cell cycle analy-
sis. Human MM cell lines U266, RPMI8226 and MM.1S were
cultured as described.(19) Cell viability was assessed by 3-(4,5-
dimethylthiahiazozy1)-3,5-di-phenytetrazoliumromide (MTT)
assay and trypan blue dye exclusion analysis. Cell apoptosis
was evaluated using an Annexin V-PE ⁄7-AAD detection kit
(Becton Dickinson, Franklin Lakes, NJ, USA) according to the
manufacturer’s instructions, and DNA fragmentation was
assayed as described. For cell cycle analysis, the cells were
synchronized by double blockage with deoxythymidine (TdR;
Sigma), exposed to bigelovin at indicated concentrations for
24 h. Cell cycle analysis was performed on a Becton Dickin-
son FACS Canto.(19)

Transfection of siRNAs. Three siRNAs targeting E2F1 were
designed and synthesized by Shanghai GenePharma (Shanghai,
China). The candidate E2F1 targeted siRNA sequences were
as follows: siRNA-1: 5′-GCUAUGAGACCUCACUGAATT-3′;
siRNA-2: 5′-GGACCUUCGUAGCAUUGCATT -3′; siRNA-3:
5′-CUCCCUUAAGAGCAAACAATT-3′. Non-specific siRNA
was also purchased from GenePharma. U266 cells were trans-
fected with siRNAs (100 nM) by HiPerFect transfection
reagent, according to the manufacturer’s instructions (Qiagen,
Hilden, Germany). Forty-eight hours later, the cells were
harvested for cell cycle and Western blot analyses.

Semiquantitative RT-PCR. Total RNA was prepared; first-
strand cDNA was synthesized from 1 lg total RNA using an
Oligo-(dT) primer and SuperScript II reverse transcriptase
(Invitrogen, Frederick, MD, USA). Primers used in this study

were as follows: b-actin (sense primer: 5′-CCTGGCACCCAG-
CACAAT-3′; antisense primer: 5′-GGGCCGGACTCGTCA-
TACT-3′), E2F1 (sense primer: 5′-ACCAGGGTTTCCAGAGA
TGC-3′; antisense primer: 5′-CACCACACAGACTCCTTCCC-
3′), Cyclin E (sense primer: 5′-CACTTTCTTGAGCAACAC
CCT-3′; antisense primer: 5′-TCTGTCACATACGCAAACTG
G-3′), DHFR (sense primer: 5′-TGGTTCGCTAAACTGCATC
GT-3′; antisense primer: 5′-AACAGAACTGCCACCAACT
ATC-3′), PCNA (sense primer: 5′-AGGCACTCAAGGACCT-
CATC-3′; antisense primer: 5′-GAAACTTTCTCCTGGTTT
GG-3′), Apaf-1 (sense primer: 5′-AGTTGGACACTATTCCT
GCTC-3′; antisense primer: 5′-AAATAGGTTGGCTGGAA
GGT-3′), and P21WAF (sense primer: 5′-GCAGACCAGCAT
GACAGATTT-3′; antisense primer: 5′-AAGATGTAGAGCGG
GCCTTT-3′). Products of RT-PCR was separated by 1% aga-
rose gel electrophoresis and detected in gel imaging system.

Western blot. Cell pellets were lysed, protein samples were
quantitated and electrophoresed, transferred to a nitrocellulose
membrane (Whatman, Maidstone, UK), and the reaction was
performed as described.(19) Antibodies used were as follows:
anti-PARP, anti-Casp-9 (C9), anti-Casp-3, anti-cleaved Casp-3,
anti-pRb, anti-E2F1, anti-cyclin D1, anti-cyclin E (Cell
Signaling Technology, Beverly, MA, USA), anti-PCNA, anti-
CDK4 (Santa Cruz), anti-cyclin A, anti-IjBa (Abcam, Cam-
bridge, MA, USA), and anti-b-actin (Sigma).

Statistical analysis. Differences between groups were evalu-
ated for significance using one-way analysis of covariance and
Bonferroni post-test. P-value was derived by two-sided statisti-
cal tests. P-value < 0.05 was considered statistically signifi-
cant. All experiments were repeated at least three times
independently and data were presented as the mean � SD
unless noted otherwise.

(b) (c)

(d) (e) (f)

(a)

Fig. 1. Inhibitory effects on Bigelovin on multiple myeloma (MM) cells. (a) Chemical structure of bigelovin. (b) The concentration of bigelo-
vin required to inhibits 50% of cell growth (IC50) in various cell lines. (c) U266 cells were treated with bigelovin (Bgv) for 24 h and assessed by
MTT assay, and inhibition rate was calculated. (d) U266 cells were treated with Bgv and cell viability was assayed by trypan blue exclusion
analysis. (e) The CD138+ primary cells were treated with Bgv for 24 h and assessed by MTT assay, and inhibition rate was calculated.
(f) MM.1S cells were co-cultured with bone marrow stromal cells (BMSCs) from one MM patient, treated with Bgv for 24 h, and evaluated by
MTT assay.
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Results

Bigelovin inhibits proliferation of MM cells. By MTT assay,
we showed that bigelovin inhibited the proliferation of human
MM (U266, RPMI 8226, MM.1S and MM.1R), leukemia (Kas-
umi-1, K562, HL60, U937), gastric (SGC7901, HGC-27,
BGC-823), lung (A549), hepatic cancer (BEL7402), glioma
(U251) and mouse melanoma (B16) cell lines, with the IC50
values for MM cells ranging from 0.5 to 0.99 lM (Fig. 1b).
We showed that bigelovin inhibited cell proliferation (Fig. 1c)
and growth (Fig. 1d) of U266 cells in a dose- and time-depen-
dent fashion. Bigelovin also suppressed proliferation of
CD138+ primary MM cells isolated from two MM patients
(Fig. 1e). By MTT assay, we found that bigelovin could also
inhibit proliferation of MM.1S cells co-cultured with MM
patient-derived BMSCs (Fig. 1f).

Bigelovin induces S phase arrest and apoptosis in MM cells. To
test the effects of bigelovin on cell cycle, U266 cells were syn-
chronized at G1 phase by TdR double blockage, followed by
treatment with bigelovin for 24 h. We found that treatment
with bigelovin at 1.0–2.0 lM led to accumulation of cells in S
phase in a dose-dependent fashion (Fig. 2a). To confirm these
results, we used a widely used microtubule inhibitor nocodaz-
ole, which arrests cells in G2 ⁄M phase, as a control, and found
that while nocodazole accumulated cells in G2 ⁄M phase, bige-
lovin attenuated this effect and caused S phase arrest (Fig. 2a).
To investigate the eventual effect of bigelovin on U266

cells, Annexin V ⁄7-AAD staining and flow cytometry analysis
were performed and the results showed that treatment with
bigelovin at 1.0–1.5 lM for 24 h induced apoptosis in U266
cells (Fig. 2b). Bigelovin also induced apoptosis in MM.1 cells
(Fig. 2c). These observations were confirmed by DNA frag-
mentation seen in the cells (Fig. 2d). By Western blot assay,
we showed that bigelovin treatment activated casp-9 and -3
with cleavage of PARP in U266 cells (Fig. 2e).

Bigelovin downregulates the expression of E2F1 in MM cells.
We investigated the mechanisms underlying bigelovin-induced
S phase arrest by detecting the expression of some important
cell cycle regulators in TdR-synchronized, bigelovin-treated
U266 cells. We found that in cells treated with bigelovin at 1,
2 and 4 lM for 24 h, the expression of pRb, E2F1, CDK4 and
Cyclin E was markedly downregulated, while the expression
of total Rb, cyclin D1, cyclin A and PCNA was not drastically
affected (Fig. 3a). Treatment of U266 cells with bigelovin at
1.5 lM for 8 h led to a decrease of E2F1, which was undetect-
able at 12 h of treatment time course (Fig. 3b). Moreover, by
Western blot (Fig. 3c) and immunofluorescence (Fig. 3d)
assays, we found that the expression of E2F1 was downregu-
lated in both the cytoplasmic and nuclear fractions. We then
conducted siRNA-mediated silencing of E2F1 (Fig. 3e), and
reported that E2F1 silencing could reduce the cells in G1
phase and increase those in S phase (Fig. 3f), confirming
E2F1’s role in S phase entry.(20)

Bigelovin triggers proteolysis of E2F1 in MM cells. We investi-
gated the mechanisms underlying bigelovin-induced E2F1 deg-
radation, and showed that bigelovin treatment did not
downregulate E2F1 at mRNA level, while the expression of
cyclin E, DHFR and PCNA was decreased (Fig. 4a). In U266
cells upon protein synthesis inhibitor Chx, E2F1 was not
decreased at 8 h (Fig. 4b), demonstrating that this protein is
stable within MM cells. However, in cells co-incubated with
Chx and bigelovin, E2F1 was downregulated at 2 h and was
undetectable in 6 h (Fig. 4b), indicating that bigelovin can
cause its proteolytic degradation.
E2F1 can be degraded by the ubiquitin-proteasome sys-

tem.(21) We found that I-jBa was increased in cells treated
with PS341 or MG132 (Fig. 4c). However, in U266 cells pre-
treated with PS341 or MG132 for 2 h followed by bigelovin
treatment for 24 h, proteolysis of E2F1 was not inhibited
(Fig. 4c). Lysosome is an organelle containing a broad array

(a) (b) (c)

(d) (e)

Fig. 2. Bigelovin arrests cell cycle and induces apoptosis in multiple myeloma (MM) cells. (a) U266 cells were synchronized, treated with bigelo-
vin and ⁄ or nocodazole (20 lM) for 24 h, analyzed by propidium iodide staining and flow cytometry to determine cell cycle distribution. (b, c)
The cells were treated with bigelovin for 24 h and analyzed by Annexin V ⁄ 7-AAD staining and flow cytometry. (d) DNA fragmentation analysis
in U266 and MM.1 cells treated with or without bigelovin. M, DNA marker 2000. (e) The U266 cells upon bigelovin for 12 h were lysed and
assayed by Western blot analysis.
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of secluded proteases that can mediate intracellular proteolysis,
but its inhibitors Chl and NH4Cl failed to prevent bigelovin-
triggered degradation of E2F1 (Fig. 4d). In addition, serine
protease inhibitor PMSF, aspartic protease inhibitor pepstatin
A (Pep) and metalloproteinase inhibitor Phe were unable to
block E2F1 degradation (Fig. 4e).

Bigelovin causes caspase-dependent degradation of E2F1. We
further dissected the mechanisms underlying bigelovin-induced
E2F1 catabolism and reported that cysteine protease inhibitor
IAA markedly inhibited bigelovin-caused E2F1 degradation in
U266 cells (Fig. 5a). Calpain is one type of cysteine protease,
but its inhibitor calpeptin failed to suppress E2F1 turnover
(Fig. 4e). The apoptosis executioners, caspases, are also cyste-
ine proteases. To investigate whether caspases mediate E2F1
degradation, U266 cells were pre-treated with pan-caspase
inhibitor z-VAD.fmk at 50 lM for 1 h, followed by treatment
with bigelovin at 2 lM for 24 h. Our results showed that z-
VAD drastically inhibited bigelovin-triggered E2F1 degrada-
tion (Fig. 5b), indicating that E2F1 turnover is mediated by
caspases in MM cells.

Overexpression of E2F1 in MM samples. We analyzed the
expression of E2F1 in 55 samples from MM patients whose
baseline characteristics were listed in Table 1. First, the
expression of E2F1 in BMMCs isolated from 14 MM patients
was tested by semi-quantitative RT-PCR, and the BMMCs
from six healthy donors were used as controls. To gain a quan-
titative view, the densitometry analysis was performed and the
E2F1 band was normalized against that of b-Actin, and the
E2F1 ⁄Actin ratio greater than mean + SD of that of healthy

donors was considered as E2F1 overexpression. We found that
E2F1 was detected in BMMCs from the six healthy donors
and BMMCs from all these 14 patients, and was elevated in 4
(28.6%) cases with MM (Fig. 6a).
We performed immunofluorescence analysis to evaluate the

expression of E2F1 at protein level in CD138+ cells from 12
MM cases as well as from patients with non-Hodgkin’s Lym-
phoma (NHL) and three samples from healthy donors. We
found that in five of 12 (41.7%) patients the percentage of
E2F1+ cells was above 40%, while none of the samples from
NHL cases or healthy controls had E2F1+ cells more than
40% (Fig. 6b,c). We further performed immunohistochemical
analysis to assess E2F1 level in MM samples, and the results
showed that E2F1 signal was stronger in plasma cells from
MM patients than from chronic osteomyelitis (CO) patients,
whose plasma cells are relatively normal (Fig. 6d). The immu-
noreactivity score (IRS) was calculated,(18) and the results
showed that the IRS of plasma cells from MM patients is sig-
nificantly higher than that of plasma cells from CO patients
(Fig. 6e). We also showed that cyclin D1 was overexpressed
in 13 of 32 (40.6%) MM cases (Fig. 6d).

Overexpression of E2F1 is associated with higher ISS stage.
We analyzed the relationship between E2F1 expression and
the ISS stage, and showed that among the 39 patients evalu-
ated, E2F1 overexpression was found in 0 ⁄3 (0%) of patients
in ISS stage I, 4 ⁄16 (25%) of cases in ISS stage II, and 13 ⁄20
(65%) of those in ISS stage III (P = 0.02; Table 1). In patients
whose samples were subjected to immunofluorescence analy-
sis, the expression of E2F1 was high in 0 ⁄1 (%) of cases in

(a) (b)

(c)

(d)

(e)

(f)

Fig. 3. Effects of bigelovin on cell cycle regulators.
(a) Synchronized U266 cells were treated with
bigelovin for 24 h, lysed, and Western blot assay
was performed using the lysates and indicated
antibodies. (b) Synchronized U266 cells were
treated with bigelovin for 24 h (upper panel) or at
1.5 lM for indicated time points (lower panel),
lysed, and Western blot assay was performed.
(c) U266 cells were treated with or without
bigelovin at 1.5 lM for 24 h, lysed, the cytoplasm
and nucleus fractions were isolated and subjected
to Western blot assay. (d) U266 cells treated with or
without bigelovin at 1.5 lM for 24 h were analyzed
by immunofluorescence and confocal microscopy as
described in Materials and Methods. (e, f) U266
cells were transfected with indicated siRNA, lysed
and subjected to Western blotting (e) or analyzed
by propidium iodide staining and flow cytometry to
determine cell cycle distribution (f).
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ISS stage I, 1 ⁄ 6 (16.7%) cases in ISS stage II and 5 ⁄6 (83.3%)
of patients in ISS stage III (Table 1). Similarly, in patients
whose samples were detected by immunohistochemical assay,
the expression of E2F1 was high in 2 ⁄ 6 (33.3%) cases in ISS
stage I and II, and 3 ⁄6 (50%) patients in ISS stage III
(Fig. 6e). These results demonstrate that E2F1 is overexpressed
in higher ISS stages. We further showed that the expression of
E2F1 was high in 4 ⁄17 (23.5%) de novo patients, and in 9 ⁄17
(53.9%) relapsed case (P = 0.07; Table 2).

Discussion

By using small molecules including medicinal compounds as
probes, chemical biology can not only reveal key factors ⁄path-
ways involved in physiology and human diseases, but also pro-
vide new drug leads or novel utilities of existing drugs. In this
study, we tested the effects of bigelovin on MM cells and

investigated its mechanisms of action, and reported that this
natural compound induced S phase arrest followed by apopto-
sis in cell lines and CD138+ primary MM cells (Figs 1,2).
While bigelovin could not perturb the expression of cyclin D1,
it triggered a caspase-mediated E2F1 degradation (Figs 3,4).
E2F1 silencing by specific siRNA also resulted in S phase
arrest (Fig. 3e,f), suggesting that bigelovin-caused cell cycle
arrest might at least partially due to its effect to E2F1, and the
role of this transcription factor in MM pathogenesis warrants
further investigation.
E2F1 has been identified as a tumor suppressor regulating

the activities of p53, and promoting apoptosis by the activation
of a plethora of death pathways including caspases and Apaf-
1.(22,23) However, E2F1 is also shown to be able to inhibit
c-Myc-driven apoptosis in human and in rodent liver cancer
through its ability to counteract c-Myc-driven apoptosis via
activation of PIK3CA ⁄Akt ⁄mTOR and c-Myb ⁄COX-2

(a)

(b)

(c)

(d)

(e)

Fig. 4. Bigelovin causes degradation of E2F1. (a) U266 cells were treated with bigelovin, RNA was isolated, and reverse transcription-polymerase
chain reaction (RT-PCR) was conducted to evaluate the expression of indicated genes. (b) The cells were treated with Chx (20 lg ⁄mL) and ⁄ or bi-
gelovin (1.5 lM) for indicated time points, lysed, and subjected to Western blotting using indicated antibodies. (c–e) The cells were pre-treated
with indicated inhibitors for 2 h, co-incubated with bigelovin for additional 24 h, lysed and subjected to Western blot assays.
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pathways.(24) Recent studies in knockout and transgenic mouse
models indicated that E2F1-3 bear an unexpected pro-survival
role in development and cell survival.(25,26) As the founding
member of the E2F family, which plays a critical role in cell-
cycle progression and induction of apoptosis in response to
DNA damage, E2F1 was reported to be overexpressed and
inversely associated with prognosis in many types of human
cancer, that is, bladder tumors,(27) melanoma,(28) breast and
ovarian cancers.(4,29) E2F1 is also highly expressed in stomach
cancer,(30) B-cell chronic lymphocytic leukemia,(31) non-small
cell lung cancer,(32) metastatic colorectal cancer,(33) and spo-
radic Burkitt’s lymphoma.(34) E2F1 was shown to be expressed
in 25 of 72 (35%) MM cases and was concurrently expressed
with cyclin D1.(8) In this study, we showed that E2F1 was
increased in 25–57% of MM patients evaluated by RT-PCR,
immunofluorescence, and immunohistochemical analyses, and
was associated with higher ISS stage. Though the sample size
of our setting was relatively small and the P-values do not
reach a significant level (<0.05), our results suggest an
increased level of E2F1 in relapsed patients than in de novo
cases (Table 2). These results indicate that the role for E2F1
to play in the pathogenesis of MM, for example, promoting
proliferation and ⁄or cell survival, needs to be determined.
E2F1 protein abundance can be regulated by the ubiquitin

proteasome-dependent degradation pathway.(21,35–37) We
tested whether bigelovin-induced E2F1 turnover was mediated
by proteasome or not, and found that proteasome inhibitors
PS341 and MG132 failed to protect E2F1 from bigelovin-
triggered catabolism (Fig. 4), excluding proteasome’s role in
this process. Similarly, lysosome inhibitors Chl and NH4Cl
could not inhibit E2F1 catabolism (Fig. 4). We further inves-
tigated the mechanisms underlying E2F1 turnover. Generally,
there are four classes of proteolytic enzymes: serine prote-
ases, metalloproteinase, aspartic protease and cysteine prote-
ase.(38) We showed that serine protease inhibitor PMSF,
metalloproteinase inhibitor Phe, or aspartic protease inhibitor
pepstatin A could not inhibit bigelovin-caused E2F1

catabolism (Fig. 4). Intriguingly, cysteine protease inhibitor
IAA was able to reverse E2F1 proteolysis by bigelovin treat-
ment (Fig. 5). There are three kinds of cysteine proteases in
cells: gathepsin, caspase and calpain. Given that gathepsin,
which is mainly located in lysosome and calpain did not
mediate E2F1 turnover (Fig. 4), we tested caspases’ role by
using z-VAD-fmk and found that this inhibitor markedly
blocked bigelovin-triggered E2F1 catabolism (Fig. 5). Indeed,
bigelovin activated casp-9 and -3 concomitant with cleavage
of casp-3 specific substrate PARP (Fig. 2), suggesting that
E2F1 is also a substrate of casp-3.
The potential aberrance of caspases and the roles for caspas-

es to play in pathogenesis of myeloma have been tested in a
few studies. For example, a population-based case-control
study was conducted to examine if single nucleotide polymor-
phisms (SNPs) in Casp-3, Casp-8, Casp-9, and Casp-10 alter
multiple myeloma risk, and the results suggested that genetic
variation in CASP genes may have a role in the etiology of
MM.(39) Casp-1, 2, 3, 4, 6, 7, 8, 9, and 10 were expressed in
myeloma cells,(40) and Casp-10 was required for myeloma cell
survival.(41) Rare mutations in Casp-10, 3, 9, or -8 were
detected in MM patients.(42,43) These results indicate that casp-
ases’ aberrancy is rare in MM, therefore bigelovin can exert
its effects in primary myeloma cells.

(a)

(b)

Fig. 5. E2F1 degradation is mediated by caspases. (a) U266 cells were
pre-treated with iodoacetamide (IAA) (1 lM) for 2 h, co-incubated
with bigelovin for additional 24 h, lysed and subjected to Western
blotting. (b) The cells were pre-treated with z-VAD.fmk (50 lM) for
2 h, co-incubated with bigelovin for additional 24 h, lysed and sub-
jected to Western blotting.

Table 1. Available baseline demographic characteristics of multiple

myeloma (MM) patients whose samples were analyzed in this study

Characteristics Cases, n E2F1-high, n (%) P‡

All 59 21 (35.6)

Gender†

Male 22 5 (22.7) 0.23

Female 23 9 (39.1)

Age†

<65 27 11 (40.7) 0.17

≥65 15 3 (20.0)

Type of myeloma†

IgG 17 6 (35.3) 0.44

IgA 13 4 (30.8)

IgD 0

IgM 0

Light chain 13 7 (53.8)

Nonsecretory 0

ISS stage†

I 3 0 (0.0) 0.02

II 16 4 (25.0)

III 20 13 (65.0)

Patients for immunofluorescence analysis

Gender

Male 5 1 (20.0) 0.14

Female 8 5 (62.5)

Age

<65 9 5 (55.6) 0.51

≥65 3 1 (33.3)

Type of myeloma

IgG 6 3 (50.0) 0.51

IgA 5 1 (20.0)

IgD 0

IgM 0

Light chain 2 2 (100)

Nonsecretory 0

ISS stage

I 1 0 (0.0) 0.02

II 6 1 (16.7)

III 6 5 (83.3)

†Information of some patients was not available. ‡Chi-sqaure test.
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E2F1 can not only promote cell survival,(25,26) but also
induces metastasis and mediates chemoresistance.(4) Malignant
and, in particular, drug-resistant cells are “addicted” to high
levels of E2F1 activity, rendering them vulnerable to E2F1
inhibition. Inactivating E2F1 reverts apoptosis resistance and

cancer sensitivity in Trp53-deficient mice.(44) These results
suggest that E2F1 may represent a therapeutic target for can-
cers. Small compounds, for example, bigelovin and largazole,
which triggers a proteasomal degradation of E2F1,(45) could
serve as lead compounds for the development of E2F1 inhibi-
tors. However, E2F1 was not overexpressed in some primary
myeloma cells, suggesting these cells might not be sensitive to
E2F1-targeting remedies, therefore other novel therapeutic
strategies should be explored to combat this deadly disease.
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Fig. 6. E2F1 is overexpressed in multiple myeloma (MM) cells. (a) Reverse transcription-polymerase chain reaction (RT-PCR) analysis of E2F1 in
peripheral blood mononuclear cells harvested from healthy donors (HC) or MM patients. (b, c) CD138+ primary MM cells were analyzed by immu-
nofluorescence staining ⁄ confocal microscopy as described in Materials and Methods (b) and E2F1 positive cells were calculated in at least 300
cells in continuous field of view (c). Stainings were analyzed using an Olympus BX51 research microscope equipped with a 1009 ⁄ 1.30 numerical
aperture (NA) oil objective (Olympus, Tokyo, Japan). Images were processed using Adobe Photoshop CS6 (Adobe Systems, San Jose, CA, USA).
Original magnification, 91000. (d, e) Immunohistochemical analysis of bone marrow specimens of MM patients (d) and related IRS (e).

Table 2. E2F1 overexpression is associated with relapsed multiple

myeloma (MM)

Characteristics Cases, n E2F1-high, n (%) P-value†

All

De novo 17 4 (23.5) 0.07

Relapse 17 9 (52.9)

Patients for immunohistochemical analysis

De novo 10 2 (20.0) 0.22

Relapse 11 5 (45.5)

Patients for immunofluorescence analysis

De novo 7 2 (28.6) 0.17

Relapse 6 4 (66.7)

†Chi-square test.
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