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Abstract

Per- and polyfluoroalkyl substances (PFAS) are contaminants of critical concern due to their 

persistence, widespread distribution in the environment, and potential human-health impacts. In 

this work, published studies of PFAS concentrations in soils were compiled from the literature. 

These data were combined with results obtained from a large curated database of PFAS soil 

concentrations for contaminated sites. In aggregate, the compiled data set comprises more than 

30,000 samples collected from more than 2,500 sites distributed throughout the world. Data were 

collected for three types of sites— background sites, primary-source sites (fire-training areas, 

manufacturing plants), and secondary-source sites (biosolids application, irrigation water use). The 

aggregated soil-survey reports comprise samples collected from all continents, and from a large 

variety of locations in both urban and rural regions. PFAS were present in soil at almost every site 

tested. Low but measurable concentrations were observed even in remote regions far from 

potential PFOS sources. Concentrations reported for PFAS-contaminated sites were generally 

orders-of-magnitude greater than background levels, particularly for PFOS. Maximum reported 

PFOS concentrations ranged upwards of several hundred mg/kg. Analysis of depth profiles 

indicates significant retention of PFAS in the vadose zone over decadal timeframes and the 

occurrence of leaching to groundwater. It is noteworthy that soil concentrations reported for PFAS 

at contaminated sites are often orders-of-magnitude higher than typical groundwater 

concentrations. The results of this study demonstrate that PFAS are present in soils across the 

globe, and indicate that soil is a significant reservoir for PFAS. A critical question of concern is 

the long-term migration potential to surface water, groundwater, and the atmosphere. This 

warrants increased focus on the transport and fate behavior of PFAS in soil and the vadose zone, in 

regards to both research and site investigations.
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1. Introduction

It has become evident that PFAS are ubiquitous in environmental media in the U.S. and 

many other nations (e.g., Prevedouros et al., 2006; Rayne and Forest, 2009; Ahrens, 2011; 

Krafft and Riess, 2015). Their widespread distribution coupled with their persistence and 
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potential human-health impacts have fomented interest in PFAS transport and fate in the 

environment, an accurate understanding of which is critical to robust risk assessments and 

effective mitigation efforts. The transport and fate of PFAS in the environment is being 

investigated at multiple scales, from that of individual contaminated sites to global surveys. 

To date, research has focused primarily on occurrence and transport in the atmosphere, 

surface water, and groundwater. However, there are indications that soils serve as a 

significant reservoir and long-term source for PFAS, including locally, regionally, and 

globally.

The potential importance of soil as a global reservoir for PFAS was first quantified by 

Strynar et al. (2012), who measured the concentrations of 13 PFAS in samples of surface 

soil collected from 60 locations in 6 countries. The samples were collected from locations 

far from known PFAS-contamination sources including industries known to have used 

PFAS. PFAS occurrence was widespread across the sample locations. Strynar et al. 

estimated global soil loadings of 1860 and >7000 metric tons of perfluorooctanoic acid 

(PFOA) and perfluorooctane sulfonic acid (PFOS), respectively. Rankin et al. (2016) 

reported concentrations of 32 PFAS in surface soil samples collected from 62 locations 

across all continents. Quantifiable levels of more than one PFAS were present in all samples 

tested, including soils collected from remote locations. Washington et al. (2019) used the 

Rankin et al. data to calculate global soil loadings for 8 PFAS. The combined estimated load 

for all 8 PFAS ranged from 1500 to 9000 metric tons, with mean estimates of approximately 

1000 metric tons for both PFOA and PFOS. These results indicate that soil has the potential 

to be a primary reservoir for PFAS. This is supported by the study reported by Liu et al. 

(2015), who employed a fugacity-based screening model to characterize regional-scale 

transport and distribution of PFOS in a coastal region of China. Soil was determined to be a 

major environmental reservoir for PFOS, contributing to >40% of the total mass.

Recent research focused on PFAS-contaminated sites has also indicated the importance of 

soil as a reservoir for PFAS. Anderson et al. (2016) evaluated PFAS concentrations in soils 

and other media for 100’s of samples collected from 40 sites across 10 military installations 

in the U.S. at which aqueous film-forming foam (AFFF) had been used. The results 

demonstrated widespread presence in soil for the 19 PFAS tested. Anderson et al. (2019) 

reported a meta-analysis of PFAS soil-to-groundwater concentration ratios for samples 

collected from 324 AFFF source-zone sites across 56 military installations distributed 

throughout the continental U.S. The results demonstrated that soil is a significant reservoir 

for PFAS at these contaminated sites. The results of transport modeling conducted at 

individual contaminated sites also indicate that soils and the vadoze zone serve as a 

significant long-term source of PFAS (Shin et al., 2011; Xiao et al., 2015; Weber et al., 

2017).

The results summarized above clearly indicate the importance of soil and the vadose zone as 

a reservoir for PFAS. This mass can serve as a long-term contamination source to surface 

water, groundwater, the atmosphere, and biota. Considering the significance of this domain, 

it is critical to develop a more detailed understanding of the occurrence of PFAS in soil and 

the vadose zone. The objectives of the present study are three-fold. First, reported PFAS soil 

concentrations for locations with no known nearby PFAS contamination sources of any type 
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are aggregated to determine typical background levels. Second, soils data are aggregated for 

PFAS contaminated sites as a function of source type. Third, the two data sets are compared 

to evaluate concentration differences between different types of sites. PFAS concentrations 

in surface soil are also compared to distributions in the vadose zone and to groundwater 

levels.

2. Materials and Methods

A literature search was conducted to identify published works reporting concentrations of 

PFAS in soil. Web of Science was a primary search tool employed. Google Scholar and 

Google were also used. In addition, cited references in all identified publications were 

examined for relevant works. Multiple search terms were used in various combinations, 

including “PFAS”, “Perfluor*”, “Polyfluor*”, “PFC”, “soil”, “vadose zone”, and 

“sediment”. All identified publications that included PFOS or PFOA as analytes were 

included in the analysis. Only 3 publications were excluded on this basis. The excluded 

publications were focused on precursor compounds only, which were not reported in many 

of the studies.

Information including the type of study, nature of the locations surveyed, the number of 

sampling locations, number of PFAS analyzed, ranges of total PFAS concentrations, and 

maximum reported concentrations for PFOA and PFOS were recorded. Almost all of the 

studies clearly specified that the data reported corresponded to soil samples collected from 

the top several centimeters of the ground surface. The very few studies that did not 

specifically state this information are presumed to also represent surface samples based on 

the context of the studies.

Sample processing and analysis methods varied somewhat across the studies. In addition, 

quantitative detection limits varied among the studies. Therefore, the data analysis was 

focused primarily on maximum reported concentrations. As noted below, the number of 

PFAS analyzed in each soil-survey study varied significantly. Hence, the present analysis 

will focus primarily on PFOS and PFOA.

In addition to the literature search, an analysis is conducted of the U.S. Air Force AFFF 

Impacted-Site database. This database comprises soil, vadose zone, and groundwater 

samples reported for hundreds of AFFF–impacted sites (i.e., source zones) across dozens of 

Air Force installations distributed throughout the continental U.S. To our knowledge, it is the 

largest database of its kind. Anderson et al. (2019) used this database to characterize soil-

groundwater ratios for PFAS at these sites. However, they did not report specific PFAS 

concentrations, or examine depth-specific PFAS distributions. Hence, the present study 

employs this database to add new information and insight by reporting and evaluating actual 

soil concentrations for multiple PFAS. It also presents data sets for PFAS depth distributions 

in the vadose zone, notably comprising the deepest samples reported to date. This database 

is continually being supplemented with additional data sets, and as of 2019, the database 

comprises almost 25,000 soil and vadose-zone samples from 2,452 borehole sampling 

locations distributed across 1000 source zones (not counting non-detect samples). The 

sampling locations include (former) fire-training areas (FTA) as well as other sites where 
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either episodic or incidental AFFF discharge occurred, including emergency response 

locations, AFFF holding ponds and lagoons and their outfalls, hangar-related AFFF storage 

tanks and pipelines, fire station testing and maintenance areas, and sites where biosolids 

from wastewater treatment plants were land applied.

3. Results

3.1 Literature Data

PFAS soil concentration data were obtained primarily from peer-reviewed journal articles. 

However, some data sets originated from various types of investigative reports. The numbers 

of studies reporting soil data are shown in Figure 1 as a function of year. A marked increase 

in the numbers of reports is observed for the past several years. Conversely, only three 

reports were published prior to 2010.

Two types of studies were documented. One set can be classified as surveys of PFAS soil 

distributions for areas not directly impacted by PFAS sources. Specifically, the sampling 

sites for these studies are located in areas that do not have a known PFAS source in the 

immediate vicinity. These data are used to examine what will be referred to as “background” 

or ambient PFAS levels. A total of 40 background soil surveys were recorded, with three in 

effect repeated studies of the same area conducted by the same group. The second set of 

studies represent investigations conducted at a specific site or number of sites at which PFAS 

was manufactured, used, or disposed. These will be referred to as “contaminated” sites. A 

total of 32 reports were recorded for these types of sites.

3.2 Background Soil Concentrations

Relevant metadata for the soil surveys are reported in Table 1. In aggregate, the data 

comprise approximately 5700 soil samples collected from more than 1400 sampling 

locations across the world. The studies conducted by Strynar et al. (2012), which included 6 

nations (U.S., China, Japan, Norway, Greece, and Mexico), and Rankin et al. (2016), which 

comprised 62 locations representing all continents (North America n=33, Europe n=10, Asia 

n=6, Africa n=5, Australia n=4, South America n=3 and Antarctica n=1), were large-scale 

surveys for which samples were collected from multiple nations across multiple continents. 

Of the 38 other studies, more than half (20) were conducted in China, showing that 

researchers there have been proactive in characterizing background levels of PFAS in soil. 

Six studies were conducted in Korea, 5 in the United States, and 4 in European nations.

The number of PFAS analyzed ranged from 2 to 32, with a mean of 14. Total PFAS 

concentrations ranged from <0.001 to 237 μg/kg. PFOS and PFOA were the most prevalent 

PFAS reported for almost all of the studies. The maximum reported concentrations for PFOS 

ranged from 0.003 to 162 μg/kg, while they ranged from 0.01 to 124 μg/kg for PFOA. The 

maximum concentrations exceeded 10 μg/kg for only 8 and 7 of the studies for PFOA and 

PFOS, respectively. The median maximum concentrations were 2.7 μg/kg for both PFOS 

and PFOA (Table 1).

Soil samples across the studies were collected from a wide variety of location types in both 

urban and rural areas. These included residential yards and gardens, agricultural fields, 
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schoolyards, commercial sites, and parks. Measurable levels of PFAS were reported for all 

of these types of sites. The widespread occurrence across a large variety of sites has 

potential significant implications with respect to human exposure. A number of the studies 

focused on assessing PFAS occurrence in agricultural fields, and the results show 

widespread presence. This raises potential concern regarding transfer of PFAS into the food 

web.

While the sampling locations for these studies are some distance from identified PFAS-

contaminated sites, the vast majority are in populated regions. The study by Wang et al. 

(2018) is noteworthy as it consists of samples collected from 28 unpopulated forested sites 

located in mountainous regions of China. The sampling sites were located tens to several 

hundred km from industrial or municipal sources of PFOA and PFOS. Maximum reported 

PFOA and PFOS concentrations were 0.01 and 0.003 μg/kg, respectively. Rankin et al. 

(2016) reported PFAS soil concentrations for a single sampling site located in Antarctica. 

PFOA and PFOS concentrations were 0.05 and 0.007 μg/kg, respectively. The PFOS and 

PFOA concentrations reported for these two studies are significantly lower than 

concentrations reported for all of the other studies.

3.3 Contaminated Sites

An overview of the literature data for contaminated sites is presented in Tables 2 and 3. The 

data are separated into primary-source sites (Table 2) and secondary-source sites (Table 3). 

The former include PFAS manufacturing sites, FTAs and other AFFF-testing locations at 

airports and military installations, and a crash site. The secondary-source sites include sites 

that are adjacent to PFAS-contaminated primary-source sites, or sites for which PFAS-

contaminated media were used for some purpose. These latter sites represent for example 

locations at which biosolids and other amendments were applied to the ground surface, 

and/or sites at which surface water, groundwater, or treated wastewater was used for 

irrigation.

Data were reported for a total of more than 42 primary-source sites across the 22 literature 

studies. Incorporating the current data from the U.S. Air Force database brings the total 

number of sites to greater than 1000. PFOS was the predominant PFAS reported for almost 

all of the sites. This is to be expected given that the vast majority of sites are FTAs or other 

sites of AFFF use. Maximum reported concentrations for PFOS range from 0.4 to 460,000 

μg/kg, with a median value of 8,722 μg/kg. The maximum reported concentrations for PFOA 

range from 2 to >50,000 μg/kg, with a median value of 83 μg/kg (Table 2).

Additional information for surface-soil concentrations retrieved from the U.S. Air Force 

AFFF Impacted-Site database is presented in Table 4 for 10 selected PFAS. Note that non-

detects were excluded from the analysis. PFOS, perfluorohexanesulfonic acid (PFHxS), 

PFOA, and perfluorohexanoic acid (PFHxA) were the four with the greatest number of 

detections. PFOS is present at the highest concentrations overall, with maximum, mean, and 

median concentrations of 373,000, 22, and 18 μg/kg, respectively. 6:2 fluorotelomer sulfonic 

acid (6:2 FTSA) has the second highest maximum, mean, and median concentrations. 

PFHxS and perfluorooctanesulfonamide (PFOSA) also exhibit relatively large maximum, 

mean, and median concentrations. While PFOA had the second highest recorded maximum 
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concentration (50,000 μg/kg), it has lower median and mean concentrations. The median 

concentrations for all 10 PFAS are close to or exceed 1 μg/kg. It is anticipated that these 

metadata are likely to be representative of many AFFF-impacted sites given the large 

number of sampled locations comprising the database.

The secondary-source sites comprise 9 sites from 10 studies (Table 3). Maximum reported 

concentrations for PFOS range from 0.4 to 5,500 μg/kg, with a median value of 680 μg/kg. 

The maximum reported concentrations for PFOA range from 0.8 to 2,531 μg/kg, with a 

median value of 38 μg/kg. As discussed by some of the original-study authors, these data 

sets demonstrate that the use of PFAS-contaminated media such as biosolids and irrigation 

water can result in soil contamination, subsequent distribution to other media, and ultimately 

the potential for human exposure at locations far removed from the original PFAS source 

(Lindstrom et al., 2011; Braunig et al., 2017; Liu et al., 2017).

Comparison of the median maximum concentrations reported for PFOS and PFOA reveals a 

distinct stratification among the three types of locations--- background sites (Table 1) vs. 

secondary-source sites (Table 3) vs. primary-source sites (Table 2). The median maximum 

background levels are 2.7 μg/kg for both PFOS and PFOA, as noted above. The median max 

PFOS concentration of 680 μg/kg for the secondary-source sites is more than 2 orders-of-

magnitude higher than the background level for PFOS, whereas the median max PFOS 

concentration of 8722 μg/kg for the primary-source sites is 3.5 orders-of-magnitude higher 

than background. The median max PFOA concentrations for the secondary- and primary-

source sites for PFOA are approximately 1 and 1.5 orders-of-magnitude higher, respectively, 

than the background level.

One point of interest is the relative ranges of soil versus groundwater concentrations 

reported for PFAS. Anderson et al. (2019) reported metadata specifically on this topic based 

on the database of AFFF-impacted sites at U.S. Air Force Bases. Ratios of soil-to-

groundwater (Soil-GW) concentrations were reported for all tabulated PFAS for all assessed 

sampling sites. The aggregate Soil-GW ratio was observed to vary over 9 orders of 

magnitude, with log-transformed values ranging from approximately −2 to 7. Approximately 

13% of the Soil-GW ratios were negative, reflecting soil concentrations that were lower than 

the corresponding groundwater concentrations. Conversely, the ratios were positive for the 

vast majority (87%) of data, reflecting greater soil concentrations. The peak log-transformed 

ratio was approximately 2, reflecting soil concentrations ~100-times greater than 

groundwater.

Several studies reported in Table 2 included both soil and groundwater concentrations for the 

contaminated sites. The aggregate log-transformed S-GW ratios for PFOS and PFOA are 2.5 

and 2.1, respectively. Thus, the results are consistent with the analysis reported by Anderson 

et al. (2019). The overall results demonstrate that PFAS concentrations in soils at 

contaminated sites are typically orders-of-magnitude higher than groundwater 

concentrations.
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3.4 Vadose-Zone Concentrations and Depth Profiles

Only 15 published studies (for 12 sites) reported depth profiles of PFAS concentrations. 

Seven of them reported deep profiles (>4 meters), and the remainder focused on shallow 

profiles (<1-2 meters). Davis et al. (2007) and Shin et al. (2011) reported concentrations 

down to ~5 meters. The deepest profiles were reported by Dauchy et al. (2019), which 

extended to 15 meters below ground surface. In many cases, the concentrations are observed 

to decrease by several orders-of-magnitude with depth.

Example depth profiles for PFOS soil concentrations developed from data reported in the 

U.S. Air Force AFFF Impacted-Site database are presented in Figure 2. Data for Site A are 

recorded to a depth of 37 m below ground surface. These data represent to our knowledge 

the deepest reported soil-concentration depth profiles for PFAS in a vadose zone. Inspection 

of Figure 2 shows that PFOS concentrations decrease by several orders-of-magnitude with 

depth. Aggregate data for total PFAS reported in the database for a large number of borehole 

samples also exhibit exponential decreases with depth (Figure 3). These results are 

consistent with data typically reported for shallower profiles in the prior studies referenced 

in the preceding paragraph.

Aggregate concentration metrics retrieved from the U.S. Air Force AFFF Impacted-Site 

database are presented in Table 5 for subsurface soil concentrations of 10 PFAS. 

Comparison of these data to the results reported in Table 4 for surface soil reveals that the 

maximum concentrations are higher for the surface samples for all 10 PFAS. Conversely, 

geometric mean concentrations are higher for surface samples for some PFAS but not for 

others. The ratio of geomean concentrations for surface samples versus subsurface samples 

is reported in Table 5 for the 10 PFAS. It is observed that the ratios are >1 for the longer-

chain PFAS and <1 for the shorter-chain PFAS. The only exception is perfluorobutanoic acid 

(PFBA), for which the ratio is >1.

The difference in PFAS depth distribution as a function of chain length noted in Table 5 is 

observed for combined PFAS, as shown in Figure 3. Long-chain PFAS, ≥C7 (Buck et al. 

2011), represent the majority of PFAS mass at the shallowest depths, whereas short-chain 

PFAS comprise the majority at deeper depths. Similar behavior has been reported in prior 

field studies (Washington et al., 2010; Sepulvado et al., 2011; Baduel et al., 2017; Casson & 

Chiang, 2018; Dauchy et al., 2019). For example, Washington et al. (2010) reported that the 

ratio of PFAS concentrations at ~1.5 meters to those at ~0.5 meter decreased with increasing 

chain length for all of the sample locations evaluated in their study. Baduel et al. (2017) 

reported that the maximum concentrations of the majority of longer-chain PFAS were in the 

top 1 meter, while most of the maximum concentrations of shorter-chain PFAS were at a 

depth of 2 meters or greater for their study site.

The migration and leaching behavior of PFAS in the vadose zone is expected to depend on a 

variety of factors including PFAS source properties (PFAS type, source input conditions, co-

contaminants), soil properties, meteorological conditions, and other factors (Brusseau, 2018; 

Lyu et al., 2018; Brusseau et al., 2019a, 2019b; Guo et al., 2020). The majority of depth-

profile data sets show high concentrations present at shallow depths and exponential 

decreases at greater depths. This distribution indicates significant retention of PFAS in the 
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vadose zone over decadal timeframes. Several factors may influence the retention of PFAS 

in the vadose zone. One factor that can lead to enhanced retention compared to groundwater 

systems is adsorption of PFAS at air-water interfaces under water-unsaturated conditions 

(Brusseau, 2018, 2019, 2020; Lyu et al., 2018; Brusseau et al., 2019a; Guo et al., 2020). In 

addition, adsorption by the solid phase is always a contributing factor to some degree, with 

its impact mediated by geochemical properties of the geomedia and physicochemical 

properties of the PFAS (e.g., Higgins and Luthy, 2006; Anderson et al., 2016; Brusseau, 

2019). Furthermore, adsorption by soil may be more important for nonioinc, cationic, and 

zwitterionic PFAS compared to the anionics (e.g., Xiao et al., 2019). Another factor of 

potential great importance for soil sources is the presence of precursor compounds, whose 

degradation can produce more recalcitrant PFAS and thus add to their mass fraction (e.g., 

Houtz et al., 2013; Anderson et al., 2016).

4. Conclusions

Soil PFAS concentration data were aggregated from the literature. The compiled data 

comprise samples collected from all continents, and from a large variety of locations in both 

urban and rural regions. PFAS were present in soil at almost every location tested. Low but 

measurable concentrations were observed even in remote regions far from potential PFOS 

sources. These observations have potential implications for human exposure through 

multiple routes. Given the level of PFAS production and use in Europe and the U.S., it 

would seem prudent to implement additional soil surveys in those regions. It would also be 

prudent to initiate surveys in other industrialized regions for which there are minimal data 

reported to date (e.g., regions of Asia and Africa). Additional surveys of remote areas are 

needed to supplement characterization of background levels of PFAS. PFOS and PFOA were 

typically the predominant PFAS of those measured. This observation may in part be 

influenced by the focus of many studies on a select few PFAS, often the legacy anionic 

compounds. Recent research has indicated the presence in the environment of numerous 

other PFAS comprising different molecular structures (e.g., Baduel et al., 2017; Xiao, 2017; 

Xiao et al., 2017). As such, future soil sampling studies should attempt to include a wider 

cross-section of PFAS.

Soil concentrations reported for PFAS-contaminated sites are generally orders-of-magnitude 

greater than background levels. Maximum reported PFOS concentrations ranged upwards of 

several hundred mg/kg. PFAS depth profiles generally show relatively high concentrations 

present at shallow depths and exponential decreases at greater depths. This distribution 

indicates significant retention of PFAS in the vadose zone over decadal timeframes. 

However, it is clear that PFAS have migrated to significant depths and that groundwater at 

most of these sites is contaminated with PFAS. This demonstrates that some degree of 

leaching has occurred at these sites. Greater understanding is needed of the migration 

behavior of PFAS in the vadose zone under different site conditions, including the potential 

impacts of factors such as source conditions, the presence of precursor compounds, physical 

and geochemical heterogeneity, and climatic conditions. Detailed site investigations will be 

critical to understand and predict the transport and fate behavior of PFAS in the vadose zone.

Brusseau et al. Page 8

Sci Total Environ. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It is noteworthy that soil concentrations reported for PFAS at contaminated sites are often 

orders-of-magnitude higher than typical groundwater concentrations, ranging up to parts-

per-million levels. Thus, research studies, site investigations, and modeling efforts 

characterizing PFAS transport in soil and the vadose zone need to be implemented with this 

in mind. The concentrations encountered at any given site will of course depend upon the 

nature of the PFAS source, the timeframe of contamination, site conditions, and many other 

site-specific factors.

In summary, the results of this study demonstrate that PFAS are present in soils across the 

globe, and indicate that soil is a significant reservoir for PFAS. A critical question of 

concern is the long-term migration potential to surface water, groundwater, and the 

atmosphere. This warrants increased focus on the transport and fate behavior of PFAS in soil 

and the vadose zone, in regards to both research and site investigations.
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Figure 1. 
Numbers of publications reporting PFAS concentrations in soil samples for surveys of 

background concentrations and contaminated sites. For some years the two types have 

identical numbers of publications, which shows as the filled circle residing within the open 

square.
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Figure 2. 
Example depth profiles of PFOS soil concentrations developed using data from the U.S. Air 

Force AFFF Impacted-Site database.

Brusseau et al. Page 16

Sci Total Environ. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Depth distribution of total PFAS in soil as a function of chain length. The data represent 124 

boreholes across 30 sites for which at least 8 depth-discrete samples were collected, tracked 

in the U.S. Air Force AFFF Impacted-Site database. Since the actual sample depths differed 

from location to location, depths were normalized by sequential rank, and generally reflect 

the interval from the ground surface to the water table. Similarly, total PFAS concentrations 

were normalized by the computation of standard normal (Z) scores for each borehole, and 

are summarized as the mean among all boreholes for short- and long-chain PFAS, 

respectively. Long-chain (≥C7) and short-chain are used as defined in Buck et al. (2011).
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Table 1.

PFAS concentrations in soil metadata collected from soil survey studies.

Date First author Total PFAS Conc
a Number of PFAS Max PFOA Conc Max PFOS Conc Location

ug/kg ug/kg ug/kg

2010/2013 Naile 0.3 - 3.9 12 3.4 1.7 Korea

2010 Li 141 - 237 15 47.5 10.4 China

2010/2019 Wang/Gao 0.7 - 22 9 2 20 China

2011 Pan <0.3 - 9.4 9 0.5 2.4 China

2011 Wang 0.1 - 8.5 12 2.8 0.9 China

2011 Wang <0.1 - 1.7 12 0.5 0.7 China

2012 Wang 1.3 - 11 12 0.9 9.4 China

2012 Strynar <0.5 - 150 13 32 10 Multiple

2012 Llorca <0.1 - 5.8
18

1.5 5.4 Tierra Del Fuego & 
Antarctica

2013 Wang <0.1 - 1.8 22 0.3 0.4 China

2013 Meng <0.1 - 4.1 16 0.2 0.2 China

2014 Kim <0.05 - 1.6 2 0.7 0.9 Korea

2014 Tan <0.1 - 1.8 16 0.3 0.1 Nepal

2015 Xiao 6 - 135 2 28 126 United States

2014/2015 Shan/Jin 0.7 - 28.8 11 9 0.3 China

2015 Meng 0.04 - 3.6 13 2.3 1.9 China

2016 Chen 0.3 - 5 17 25 2 China

2016 Rankin 0.05 - 15 32 3.4 3.1 Multiple

2016 NH DES <0.5 - 71 12 33 59 United States

2016 Zhang 0.1 - 4 21 4.2 2.7 China

2017 Choi <0.05 - 3.6 2 1.8 2.7 Korea

2017 Liu 1.9 -126 12 123.6 2.7 China

2018 Meng 3 - 64 12 5 4.2 China

2018 Scher 1.3 - 30 7 3 12 United States

2018 Kikuchi <0.02 - 20 28 0.6 1.7 Sweden

2018 HWG <0.2 - 5.1 6 0.5 3.1 United States

2018 NEA 0.4 - 174 17 3.3 162 Norway

2018 Dalahmeh 1.7 - 7.9 26 0.9 3 Uganda

2018 Wang <0.001 - 0.01 2 0.01 0.003 China

2019 Zhu 0.5 - 35 17 4.9 9.7 United States

2019 Cao 0.6 - 5.1 17 2.7 0.1 China

2019 Groffen 0.8 - 53 15 3.7 37 Belgium

2019 Kim 0.1 - 13.9 17 2.1 0.7 Korea

2019 Li NR - 64.7 21 16.6 2.8 China
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Date First author Total PFAS Conc
a Number of PFAS Max PFOA Conc Max PFOS Conc Location

ug/kg ug/kg ug/kg

2019 Seo 2.5 - 8.8 19 0.3 1 Korea

2019 Skaar <0.05 - 7.1 14 0.01 7.1 Norway

2019 Zhang 4.2 - 49 12 23 1.2 China

Overall <0.001 - 237

maximum 123.6 162

minimum 0.01 0.003

median 2.7 2.7

Note: < means below quantitative detection limit

a
Reported by the original study authors
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Table 2.

PFAS concentrations in soil metadata for primary-source contaminated sites

Date First author Type of Site Max PFOA Conc Max PFOS Conc Locations

ug/kg ug/kg

2008 SFT FTA 141 8,924 4 sites in Norway

2010 Wang PFAS manufacturing 50 2,583 1 site in China

2011 Karrman FTA 12 1,905 1 airport in Norway

2012 Martinsen FTA - 17,400 4 airports in Norway

2013/2014 Houtz/McGuire FTA 11,484 36,534 1 AFB in U.S.

2014 Bergstrom FTA 2 486 3 FTAs in Sweden

2014/2015 Shan/Jin PFAS industrial park 5.3 0.4 1 site in China

2015 Filipovic FTA 219 8,520 1 AFB in Sweden

2016 Anderson AFFF Source Zones 58 9,700 10 military installations in the U.S.

2017 Baduel FTA 40 4,000 1 site in Australia

2017 Mejia-Avendaño Crash site 29 9.3 1 site in Canada

2017 CRCCARE FTA 3,200 460,000 unspecified number of sites in Australia

2017/2019 Hale/Hoisaeter FTA 75 3,000 1 airport in Norway

2017-2019 ASA Airport 6,400 84,200 6 airports in Australia

2018 Casson FTA 90 10,000 1 site in Australia

2019 Braunig FTA 55 13,400 2 airports in Australia

2019 Dauchy FTA 514 55,197 1 site not specified

2019 Groffen PFAS manufacturing 114 7,800 1 site in Belgium

2019 Skaar FTA - 1,055 1 airport in Norway

2019 This study AFFF Source Zones 50,000 373,000 many military installations in the U.S.

Overall median 83 8,722

FTA = fire training area
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Table 3.

PFAS concentrations in soil metadata for secondary-source contaminated sites

Date First author Location Max PFOA 
Conc

Max PFOS 
Conc

Source

ug/kg ug/kg

2007/2019 Davis/Zhu U.S. 470 - adjacent to PFAS manufacturing plant

2008 Wilhelm Germany 910 5,500 land application of industrial-waste derived amendment

2010 Wang China 34 189 adjacent to PFAS manufacuring plant

2010 Washington U.S. 2,531 1,409 land application of PFAS industrial waste-impacted 
municipal biosolids

2011 Sepulvado U.S. 38 483 land application of municipal biosolids

2017 Gottschall Canada 0.8 0.4 land application of municipal biosolids

2017 MEDEP U.S. 23.6 878 land application of paper-mill residuals and municipal 
biosolids

2017 Braunig Australia 7 1,692 use of contaminated groundwater for irrigation

2017 Liu China 623 7 use of contaminated surface water for irrigation

Overall median 38 680.5
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