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Abstract

Background: Severe acute respiratory syndrome coronavirus clade 2 (SARS-
CoV-2) is a single-stranded RNA virus responsible for the global pandemic of
the coronavirus disease-2019 (COVID-19). To date, there are still no effective
approaches for the prevention and treatment of COVID-19.

Objective: The present study aims to explore the possible mechanisms of
SARS-CoV-2 infection in human lung cells.

Methods: Data interpretation was conducted by recruiting bioinformatics
analysis, including Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes pathways analysis using downloaded data from the NCBI Gene
Expression Omnibus database.

Results: The present study demonstrated that SARS-CoV-2 infection induces
the upregulation of 14 interferon-stimulated genes, indicative of immune, and
interferon responses to the virus. Notably, genes for pyrimidine metabolism
and steroid hormone biosynthesis are selectively enriched in human lung cells
after SARS-CoV-2 infection, suggesting that altered pyrimidine metabolism
and steroid biosynthesis are remarkable, and perhaps druggable features after
SARS-CoV-2 infection. Besides, there is a strong positive correlation between
viral ORFlab, ORF6, and angiotensin-converting enzyme 2 (ACE2) expression

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2020 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd

Immun Inflamm Dis. 2020;8:753-762.

wileyonlinelibrary.com/journal/iid3 753


http://orcid.org/0000-0003-2543-4369
mailto:wupingsun@email.szu.edu.cn

M—Wl LEY_Immunity, Inflammation and Disease

YANG ET AL.

KEYWORDS

biosynthesis

1 | INTRODUCTION

The prevalence of coronavirus disease-2019 (COVID-19),
which is caused by severe acute respiratory syndrome
coronavirus clade 2 (SARS-CoV-2), at the end of 2019
became a global pandemic.’ According to the World
Health Organization (WHO) data, the latest infection
cases in the world have reached more than 37.4 million,
with the reported deaths of more than 1,075,000
individuals.” Until now, the prevalence of COVID-19
seems still to be increasing exponentially. Therefore, the
effective approaches for the prevention and treatment of
COVID-19 are urgently needed.

Coronaviruses are a family of enveloped, positive-
stranded RNA viruses, which can infect various verte-
brate hosts, including bats, dogs, and humans.® Human
beings have suffered and experienced three crises caused
by coronaviruses in the new millennium. The first is
SARS-CoV-1, which has caused a pandemic in 2003." The
second is named Middle East respiratory syndrome-CoV,
the Middle East respiratory syndrome-related
coronavirus.” SARS-CoV-2 has been found at the end of
2019, and its pathogenicity is even higher than the first
two coronaviruses.” SARS-CoV-2 causes the ongoing
COVID-19 pandemic. The threat of SARS-CoV-2 is due to
the impact of the human respiratory system.” The com-
mon syndromes of COVID-19 in humans are usually fe-
ver, cough, and dyspnea.” Infection with SARS-CoV-2
also causes acute respiratory distress syndrome and acute
lung injury, which are the major factors that result in a
malfunction of lung and death in elder and weak people.”
To date, human beings are suffering from the COVID-19
crisis, but there are still no effective approaches for the
prevention and treatment of COVID-19 due to a lack of
knowledge of SARS-CoV-2 pathogenesis in the infected
cases. Therefore, there is a pressing urgency to under-
stand the pathogenesis of COVID-19, exploration of the
characters and signatures on the molecular level, sub-
cellular level, cellular function, and biopsy network
activities of SARS-CoV-2 infection.

To date, several papers have already reported the tran-
scriptional changes in the samples with SARS-CoV-2 infec-
tion from in vitro, ex vivo, and in vivo systems.”'’ However,
these papers did not fully interpret the transcriptional
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in human lung cells, implying that ACE2 facilitates SARS-CoV-2 infection and
replication in host cells probably through the induction of ORFlab and ORF6.

ACE2, coronavirus, COVID-19, interferon response, pyrimidine metabolism, SARS-COV-2, steroid

signatures on the molecular level, subcellular level, cellular
function, and network activities. Moreover, angiotensin-
converting enzyme 2 (ACE2) has already been reported to be
a functional receptor, which is critical for SARS-CoV entry
into host cells.""'* ACE2 is known to be expressed on non-
immune cells, such as respiratory and intestinal epithelial
cells, endothelial cells, kidney cells (renal tubules), and cer-
ebral neurons.””"” In the present study, we performed data
interpretation by recruiting bioinformatics analysis, including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways analysis using downloaded data
from the NCBI Gene Expression Omnibus (GEO) database,
as a recent paper reported.'® Furthermore, we compared the
viral infection and replication efficacy on different types of
human lung cells with or without modification of ACE2
expression.

2 | MATERIALS AND METHODS

2.1 | Transcriptome analysis
The datasets RNA consisting of sequencing data of four
human lung-derived cell lines, that is, A549, normal
human bronchial epithelial (NHBE), Calu3, and ACE2
overexpressing A549 (with or without SARA-CoV-2 in-
jection, three repeats), and four human lung biopsies
(two healthy subjects and two COVID-19 patients) were
downloaded from the NCBI GEO database (accession
number GSE147507), which was submitted by Blanco-
Melo et al. recently.'®

The quality of the FASTQ files generated from the li-
braries was checked using Fast QC (http://www.bioinf
ormatics.babraham.ac.uk/projects/fastqc) and summary
statistics reporting by MultiQC v1.7 (https://multigc.info/).
The RNA-seq workflows were running on two Intel
W-3175X CPUs with 128 GB of memory.'” After removing
low-quality, adapter-polluted, and high content of un-
known base (N) read, the clean reads data were aligned to
the SARS-CoV-2 genome (NC_045512.2) using Bwa
Aligner."® The counts of mapped reads for each gene were
calculated using FeatureCounts'” (http://bioinf.wehi.edu.
au/featureCounts/) from the SAM files. The differentially
expressed genes (DEGs) were defined as genes with at


http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://multiqc.info/
http://bioinf.wehi.edu.au/featureCounts/
http://bioinf.wehi.edu.au/featureCounts/

YANG ET AL.

Immunity, Inflammation and Disease

755
-WI1 LEY—I—

least twofold changes between groups and an adjusted
p value less than .05 using DESeq2.”’ ClusterProfiler,”'
which uses a modified Fisher's exact test followed by
Benjamini-Hochberg  multiple  hypotheses  testing
corrections and corrected p value cutoff of 0.05, was used
to perform gene functional annotation clustering human
genes as background, and default options and annotation
categories. Significantly enriched KEGG pathways
were identified using a hypergeometric test and
Benjamini-Hochberg FDR correction.””””

2.2 | Statistical analysis

An empirical Bayesian analysis was performed to shrink the
dispersions toward a consensus value, effectively borrowing
information between genes.”"”” Genes with a g value lower
than .05 and a fold change greater than 2 were considered
differentially expressed. Group data are presented as the
mean + SEM. Pearson's product-moment correlation analysis
was conducted to evaluate the statistical differences. Results
were considered significant at a p value of less than .05.

3 | RESULTS

3.1 | Dysregulated transcripts occurred
in SARS-CoV-2-infected human lung cell
lines and human lung tissues

We first conducted quality control of the sequence data
downloaded from the GEO database. We counted the
number of identified expressed genes and calculated its
proportion and distribution to each sample's total gene
number as Figure S1A. The principal component analysis
was performed to assess the variation of datasets. Sam-
ples with or without SARS-CoV-2 injection were sepa-
rated (Figure S1B). Besides, we calculated the correlation
value between every two samples based on normalized
expression results and drew a correlation heatmap
(Figure S1C). These results suggest that the sequence
data downloaded from the GEO database can be used for
subsequent analysis.

DEGs were identified from the same cell lines (mock vs.
SARS-CoV-2 infection) or human biopsies (healthy vs.
COVID-19) and used for functional annotation. All DEGs
were demonstrated in volcano plots (Figure 1A-E). In A549
cells (human lung type II alveolar epithelial-like cells), there
were 78 upregulated DEGs and 20 downregulated DEGs
(Figure 1A). A total of 139 genes were significantly upre-
gulated, while 81 genes were downregulated in NHBE cells
after viral infection (Figure 1B). DEGs in Calu-3 (human
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adenocarcinoma lung epithelial) cells were shown in
Figure 1C, with 1,393 genes upregulated and 733 genes
downregulated. When COVID-19 patients compared with
non-COVID-19 patients, there were 1,846 upregulated
DEGs and downregulated 731 DEGs (Figure 1D). We have
also analyzed the DEGs between ACE2 overexpressing
A549 cells with or without SARS-CoV-2 infection
(Figure 1E). Interestingly, these results revealed that the
number of up- or downregulated DEGs are dramatically
increased compared with A549 cells without ACE2 over-
expression. A Venn diagram was plotted to identify the
common or unique DEGs in human lung cells and lung
biopsies (Figure 1G). A total of 14 common DEGs were
identified. Notably, most of them are interferon-stimulated
genes (ISGs). The heatmap demonstrating the expression
levels of 14 common DEGs is plotted in Figure 1H. All these
14 genes were upregulated in human lung cells and tissues
after SARS-CoV-2 infection.

3.2 | GO analysis reveals that immune
and interferon responses were involved by
SARS-CoV-2 infection

GO analysis was carried out with DEGs to delineate the
potential SARS-CoV-2 pathogenesis (Figure 2). In both
human lung cell lines (Figure 2A-C) and human lung
biopsies (Figure 2D), the biological processes (BP) are
mainly associated with “immune response,” “defense
response to the virus,” and “interferon response,” high-
lighting that innate immune responses to the virus are
the common events after SARS-CoV-2 infection
(Figure 2). As these common BP are highly enriched in
cell lines of nonimmune cells, this result implied that
lung-derived cells (e.g., lung epithelial cells) are partially
contributing to the harmful immune responses during
the pathogenesis of COVID-19. Meanwhile, it should be
noted that a series of neutrophil related BP (such as
neutrophil activation and neutrophil degranulation) were
the most significantly associated BP in human tissues,
inferring that immune cells, particularly neutrophils,
might play a role in COVID-19. Molecular function an-
notations revealed the enrichment of “receptor-ligand
activity,” “cytokine activity,” and “chemokine activity” in
the list of DEGs, implying that cytokine and chemokines
are the representative mediators of inflammatory re-
sponses in human lung cells with SARS-CoV-2 infection
(Figure S2). However, for cellular component annota-
tions, no common cellular components were identified
among different sample pairs, suggesting various cellular
components are involved in different conditions of hu-
man lung cells with SARS-CoV-2 infection (Figure S2).
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3.3 | Pyrimidine metabolism and steroid
biosynthesis are involved in SARS-CoV-2
infection

Next, we conducted KEGG pathway enrichment using
ClusterProfiler. The differential genes, of particular interest,
were significantly enriched for “pyrimidine metabolism,”
“steroid biosynthesis,” and “steroid hormone biosynthesis,”
which are common characters in lung-derived cells or tissues
infected by SARS-CoV-2, but not by the respiratory syncytial
virus (RSV), influenza A virus (IAV), and human parain-
fluenza virus 3 (HPIV3; Figures 3A-D and S3A-C). These
results suggested that altered pyrimidine metabolism and
steroid biosynthesis are remarkable, and perhaps druggable
features after SARS-CoV-2 infection. Besides, DEGs in Calu3
cells and human lung biopsies are also associated with
multiple pathways involved in purine and amino acid me-
tabolism. These results suggested that human lung cells may
have occurred nucleotide, amino acid, lipid metabolism dis-
orders upon SARS-CoV-2 infection. We further conducted a
functional analysis of the DEGs enriched in the pathways of
pyrimidine metabolism (Figure 3E) and steroid hormone

biosynthesis (Figure 3F). The results showed that the DEGs
enriched for the pyrimidine metabolism pathway mainly
corresponded to an amino acid metabolism, including argi-
nine biosynthesis, alanine metabolism, valine, leucine, and
isoleucine metabolism. DEGs enriched in the steroid hor-
mone biosynthesis pathway respond to progesterone, corti-
costerone/aldosterone, cortisol/cortisone, and estrone.

3.4 | The infection efficacy of
SARS-CoV-2 was correlated to ACE2
expression levels

It has been reported that ACE2 is the entry receptor that
facilitates SARS-CoV-2 entry into target cells.”””’ We ex-
plored the impact of ACE2 amounts in SARS-CoV-2 infec-
tion. We calculated the read-count of each viral open read
frame (ORF) after SARS-CoV-2 infection in A549 cells
(Figure 4A), NHBE cells (Figure 4B), Calu3 cells (Figure 4C),
and ACE2 overexpressing A549 cells (Figure 4D). The results
demonstrated higher SARS-CoV-2 replication in NHBE cells,
Calu3 cells than in A549 cells, although there is no
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expression of ACE2 in A549 cells according to the results of
ACE2 read-count and reverse transcription polymerase chain
reaction (Figure 4SA,B). On the other hand, SARS-CoV-2
replication was dramatically increased in ACE2 over-
expressing A549 cells. Moreover, the ratio of each ORF reads
in total virus reads was shown after SARS-CoV-2 infection in
A549 cells (Figure 4E), NHBE cells (Figure 4F), Calu3
cells (Figure 4G), and ACE2 overexpressing A549 cells
(Figure 4H). A regression analysis indicated a nearly linear
correlation between the total virus reads and ACE2 expres-
sion in host cells (Figure 41). Furthermore, compared to the
ratio of each ORF in A549 cells, the ratio of ORFlab and
ORF6 looked increased in ACE2 overexpressing A549 cells.
We examined the relationship between viral ORF1ab, ORF®6,
and ACE2 expression in human lung cells. The results in-
dicated that there is a strong positive correlation between

viral ORFlab (Figure 4J), ORF6 (Figure 4K), and ACE2
expression in human lung cells, but not ORF7b (Figure 4L).

4 | DISCUSSION

SARS-CoV-2 is a single-stranded, positive-sense RNA
virus with a genome size of around ~30 kb, responsible
for the global pandemic of the COVID-19 since the end of
2019.”%* SARS-CoV-2 poses an imminent threat to
public health and the world's economy due to no ap-
proved therapeutic approaches or vaccines are available
at present. However, lacking the pathogenesis of SARS-
CoV-2 is problematic, given the urgent need for effective
therapies against the emergence of COVID-19. To un-
derstand the potential pathogenesis which SARS-CoV-2
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caused, its transcriptomic architecture is warranted to be
elucidated. In this study, we analyzed the transcriptomic
data from various human lung cells and human lung
biopsies with SARS-CoV-2 infection, downloaded from a
recently published paper.'®

DEG screening results indicated that many genes
were altered in human lung cells and biopsies upon infection
of SARS-CoV-2, suggesting the successful infection of

SARS-CoV-2. Transcriptome changes result in the proteome
alteration in cells, which subsequently affect the molecular
and cellular functions. A Venn diagram showed that there
are 14 DEGs shared in the infected human lung cells and
biopsies. These 14 genes, including 2'-5-oligoadenylate syn-
thetase 1, interferon regulatory factor 7, XIAP associated
factor 1, 2-5-oligoadenylate synthetase 2, interferon reg-
ulatory factor 9, helicase with zinc finger 2, interferon-alpha
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FIGURE 4 Quantitation of viral gene expression of SARS-CoV-2 in varies types of human lung cells after infection. The read-
count of each open read frame (ORF) in A549 cells (A), NHBE cells (B), Calu3 cells (C), and ACE2 over-expressing A549 cells (D)

after SARS-CoV-2 infection. The read-count ratio of each ORF in

A549 cells (E), NHBE cells (F), Calu3 cells (G), and ACE2 over-

expressing A549 cells (H) after SARS-CoV-2 infection. (I) The regression analysis of total viral read-count and the expression of
ACE2. The regression analysis of ORF1ab (J), ORF6 (K), and ORF7b (L) read-count ratio and the expression of ACE2. Pearson's
product-moment correlation. ACE2, angiotensin-converting enzyme 2; NHBE, normal human bronchial epithelial; SARS-CoV-2,

severe acute respiratory syndrome coronavirus clade 2

inducible protein 6, interferon-induced protein 44 like, in-
terleukin 1 alpha, epithelial-stromal interaction 1, MX
dynamin-like GTPase 1, the interferon-induced transmem-
brane protein 1, 2'-5-oligoadenylate synthetase 3, and MX
dynamin-like GTPase 2, are mainly ISGs, suggesting tran-
scriptomic pattern changes are consistent in various types of
human lung cells after SARS-CoV-2 infection.

GO analysis revealed that the innate immune responses
induced by the virus are common in various human lung
cells after SARS-CoV-2 infection. Meanwhile, neutrophil
activation and neutrophil degranulation are the most sig-
nificantly associated biological processes in human tissues,
inferring that immune cells, particularly neutrophils, might
play a role in COVID-19. Molecular function annotations
revealed that cytokine and chemokines are the representative
mediators of inflammatory responses in human lung cells
with SARS-CoV-2 infection. These results coincide with the
previous reports that the induction of a cytokine storm is the
root cause of pathogenic inflammation in COVID-19.*"'

Recent studies have revealed that pyrimidine metabolism
participates in SARS-CoV-2 infection.”””’ In the present

study, KEGG analysis results demonstrated that pyrimidine
metabolism and steroid hormone biosynthesis are the major
pathways involved in the host cells after SARS-CoV-2 in-
fection. These results suggested that altered pyrimidine me-
tabolism and steroid biosynthesis are remarkable, and
perhaps druggable features after SARS-CoV-2 infection. Be-
sides, DEGs in Calu3 cells and human lung biopsies are also
associated with multiple pathways involved in purine and
amino acid metabolism. These results suggested that nu-
cleotide, amino acid, lipid metabolism disorders may occur
in human lung cells upon SARS-CoV-2 infection. The
functional analysis uncovered that amino acid metabolisms
are involved in pyrimidine metabolism. And DEGs enriched
in the steroid hormone biosynthesis pathway respond to
progesterone, corticosterone/aldosterone, cortisol/cortisone,
and estrone. Another interesting finding is that nucleotide
metabolism and hormone biosynthesis was triggered in hu-
man lung cells uniquely with SARS-CoV-2 infection, but not
RSV, TAV, and HPIV3 infections, which could explain why
that SARS-CoV-2 infection-induced more lethality and se-
verity symptoms in COVID-19 patients, compared with
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common influenza. Our results also supported the clinical
observations that COVID-19 patients critically need nutri-
tional intervention and mechanical ventilators, finally prob-
ably due to the caused metabolism disorders.”"*” Therefore,
more attention should be given to the threat of COVID-19.
ACE2 is the entry receptor that facilitates SARS-CoV-2
entry into target cellsWelcome.”*”’ An interesting phe-
nomenon we observed in the present study is that
SARS-CoV-2 read-count (infection and replication) in host
cells is dramatically higher than in NHBE cells, Calu3 cells
than in A549 cells. Another evidence is that SARS-CoV-2
replication was also dramatically increased in ACE2 over-
expressing A549 cells. Regression analysis results con-
firmed a strong positive correlation between the expres-
sion of ACE2 in host cells and SARS-CoV-2 replication.
These results suggested that the high efficacy of ACE2,
which facilitates the infection of SARS-CoV-2 in host cells.
It has also been reported that ACE2 expression increases
in varies types of human lung cells, including airway
epithelial cells, alveolar AT2 cells, and submucosal gland
secretory cells with increasing age, male gender, and
smoking by a meta-analysis of single-cell RNA-seq study,
all of these factors are epidemiologically correlated to
COVID-19 susceptibility and lethality.*®
Interestingly, A549 cells could be infected by
SARS-CoV-2, although they do not express ACE2.
A recent study has been reported that ENPEP might
be another potential receptor for human CoVs
demonstrated by single-cell RNA sequencing.’’
Therefore, other possible alternative receptors, which
could work as an entry receptor to facilitate SARS-
CoV-2 entry into the host cells, cannot be excluded.
The percentage of ORFlab and ORF6 in the virus sig-
nificantly correlated to the expression level of ACE2 in host
cells, suggesting that ORFlab and ORF6 might be synergis-
tically induced in an ACE2-dependent manner upon SARS-
CoV-2 infection. It is known that ORF1ab is a subunit of the
replicase complex, which is very critical for SARS-CoV-2
replication.” ORF6 is a protein that prevents SARS-CoV-2-
infected cells from sending signals to the immune system. It
also blocks some of the antiviral protein generations of the
host cell itself.”” These results suggested that ACE2 facilitates
SARS-CoV-2 infection and replication in host cells, probably
through the induction of ORFlab and ORF6. However, the
detailed mechanisms in which ORFlab and ORF6 are
involved in are warranted for further exploration.
Altogether, the present study supplied several lines
of evidence that SARS-CoV-2 infection triggers immune
and interferon responses. Pyrimidine metabolism and
steroid hormone biosynthesis also correspond to SARS-
CoV-2 infection in human lung cells. Also, ACE2 facil-
itates SARS-CoV-2 infection and replication in host
cells, probably through the induction of ORFlab and

Open Access,

ORF6. These findings are uniquely in SARS-CoV-2 in-
fection, which may help to understand the pathogenesis
of COVID-19 better. The present study highlights the
risk and pathogenicity of SARS-CoV-2 that we should
pay more attention to the threat of COVID-19.
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