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Recent Food and Drug Administration (FDA) approval of the first autonomous, diagnostic 

system1 heralds the arrival of clinical machine learning (ML). ML is a promising form of 

artificial intelligence best suited to, but also necessary for, the predictive analytics required 

for clinical decision-making.2,3 ML focuses on the development of computer systems that 

can learn from big data (or data that is of such volume, collection velocity or complexity that 

it is difficult or impossible to process using traditional methods4), identify patterns and make 

decisions with minimal human intervention.5 As ML tools begin to be designed and targeted 

for clinical anesthesia applications, there will be growing pressure for anesthesiologists to 

clarify when and how clinicians add value, versus when ML can (and perhaps should) 

augment clinical practice and clinical decision-making (Table).6

For over half a century, progressively shorter acting drugs and improvements in patient 

monitoring technologies fueled interest in anesthesia delivery as a target for automation.7 

ML guided anesthesia has already been piloted, including models of remifentanil and 

propofol interactions with processed electroencephalograms.8 In addition to a beneficial 

impact on quality, cost, and access to care, ML applications for clinical anesthesia will raise 

unique value-based, ethical challenges, and disrupt established workflow processes, raising 

safety concerns.9 Premature ML implementation causes patient harm.10 Clinical 

anesthesiologists are uniquely positioned to consider such systems as they are developed and 

implemented, working to promote the benefits of ML and reduce potential harms. As 

pioneers of patient safety, now is the time to consider how anesthesiologists should interact 

with, define our relationship to, and guide implementation of novel ML systems.

Significant private investment,11 strong research interest, and compatibility with social goals 

of health care cost reduction all drive continued advancement of ML into healthcare, 

including clinical anesthesia.12 Healthcare collaborations such as between Google’s 

DeepMind and the United Kingdom’s National Health Service, Paige AI and Memorial 

Sloan Kettering and the International Business Machines (IBM) Corporation’s Watson 
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Oncology and MD Anderson, have all raised ethical concerns. Despite these challenges, 

global investment in ML for healthcare is predicted to reach $217 billion by 2028.11 To 

match the speed of development, both ethical and practical guidance for clinical ML 

implementation needs to be conducted and provided contemporaneously.

As anesthesiologists approach clinical ML implementation, four areas are important to 

consider: 1) impact on workflow, 2) skill atrophy, 3) accountability, and 4) clinician 

autonomy.

Impact on Workflow

First, the impact of ML on anesthesia clinical workflow and work processes requires 

extensive examination. Significant safety and judgment failures have already occurred 

around implementation of ML systems or output for work processes in non-healthcare 

contexts. Recent Boeing 737 Max and Tesla Model S crashes are attributable to inadequate 

assessment of the impact of automated systems on workflow and work processes. In both 

cases, operators’ lack of familiarity with the automated piloting systems and using them 

outside their intended design, led to catastrophic adverse events.13,14 These failures have 

raised awareness about the potential for ML approaches to cause negative disruptive change 

within medicine.9 These include the potential for similar failures, particularly around 

clinician and patient interactions with ML systems, and with inadequate in situ assessment 

of the ML impact on operators and work processes, leading to patient harm.10 The dynamic 

and high-stakes clinical environment within anesthesia workflow is vulnerable.

Skill Atrophy

Second, as new technologies replace manual or cognitive tasks, consequent atrophy or loss 

of those skills occurs. In anesthesia, where a patient’s life may depend on an 

anesthesiologist’s ability to re-take control from an automated system, maintaining some 

clinical and cognitive skill will be necessary. Anesthesiologists’ over-reliance on automated 

anesthesia machine ‘self-check’ systems, has led to patient harm when the automated check 

failed to identify circuit obstruction.15 Which clinical skills are paramount and need to be 

protected from loss should be determined and prioritized.

Literature from non-healthcare, performance-based fields like aviation, recognize the 

growing challenges involved in maintaining critical emergency skills when operators are 

routinely functioning in progressively more automated contexts.16 Most concerning is that, 

after practicing in largely automated contexts, while pilots’ manual skills to fly by hand 

largely remain intact (with only moderate, operationally significant “rustiness”) fundamental 

cognitive skills atrophied significantly, including awareness of plane location, to reference 

charts, to configure the airplane anew after passing important way-points on a planned route, 

and to recognize and deal with instrument system failures when they arose.

Recommendations to address these problems all center on increasing pilots’ time practicing 

these skills, either through repeated simulations or through real-time practice.16 

Unfortunately, co-following or co-flying with an automated system appears to be ineffective 
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at preventing cognitive skill atrophy, with accumulating evidence of the difficulty in pilots 

maintaining thoughts focused on the activities of an automated system that seldom fails.16

Simulator training has proven valuable for training anesthesiologists in crisis resource 

management and later performance in non-simulated crises. However, simulation training to 

address ML implementation presents several challenges. The first is verisimilitude. For both 

pilots and clinicians, high fidelity simulator training is necessary to maximize the likelihood 

that simulation training will cognitively transfer to real environments.17 Such simulators are 

costly to construct, maintain, and operate, and provide no guarantee of skill transfer. Since 

the clinician-computer interactions and points of interface for clinical ML are still being 

established, simulators and simulations will be unable to depict high fidelity ML-clinician 

interactions until ML implementation is further established.

An additional, more salient, concern is that scenarios included in simulation training are 

based on problems that will likely be recognizable to, predictable to (and ultimately 

addressable by) increasingly complex ML systems. By definition, simulation scenarios are 

pre-identifiable as likely sources of clinical problems. The real problems anesthesiologists 

will face and be called to ‘”take over” during would be catastrophic unexpected events that 

may be difficult to train for without extensive direct clinical experience. This is similar to the 

performance differences seen between how military-trained or senior pilots were able to 

compensate for the errors with the Boeing 737 Max MCAS system, while junior, simulator-

trained pilots were not as easily able to.13 Analyses of Capt. Sullenberger’s landing of the 

Airbus A320 (U.S. Airways Flight 1549) in the Hudson also showed the importance of 

experience and judgment relative to how less experienced pilots handled the same situation 

in simulation.18

Collecting the necessary knowledge of ML-system failures in order to train clinicians for 

ML-related crisis training will take time. How much can be predicted from the aviation 

experience is unknown but, in abstraction, events like the 737 Max are already very valuable 

for identifying broad target areas. We should ensure clinician familiarity with ML systems 

prior to clinical deployments, rather than wait for failures to inform training.

If our field decides that maintenance of direct, hands-on patient experience is needed to 

maintain clinical competency and the ability to “take over,” how many hours, and what types 

of cases will need to be studied, as do implications for patient care (i.e. how to decide 

whether a patient receives ML-supported anesthesia or provider-only anesthesia). The 

aviation field has long recognized that maintenance of skills requires more than simply 

logging the legally mandated number of flight hours in clear skies. Facing challenging flight 

conditions is also needed.

Accountability

Third, increasing reliance on ML tools and patient ‘big data’ will impact the physician-

patient dyad that has constituted the ethical underpinning of the fiduciary caregiving 

relationship. This relationship is likely to even further shift into a relationship between 

patients and a learning healthcare system. Recent ethical concerns around ML applications 
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also indicate that applications in healthcare could raise accountability concerns.9 Designers 

of autonomous systems for healthcare, such as diabetic retinopathy screening, have 

expressed willingness to assume responsibility for a system’s output (since it is, after all, 

intended to function autonomously).1 Because of the potential need for rescuing 

interventions, it is unlikely that anesthetic delivery systems would ever function fully 

autonomously, without clinician supervision. However, what accountability, and therefore 

liability, lies with the anesthesiologist versus with the ML system needs to be established.

Clinician Autonomy

Fourth, the ongoing transition to systems-based anesthesia delivery, including broad 

adoption of electronic medical record systems (EMRs) and ongoing transition to a shift-

based work model, impacts clinician autonomy. ML application to clinical anesthesia has the 

potential to become the tipping point where a quantitative difference in autonomy becomes a 

qualitative problem. Whether due to ML exceptionalism (the belief that a result is inherently 

better because it was produced by a computer) or because the operating room environment 

has become too data-overwhelmed and clinicians too distracted, ML output may take on an 

authority never intended. As is already occurring with electronic medical records (EMRs), 

anesthesiologists may find themselves progressively drawn into a clinical workflow focused 

on data entry, addressing data output, and reacting to alarms generated by algorithms rather 

than focusing on the actual patient. It is already recognized as a problem in non-healthcare 

fields that a person disagreeing with an ML-recommended action is often required to furnish 

far more and better quality evidence to rebut the ML output than the data used to generate 

that the output. Such barriers to ML disagreement discourages workers questioning 

algorithmic output.6

Over the past 20 years, American healthcare has seen the rise of a non-clinical, executive 

class.19 What bedside clinicians are likely to most value in an ML tool, is unlikely to match 

what the non-clinician purchasers of ML tools are likely to value. While clinical guidance 

provided by EMRs and potentially ML systems may improve aspects of care by increasing 

compliance with evidence-based approaches, ML-driven alarms and guidance may also be 

used to control a clinician workforce in pursuit of optimizing re-imbursement driven 

performance metrics and cost impacts of care choices on financial returns.

Current Limitations to ML Implementation

Currently, there are still significant limitations to ML-based anesthesia delivery. Manual 

tasks fundamental to the delivery of anesthetic care, such as intubation and vascular access, 

are not yet easily replaced by machines.7 Capture of the necessary ‘big data’ on drug 

delivery and patient physiologic effects still needs to be established in order for ML-targeted 

drug delivery to improve on current pharmacokinetic and pharmacodynamics models.12 For 

clinical knowledge and decision support, with real-time access to current evidence based 

data, ML-systems are situated to recommend evidence-based clinical actions where data 

exists, with greater perspective than any individual clinician. However, such systems lack the 

ability to contextualize a clinical decision to the care of an individual patient. Currently, such 

systems are better deployed in support of clinician knowledge, rather than as clinician 
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replacement. Capture and analysis of available data is still only, at best, observational data, 

with all of the inherent limitations of observational study design. Exploration of novel trial 

designs to integrate research with medical practice and learning health systems are 

underway.20

Approaches to regulating ML for healthcare are emerging, though far slower than the 

technology is changing. In the United States, the FDA has recognized that their traditional 

paradigm of medical device regulation was not designed for adaptive artificial intelligence 

and machine learning technologies and is currently designing procedures to guide premarket 

review of proposed clinical ML applications.3 In concept, such review will evaluate that an 

ML application performs as intended, i.e. that the prediction the ML generates is accurate 

and any clinical action it undertakes or recommends, efficacious.1

The rising awareness of the need for access to a large, patient data ecosystem to fuel ML 

development is being balanced against patient data privacy concerns. With Europe as the 

vanguard, legal reforms on data protection and privacy are underway in many countries. For 

example, the European Union has adopted a General Data Protection Regulation (EU 

2016/679). Such reforms attempt to increase data subjects’ privacy options and introduce 

further controls on data uses. These regulations on access to data are covering not only data 

protection, but also the distribution of any benefits of the exploitation of personal data and 

the public acceptability of such exploitation (i.e the questions of whether patients have a 

stake in applications designed from their data and, such as with the Memorial Sloan 

Kettering-Paige AI, whether clinicians have intellectual property rights to their clinical 

interpretations of data (such as slide reads by pathologists) used to train ML applications).

These evolving regulatory approaches will address important safety concerns around ML 

accuracy, patient data privacy protections and data ownership. They will not address the 

workflow and human/ML interface challenges significant for the practice of anesthesia.

In the near future, clinicians will likely collaborate with and manage ML-systems that 

aggregate vast amounts of data, generate diagnostic and treatment recommendations, and 

assign confidence ratings to those recommendations. Systems have already been designed to 

leverage aggregate patient data for decision-making at the point of care. This integration 

expands the data to support clinical decisions beyond published studies or even raw data that 

could be available to an individual clinician. As ML’s influence on the practice of anesthesia 

approaches, we must thoughtfully and carefully examine how our field will address ML, 

what impacts we want ML tools to have on clinical anesthesia, what research on ML is 

needed, and how to anticipate and prevent potential harms to patients and clinicians.
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Glossary of Terms:

EMR Electronic Medical Record

Char and Burgart Page 5

Anesth Analg. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FDA Food and Drug Administration

IBM International Business Machines Corporation

ML Machine Learning
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Table.

Potential Benefits, challenges and current limitations to implementing Machine Learning (ML) into clinical 

anesthesia

Potential Benefits Potential Challenges Current Limitations

Reduce clinician cognitive load Clinical skill atrophy:
-Maintenance of emergency manual skills
- Maintenance of cognitive skills

ML cannot ‘contextualize’ to bedside care of 
individual patient

Reduction in costs of care
Increased access to care (e.g. remote care 
delivery)

Examination of impact on clinical work flow 
and work processes (ex. 737 Max) to prevent 
unintended safety events

Manual tasks (i.e. intubation, vascular access) not 
easily replaced by machine

Improved evidence supporting care 
recommendations, through ‘big data’ and 
real time analytics

Impact on clinician autonomy and clinician-
patient relationship

Access to necessary ‘big data’ still being 
established
Bias in data and analysis can have unintended 
negative consequences

Standardization of care (reduction in 
care variation between clinicians, clinical 
centers)

Accountability for ML output or clinical 
actions undertaken as a result of ML output

Emerging regulation:
-Access to Patient Data: privacy protections & 
data ownership
-Set standards to assess and evaluate ML 
accuracy
-Legal liability
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