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ABSTRACT

We build a parsimonious Crump-Mode-Jagers continuous time branching process of COVID-19 propaga-
tion based on a negative binomial process subordinated by a gamma subordinator. By focusing on the
stochastic nature of the process in small populations, our model provides decision making insight into
mitigation strategies as an outbreak begins. Our model accommodates contact tracing and isolation,
allowing for comparisons between different types of intervention. We emphasize a physical interpreta-
tion of the disease propagation throughout which affords analytical results for comparison to simula-
tions. Our model provides a basis for decision makers to understand the likely trade-offs and
consequences between alternative outbreak mitigation strategies particularly in office environments
and confined work-spaces. Combining the asymptotic limit of our model with Bayesian hierarchical tech-
niques, we provide US county level inferences for the reproduction number from cumulative case count
data over July and August of this year.

Infection disease propagation
Bayesian inference

Crown Copyright © 2020 Published by Elsevier Ltd. All rights reserved.

1. Introduction

As of June 20, 2020, there have been more than 8 million con-
firmed global cases of COVID-19, a respiratory illness caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). Early indications suggest a case/infection fatality rate of
between 0.5% to 2% (Verity et al., 2019; Lipsitch, 2020; loannidis
et al,, 2020; Bendavid et al., 2020) with poor prognosis strongly
dependent on comorbidity factors such as advanced age, diabetes,
and other poor health conditions (Wang et al., 2020). The Centers
for Disease Control and Prevention in the United States gives an
overall current symptomatic case fatality ratio of 0.4% (Covid-19
pandemic planning scenarios, 2020) while studies involving sero-
prevalence indicate a median infection fatality rate of 0.25%
(Toannidis, 2020). Canada has seen over 100,000 cases and the
entire world has engaged in costly outbreak mitigation strategies
to prevent excess deaths.

Governments around the world have focused on controlling
COVID-19 outbreaks primarily by reducing direct human-to-
human contact through varying degrees of society-wide lock-
downs and strong social distancing measures. By limiting the
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opportunity for infectious contacts, the hope is that the infection
rate will remain low enough to prevent medical support systems
from becoming overwhelmed while also reducing the effective
reproduction number of the disease. Evidence suggests that gov-
ernment policies are having a positive effect (Lancet, 2020), but
some strategies may also become prohibitively expensive in the
not too distant future. An alternative outbreak controlling strategy
to lock-downs is contact tracing with isolation. In this strategy,
health authorities trace the human-to-human contacts of an
infected person and isolate those contacts who are at risk of having
become infected. If the probability of isolating potentially infected
contacts is high and the time to isolation is sufficiently short, con-
tact tracing with isolation may offer better cost benefit perfor-
mance relative to lock-downs in keeping society safe (Acemoglu
et al., 2710).

Modelling the spread of infectious diseases falls into two broad
classes (Allen, 2017): deterministic modelling, which captures the
thermodynamic limit and large scale behaviour of the underlying
epidemiological phenomenon, and stochastic modelling, which
describes the microscopic statistical nature of the generative pro-
cess. Traditional compartmental models (e.g., SIRD), usually
expressed as a set of coupled ordinary differential equations, fall
into the first class while branching processes, in which each
infected individual randomly generates “offspring”, belong to the
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second class. In this paper, we focus on a stochastic formulation of
COVID-19 following Hellewell et al. (2020).

In the early stages of an epidemic, in a well-mixed and homoge-
neous population with an infected population that is small relative
to the susceptible population, branching models well approximate
the dynamics of propagation (Diekmann et al., 2012). A formal
mathematical treatment of this statement can be found in Ball
and Donnelly (1995) and Jagers (1975), with extensions to explo-
sive growth models found in Komjathy (2016). Branching model
approximations for epidemic application appear at least as early
as the mid-1950s (Kendall, 1956; Bartlett, 1978), and continue to
find use in public health domains (see for example, Ball et al.,
2016; Ball and Shaw, 2016; Farrington et al., 2003). Branching pro-
cesses have also found application in modelling past epidemics
such as Ebola Virus Disease outbreaks in West Africa (Merler
et al., 2014; Drake et al., 2015). For an introduction to branching
processes, see (Karlin, 2014), chapter 11, and for a wider introduc-
tion to the application of branching processes in other biological
fields see (Kimmel and Axelrod, 2002).

In the current COVID-19 pandemic, branching models have
found use in estimating the probability that an imported case into
a susceptible population will lead to sustained transmissions
(Thompson, 2020), and in developing the efficacy of contact tracing
strategies (Hellewell et al., 2020). Given the high variance of the
observed case count data with COVID-19, especially during the
start of a local outbreak, branching process provide and excellent
framework for capturing the stochastic nature of super-spreading
events (Kucharski et al., 2020). For understanding the challenges
in predicting regional trajectories of COVID-19, and for generating
relevant policy insights, Bertozzi et al. (2020) emphasize the
importance of parsimonious models. The authors also stress the
usefulness of branching processes, including self-exciting point
processes, when analyzing individual COVID-19 count data with
parsimonious constructions.

In Hellewell et al. (2020), the authors develop a branching pro-
cess to model propagation in the presence of contact tracing with
isolation. The model uses a negative binomial distribution to gen-
erate secondary cases produced by an infected individual with new
infections assigned a time of infection through draws from a serial
interval distribution. By truncating the serial interval distribution
through isolation events, the authors show that in most of their
scenarios contact tracing and case isolation is enough to control
a new outbreak of COVID-19 within 3 months.

While the construction in Hellewell et al. (2020) provides a rich
base for numerical simulations, to gain further insight, we extend
the model to a fully continuous time setting which provides us
with a complete generative model, including expressions for the
generating and characteristic functions. Furthermore, each part of
our model has a direct physical interpretation of the underlying
disease propagation mechanism. The model balances fidelity and
parsimony so that the model can (1) be calibrated to data relatively
easily, (2) provide semi-analytic tractability that allows for trade-
off analysis between different mitigation strategies (3) generate
realistic simulated sample paths for comparing interventions.
Our code is available as R packages.'*

2. The model

In this paper, we build a Crump-Mode-Jagers (CM]) branching
process model through a subordinated Lévy process. CM] construc-
tions contain the triple of random processes (/, &(-), %, (-)) defined

by,

T https://github.com/pspc-data-science/branchsim.git
2 https://github.com/pspc-data-science/branchestimate.git
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e Jy is a random variable that denotes an infected person’s com-
municable period;

E(t) = #{k : a(w, k) < t} counts the number of infected people
over event space Q(w) in time t. &,(t — o4) denotes the random
number of infected people created by an infected person at
every moment of her communicable period over the interval
[ox,t);E(t—0x) =0if t — gy < 0; and

%x(t —0y) is a random characteristic of the infected person
within the interval [oy,t);(t—0x) =0 if t—0x<0. (Eg,
x(t) =1{t €[0,4)} is the number of infectious existing at
moment t).

Our model begins by generating infections from an infected
individual through a compound Poisson process where the event
times represent transmission events (o). We assume that an indi-
vidual is infectious from the moment she becomes infected. The
number of new infections at each transmission event is a draw
from the logarithmic distribution (Fisher et al., 1943) (&(t)) and
consequently, the resulting generative process is the negative
binomial process (see, for example, Quenouille Quenouille, 1949).
The stochastic counting processes remains “on” during the com-
municable period and then shuts “off” at the end—that is, the com-
municable period is the random lifetime (/) in the CM] language.
We model the communicable period as a gamma distributed ran-
dom variable, I'(a,b), with mean t = a/b. By subordinating our
resulting negative binomial process with a gamma process for
the communicable period, we arrive at our model of COVID-19
propagation—a gamma negative binomial branching process
(GNBBP). (For details on subordinated Lévy processes, see
Applebaum, 2009.).

The model we present assumes a well-mixed population in that
each child in the branching processes has the same statistical prop-
erties as the parent. While our model includes the property of
super-spreader events, generated by the fat tail of the counting pro-
cess, it does not include heterogeneous mixing scenarios whereby
susceptible contacts for an infected individual diminishes each time
a new person becomes infected. Furthermore, the branching model
assumes an infinite reservoir of susceptible people for the virus to
spread (the process branches without regard to population con-
straints). This approximation holds provided that the susceptible
population is not near exhaustion. We focus on the early days of
an outbreak with infected population sizes small compared to the
total susceptible population over time scales not hierarchically lar-
ger than the communication window. It is this limit that is most rel-
evant to decision makers for setting workplace policies.

2.1. Construction details

We model the propagation of COVID-19 by assuming that peo-
ple become infectious immediately after contracting the virus and
that they can infect others throughout the duration of their com-
municable period. We assume the population is homogeneous
and that each new infected individual has the same statistical
properties as previously infected people. Specifically, we assume
that an infected person infects Q(t) other people during the given
time interval [0, t] according to a compound Poisson process,

N(t)
QH=>"Y;, (1)
i=1

where the number of infectious events, N(t), follow a Poisson count-
ing process with arrival rate /, and Y;, the number infected at each
event, follows the logarithmic distribution,

_ k
P(Yi— k)= P

mi—p k» Ke{l23.} 2
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The characteristic function for Q (t) reads,

i) - (15%) e

bou () = E[e"?0] = exp <rtln (1

with 2 = —rIn(1 — p); thus Q(t) follows a negative binomial process,
Q(t) ~ NB(rt, p). 4)

In this process, during a communicable period, t, an infected
individual infects Q(t) people based on a draw from the negative
binomial with mean rtp/(1 — p). The infection events occur contin-
uously in time according to the Poisson arrivals. However, the
communicable period, t, is in actuality a random variable, T, which
we model as a gamma process’ with density,

Fro®) = pg e e ™ 5)

which has a mean of T = at/b. By promoting the communicable per-
iod to a random variable, the negative binomial process changes
into a Lévy process with characteristic function,

E[e""] = exp(—ty(—n(u))) = <1 - % In (11__1751,”))%, (6)

where #(u), the Lévy symbol, and y(s), the Laplace exponent, are
respectively given by,

E[e"®®] = exp(tn(u)) (7)
E[e"0] = exp(—ty(s)), (8)
with,

n(u) =rln <—11__p§iu>, 9)
y(s) =ain (1 +%> (10)

Z(t) is the random number of people infected by a single
infected individual over her random communicable period. With-
out loss of generality, we absorb t into a (or alternatively set
t = 1, representing a single lifetime) giving a mean communicable
period T = a/b. The gamma process smears out the end of the com-
municable period.

We see that Ry = E[Z(1)] = arp/(b(1 — p)), and thus our process
has the same mean as the negative binomial process with a fixed

stopping time of t = a/b. In fact, since 2 = —rIn(1 — p) we have
the simple relationship,
al —p
Ro=(—)|——r—— 11
o~(5) (s a
= Mean number of infectious events in a lifetimex  (12)
Mean number infected at each event. (13)

The variance of the our counting process is over-dispersed rel-
ative to the negative binomial,

Var(z(1)) = ﬁ (1+%) (14)
ar’p?

= Var(NB(ar/b,p)) + (15)

b*(1-p)*
The model has four parameters:

e p sets the number of infected people per infectious interaction.
The mean number of infected people per infectious event is,

— _ b
K=~y
e 1= —rlIn(1 — p) gives the arrival rate of infectious events.

3 We apply a gamma process subordinator to the negative binomial process.

Journal of Theoretical Biology 512 (2021) 110536

e a,b together set the mean communicable period, t = a/b, and
determine the variance along with the skewness and kurtosis
of the gamma distribution, I'(a, b). In the limit b — 0 with a/b
finite, the gamma distribution becomes a delta function at the
mean time and we recover the negative binomial process eval-
uated at t = a/b.

The characteristic function Eq. (6) of the stopped stochastic pro-
cess allows us to explore the model’s analytical properties, which
can help decision makers better understand trade-offs in small
environments.

2.2. Renewal equations and Malthusian parameters
Given a random characteristic y(t), such as the number of infec-
tious individuals at time ¢, (e.g., y(t) = I(t € [0, X)) where J, is the

random communicable period) the expectation of the process
follows,

t
E(Z(t)) = E(x(t)) +/O E(Z(t - u)) E(¢(du)). (16)
Defining the Malthusian parameter, o > 0, if it exists, by,

/x e E(E(d) =1, (17)

0

we can change Eq. (16) into a renewal equation,
t
eE(Z(t)) = e E(x(1) + / e MUZ(t —ue ME(E(dy),  (18)
0

which has the solution,
~Jo e ™E(y(u)du
| e e(etau))
0
| S

B

lime ™E(Z(t))

t—o0

(19)

Thus the asymptotic behaviour of the solution is governed by
the pair parameters o, and B.

Recall that &(t) = #{k : a(w, k) < t} counts the number of infec-
tions during the observation window [0, t] over event space Q(w).
In our model we have,

F(E(0) = 20t(1 = G(0) + 4 | uglu)du. (20)

where 4 and pu are respectively the Poisson arrival rate and the
mean of logarithmic distribution, and where,

g(ub%uﬂ*‘e*%cm: [ wau 21)
Therefore,
dE(E(D) = 2u(1 — G(o)) dt, (22)

which leads to the expected result for the mean of direct infections
per individual,

/x (1 — G(t))dt = iu(g) (23)

0
Using Eq. (22) and Eq. (17) we find that,

. iu(l - (ﬁ)) (24)

-2 ")
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which we can solve for the Malthusian parameter, o, by Newton-
Raphson. The asymptotic solution to Eq. (16) given that the Malthu-
sian parameter exists is,

eo(t

E(Zy) ~ 5 (26)

If Ry < 1 the branching process will not experience asymptotic
exponential growth, instead we can solve Eq. (16) for its long term
limit,

E((o0) 27

B(Z) = 1-ua/b’

2.3. Extinction probabilities and component sizes

In the CM] framework, we have the generating function,
G(t;s) = [E[sz(” 1Z(0) = 1], (28)

with the number of infected by time t composed of infections at
time o;,

&ty =#{oi:oi <ty => o <t} (29)
i=1
The probability of extinction reads,
Q= P(;imZ(t) - 0) = limG(t; 0); (30)
()
p— 1 . L. — N
Q= }Lrg[E[IHG(t 5,,0)} - [E[Q } (31)

and for our model, we arrive at the transcendental relationship,

o-(1-gm(i)

Again, we can apply Newton-Raphson and solve for the extinc-
tion probability Q.

In addition to the extinction probability for our branching pro-
cess, we can estimate the average number of total infected people
at extinction if extinction occurs by considering the theory random
graphs. The branching process is a directed bipartite graph (it is a
tree) and given the generating function for the process, we know
the distribution of the outgoing edges from a randomly chosen ver-
tex. In Newman et al. (2001), the authors extend Erdos—-Renyi con-
structions of random graphs to graphs with arbitrary vertex
degree. They compute the mean component size for graphs, includ-
ing graphs excluding the giant component, if it exists.

The total number infected corresponds to the random charac-
teristic E(x(t)) =1 and thus Eq. (27) has the non-Malthusian
growth solution,

1

A T3

(33)
In Newman et al. (2001), the authors consider two generating
functions,

e Go(s): the generating function for the probability distribution of
the vertex’s degree; and

e Gi1(S) = Gy(s)/Gy(1): the generating function for the probability
distribution of the outgoing edges from a randomly chosen
vertex.

Eq. (6) with e — s is G;(s) in the notation of Newman et al.
(2001) and for our purposes we do not need an explicit formula
for Go(s). The average component size of the graph, in the absence
of a giant component, is Newman et al. (2001)
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Go(1)’

L Goll)
NGy

(34)
which matches the renewal equation solution Eq. (33) if
Gp(1) = Gy (1)—that is, the generating two functions intersect tan-
gentially at s = 1.

At G| (1) = 1 a phase transition occurs and the giant component
emerges. The fraction of the graph occupied by the giant compo-
nent is,

§=1-Go(Q), (35)

where Q is the extinction probability for the distribution of outgo-
ing edges, Q = G;(Q). Since the fraction of the graph that does not
belong to the giant component is composed precisely of those
graphs which have gone extinct in our process, we impose
Go(Q) = Q. Thus, we demand that the two generating functions
intersect on the 450 line at Q < 1 when « > 0. The average compo-
nent size in this case becomes (Newman et al., 2001),

_ zZu
=14+ 36
=T aay (36)
where,
z= R;Q (37)
.]u Gl (S) dS
As Q—1 we see that G;(Q) and Go(Q) increasingly

intersect tangentially, finally becoming tangent at Q = 1, which
is consistent with our observation in Eq. (34). We take X to be
the average size of the total infected population at extinction, if
extinction occurs.

3. Contact tracing and propagation interruption

The process in Eq. (6) represents the spread of the disease from
an infected individual without any mitigation strategies. Imagine
that we can trace, contact, and isolate infected individuals with a
success probability g and with an mean time to isolation of
m < t = a/b after the infectious event. We assume that once iso-
lated, there is no chance for the infected individual to spread the
disease any further. We again imagine that the isolation time is
gamma distributed but with parameters (a’,b’) leading to the iso-

lation process, Z'(1),

wry)) _ (1 _T 1-p -
E[e 0] - (1 51 (—1 _pem>> : (38)

Notice that the branching process for a successful isolation
event has the same form as the original process with a mean time
of the random communicable period of m = a’/b’. Thus, the trace-
contact-isolate branching process becomes,

N= ll[[Zj(l)}”{y:”;y ~ Bin(1,9); (39)
j=o
E(N) = qE(Z'(1)) + (1 - q) E(Z(1)), (40)

where N is the number of infections produced by an infected person
during her communicable period, and q is the probability of a suc-
cessful isolation event. Instead of arbitrarily cutting the communi-
cable period’s density function based on an isolation event as
prescribed in Hellewell et al. (2020), our model maintains the same
form of the generating function throughout by shifting the mean
and variance of the communicable period’s gamma process. In a
contact-trace-isolate policy, the expected number of infections per
infected individual becomes,
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Retne = EIN] = qE[Z(1)] + (1 — q) EIZ(1)],
= (a(Gm 1) +1) ey
0 - "
- (a5 1) 1) (ma—pra—p) @

suppresion factor Ry

_ a/b
= (ol 1)+1)>
_——
suppresion factor

Mean number infected at event x Mean number of events.

Eq. (41) provides intuition for comparing competing courses of
action by affording trade-off analyses. In a lock-down, health
authorities control the spread of the disease by lowering the
human-to-human interaction rate A. If 2 can be made sufficiently
small, Ry will drop below unity and the outbreak will come under
control. The first term in Eq. (41) represents a suppression factor,
which by construction is less than unity, and results from an isola-
tion policy with success probability q. Alternatively, that same
reduction in Regective Can also be achieved by a lock-down scenario
if the infection event rate, /, is reduced” by the same suppression
factor. Thus, we see an equivalence in generating Regecive from the
two different mitigation strategies, each of which may come at dif-
ferent economic costs.

To make the observation concrete, suppose /4 = .20 implying an
average of 0.20 infectious events per day, p = 0.5 implying an aver-
age of 1.44 infections per infectious event, and a mean communi-
cable period of a/b =5.5 days. The parameters imply Ry = 1.59.
Fig. 1 shows iso-contours of fixed suppression factor in the
a' /b’ — q plane. We can now see the trade-off between a lock-
down policy with a fixed suppression factor and a contact tracing
with isolation policy which generates the suppression factor from
successful contact tracing events. The economic costs of generating
the same value the suppression factor among the two strategies
(lock-down vs contact tracing with isolation), with its correspond-
ing reduction in Refrective, Will in general not be the same. From the
figure we see in this example that a contact tracing with isolation
policy with an isolation probability of 0.75 and a mean isolation
time of 4 days is equivalent to reducing the rate of human-to-
human infection events by a factor of approximately 1.25. A
lock-down that reduces human interactions by a factor of 1.25 will
almost certainly cost much more than the corresponding contact
tracing with isolation strategy (Acemoglu et al., 2710).

4. A scenario planing exercise: Policy input for return to work

One area of application for our model is helping decision mak-
ers understand counterfactual outcomes in a return-to-work policy
exercises. In setting policies, decision makers must weigh the oper-
ational needs of their business against the possibility of an out-
break in the work environment. In addition to the analytical
results that our model provides, simulation can further help ring-
fence difficult decisions.

Our model requires four parameters, the arrival rate of infec-
tious interactions, the average number infected at each event,
and two parameters which govern the communicable period’s
density function. We use the open literature (Lauer et al., 2020)
as a guide to fix the communicable period; we fix a = 4.7 days
with b = 0.85; these parameter choices give a mean communica-

4 We recognize that a lock-down would probably reduce p in the logarithmic
distribution as well, but we suspect that effect is secondary. We suspect that p, which
sets the number of people infected during an event, is not nearly as sensitive to a lock-
down scenario as compared to the expected number of events during the commu-
nicable period.
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ble period of 5.5 days with 97.5% of the communicable period
ending in 11.5 days. In Fig. 2, we show the density function aris-
ing from our parameter settings. The decision maker has control
over the remaining two parameters. By limiting meeting sizes,
restricting the number of employee interactions, and by mandat-
ing the use of personal protective equipment, the decision maker
can set the variables controlling the arrival rate of infectious
events and the number infected at each event. We treat the pop-
ulation as homogeneous and well-mixed, holding fixed the arrival
rate for infections and the number infected per event over time.
In a small setting, in reality, we expect that as people become
infected the social network will change, even in the limit of an
unmitigated outbreak. We eventually expect heterogeneity to
occur and a breakdown of the well-mixed assumption. Those
changes will have an effect on the basic parameters of our
branching model as the population becomes infected, but exactly
how the network changes is a complicated phenomena. Feedback
can move the arrival rate and the number infected at each event
in competing directions. By ignoring any time dependence in the
basic parameters, our model provides a baseline understanding
on how COVID-19 propagates in a small well-mixed populations
and over time scales not hierarchically larger than the communi-
cable period.

Imagine a scenario in which a decision maker has an office
space with 100 employees and she must decide on mitigation
strategies. Suppose a baseline scenario with 1 =0.2 and p=0.5
(corresponding to an average of 1.44 infected per event). Given
the properties of the communicable period, this scenario corre-
sponds to Ry = 1.59, which implies that if an infected person
arrives in the population, in expectation, the branching process
will lead to exponential growth in infections. In Figs. 3a and
3b we display the solution to the renewal equation with this
parameter choice for the expected number of infected people
and the expected size of the active infectious population
respectively.

Let us suppose that the decision maker can change the model
parameters 4 and p through policy considerations, creating two
possible alternative scenarios, each coming at different financial
costs. In scenario 1, the manager can control meeting sizes but
not the interaction rate of her employees. As a result, she reduces
the logarithmic distribution parameter by a factor of 2 which
translates to a 20% reduction in the mean of the logarithmic distri-
bution. Scenario 2 is the reverse of scenario 1—the manager can
reduce the interaction rate of the employees, but not the meeting
sizes. We imagine that in scenario 2 the manager cuts the
employee interaction rate in half. Our model allows the decision
maker to investigate trade-offs between these scenarios all starting
from one undetected infected individual in the workplace. We
summarize model outputs between two scenarios in Table 1. We
see that in scenario 2, the manager’s policy reduces Refrective Delow
unity indicating that if an infected employee started a chain of
infections, the propagation would extinguish on its own. In this
scenario, the mean number of infected people after two weeks is
only 3.3. These observations can also help the manager decide on
floor occupancy levels, given how far the virus would propagate
over two weeks in the limit of a well mixed homogeneous popula-
tion in a large susceptible background.

In some office environments, we can also imagine a scenario in
which management introduces an aggressive testing scheme to
isolate infected employees. Suppose our manager faces the base-
line scenario in Table 1 but instead of manipulating the interaction
rate or meeting sizes, the manager implements a test with a 90%
chance of a successful isolation that is sharply peaked around a
mean of 0.69 days. We approximate the effect of testing with a suc-
cessful isolation event by setting @’ = 1.17, and b’ = 1.7 in Eq. (41)
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and we show the comparison to the baseline density function

established from Lauer et al. (2020) in Fig. 4. Using Eq. (41) we
see that Refrective = 0.21 x 1.59 = 0.33, and thus this isolation strat-

Malthusian parameter: 0.1610

6 2 4 6 8 10 12 14 16 18 20
Time (days)

(a) Total infections

egy turns an exponentially growing configuration into a process
that will go extinct almost surely. Fig. 5 shows 1,000 sample paths
of the isolation process over 30 days. Most paths go extinct within
ten days and the average total number of infected is 3.8 people.

5. A note on parameter inference and an example with US
county data

This paper describes a gamma negative binomial branching pro-
cess (GNBBP) on the number of new infections generated by an
infected individual. Given a set of observed {n,<}’,f:1 infection counts
for K individuals, a complete Bayesian analysis of the model is pos-
sible, in which all model parameters are identifiable, using for
example, the infrastructure provided in Zhou and Carin (2013).
Under this scheme, all four parameters (r,p,a,b) can be resolved,
allowing for a full posterior predictive analysis.

Define a complete history of an outbreak as a set of N observa-
tions taking the form of a 6-tuple:

(i,j,Bi,Di,m;,0;), (42)

where

Malthusian parameter: 0.1610

Expected infectious
TN N w w
o 3] o ] o (3

o

o

6 2 4 6 8 10 12 14 16 18 20
Time (days)

(b) Active infections

Fig. 3. The expected number of total and active infections as function of time in the baseline planning scenario.
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Table 1

Model properties of the planning scenarios. Each scenario starts with one undetected infected individual.
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Scenario properties

Description Symbol Baseline Scenario 1 Scenario 2
Poisson arrival rate A 0.20 0.20 0.1
Logarithmic distribution parameter p 0.50 0.15 0.5
Communicable period shape parameter a 4.7 4.7 4.7
Communicable period rate parameter b 0.85 0.85 0.85
Mean number of new infections per infected individual Ro 1.59 1.28 0.80
Extinction probability Q 0.60 0.71 1
Mean size at extinction X 3.1 4.7 4.9
Mean number infected after one week Niw 6 4 2.3
Mean number infected after two weeks Now 22 10 33
1.2
1.1
1.0
0.9
0.8
>0.7
= Type
% 0.6 yp _
) — baseline
no05 - intervention
0.4
0.3
0.2
0.1
0.0
0 1 2 3 4 5 6 8 10
Time (days)

Fig. 4. The communicable period density function with a successful isolation event (a = 1.17,b = 1.7) compared to the baseline scenario.
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Fig. 5. A contract tracing with isolation strategy: 1,000 simulations over 30 days. The probability of successful isolation is ¢ = 0.90, with gamma distribution parameters
a=1.17,and b = 1.7. Red lines indicated extinct paths from the moment of extinction. All paths eventually go extinct as the result of the intervention.
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i Index of individual

j Index of parent

B; Time of birth

D; Time of death

m; Number of offspring birth events
0; Number of offspring.

With the following summary statistics
L=> Di—BA=][[(Di-B)M=> m0="> o,

we can build a Gibbs sampler over the GNBBP parameters as
follows:
p|r,L,0 ~ Beta(ag + O, b +1L)
r|p,L,M ~ Gamma(n, + M, p, — Llog(1 — p))
bla,L,N ~ Gamma(y, + aN,do + L)
a|b, A,N ~ GammaShape(€yA, (o + N, 6y + N)

(43)

where ag, bo, 1y, Po, Yo, (o €0, 0o are hyper-parameters.

Unfortunately, under real world conditions, we are rarely fortu-
nate enough to have such complete and pristine temporal data. In
practice, it will almost never be possible obtain such complete his-
tories, but the Gibbs sampler construction shows that the model is
identifiable from complete data. Readily available COVID-19 data
almost always takes the form of cumulative case count data by
geographic region, but if public health officials can collect data in
the form of Eq. (42) during a local outbreak, Gibbs sampling will
yield posteriors for all model parameters. (An efficient contact trac-
ing strategy for an outbreak in correctional facilities, or isolated
northern Canadian and Indigenous communities might reveal reli-
able temporal patterns. If such strategies could be implemented,
the data would allow Bayesian inference of the entire model.)
The underlying propagation mechanism of the GNBBP affords addi-
tional interpretability to the model, which, in turn, facilitates
incorporation of other prior information. For example, knowing
that it is unlikely that multiple thousands of individuals could be
infected in a single interaction allows us to set a prior with more
mass on values of p closer to 0; moreover, direct experimental
measurement of this parameter might be possible in a laboratory
setting or augmented by fine grained clinical data. Similar consid-
erations apply to the rate of infectious events, /. The parameters
which govern the communicable period, (a, b), can be inferred from
clinical observations. Likewise, information on probable ranges of
Ro from other comparable infections could also be leveraged to
provide a joint constraint on r,p,a, and b.

Even with limited data we can still estimate parts of the model.
In particular, we can estimate the Malthusian parameter of Eq. (17)
from cumulative count data that exhibits exponential growth by
applying the asymptotic solution, Eq. (26). Since the Malthusian
parameter depends on the product of the infection arrival rate
and the average number infected per event, iy, an estimate of
the Malthusian parameter yields an estimate of Refrective through
the parameters a and b of the communicable period’s gamma
distribution,

Reffective = /l,u'%»
S (44)

Based on the clinical literature (Lauer et al., 2020), we take
a=4.66 and b= 0.85 giving a mean communicable period of
approximately 5.5 days with a 97.5% of 11.5 days.
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The New York Times provides a COVID-19 case count dataset
for the United States resolved on the county level (The New York
Times, 2020). A team at the New York Times curates the data from
multiple sources and ensures data accuracy. Using the New York
Times data, we estimate the Malthusian parameter for US counties
which exhibit exponential growth over the period July 1, 2020 to
August 20, 2020. We use a hierarchical Bayesian construction with
a county level random effect,

log(Z)y=at+y+ait+g;+¢€
a; ~N(0,0%)
gi ~ N(07 O‘%)
€ ~N(0,0?),

(45)

where i is the county label; the variance parameters use half-
Cauchy priors and the fixed and random effects use normal priors.
Table 2 summarizes the variables of the linear mixed effects infer-
ence model. We estimate the model and generate posterior distri-
butions for all parameters using JAGS (Martyn, 2003). Our code is
publicly available in an R package. The posterior means of the
Malthusian parameter for each county gives Regecive OVer the time
interval through Eq. (44). In Fig. 6, we display the US county results
for Reftective- Over the mid-summer, we see that the geographical dis-
tribution of Regective across the US singles out the Midwestern states
and Hawaii as hot-spots while Arizona sees no county with expo-
nential growth.

6. Discussion

In small settings with localized outbreaks, a branching model
offers a stochastic view of the propagation. To be useful in a deci-
sion making setting, the branching model must be parsimonious
yet contain appropriate features which match clinical observations
and bounds on key parameter such as Regrective-

Our model contains physically motivated mechanisms that link
to macroscopic observables. For instance, our model generates the
negative binomial count process by coupling Poisson infectious
event arrivals with the logarithmic distribution for the number
infected at each event. We extend the model of Hellewell et al.
(2020) by including the serial interval distribution within a com-
plete generative continuous time stochastic branching process.
Furthermore, our model allows for an exploration of trade-offs
between mitigation strategies at the microscopic level, especially
in light of the model’s analytical tractability. Because our model
includes the generating function of the underlying branching pro-
cess, it easy to build a continuous time simulation engine, model
the effect of intervention strategies, and estimate model parame-
ters through Bayesian hierarchical methods.

We see application of this model in workspace settings to help
management set risk tolerances. Throughout, we assume that the
condition of a well-mixed homogeneous population holds. We also
assume that the infected population remains small relative to the
entire workforce under consideration. The scenario of greatest con-

Table 2
Linear mixed effects model parameters for calibrating the GNBBP model to US county
data.

Variable Symbol
Fixed effect slope (Malthusian parameter) o
Fixed effect intercept b
County level slope random effect a;
County level intercept random effect g
Slope random effect variance o-%
Intercept random effect variance o'%
Model variance o2
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US counties with R effective > 1
2020-07-01 to 2020-08-20

R effective
(NA: sub—exp growth)

[1.00 to 1.03)
[1.03 to 1.05)
[1.05 to 1.07)
| [1.07t01.09)
B 1.09to1.11)
B 11.11t01.15)
B 111510 1.39]
NA

Fig. 6. Summer 2020 geographical distribution of Refrective across the United States: 2020-07-01 to 2020-08-20.

cern is the arrival of a single asymptomatic person in the work-
place who begins a chain of employee-to-employee infections
which is only discovered by management through the appearance
of the first symptomatic case days or weeks after the initial trans-
mission. This branching model gives a counterfactual sense of how
far the virus could spread in the time frame until first discovery,
which in turn can help set new polices around employee interac-
tions, meeting sizes, floor occupancy, and physical distancing.
The condition under which the branching approximations fail to
hold, in that an order one fraction of the population has become
infected by first detection, puts the outbreak in a new regime.
Those situations would consist of very small initial populations,
on the order of the basic reproduction number, or on time frames
much longer than the communicable window. However, a large
unmitigated outbreak in a small workplace presents entirely new
problems, requiring aggressive triage, and will be immediately
apparent to management.
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