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LETTER TO EDITOR

Comprehensive next-generation profiling of clonal
hematopoiesis in cancer patients using paired tumor-blood
sequencing for guiding personalized therapies

Dear Editor:
In this study, we report for the first time the landscape

and clinical relevance of clonal hematopoiesis (CH) in
Chinese cancer patients using next-generation sequenc-
ing (NGS) and emphasize the need for paired tumor-blood
sequencing to better inform clinical actions given the high
prevalence and largely nonrecurrent nature of CH muta-
tions.
CH is a common aging-associated process that involves

the accumulation of leukemia-associated somatic muta-
tions in hematopoietic stem cells, which can lead to clonal
expansion and predispose to hematologic malignancies.1–5
The broad use of NGS technology in detecting oncogenic
mutations has led to the growing recognition of CH-
associated mutations that are often present in the blood
and, as a consequence of infiltrating leukocytes, the tumor
tissue from patients with solid tumors.5–8 Therefore, it is
necessary to evaluate the incidence and clinical implica-
tions of CH as it could confound the results of tumor pro-
filing. However, the significance of CH in the Chinese pop-
ulation has not been examined.
Here, we performedNGS onmatched tumor-blood sam-

ples from 4,544 patients (median age at DNA sampling,
60 years [range: 4-91]; 55.5% males) with diverse solid
tumors (Table S1 and Figure 1A) using a targeted 425-gene
panel (GeneseeqPrime R©), which includes 44 hematologic
malignancy-associated genes (Table S2) in a CLIA- and
CAP-accredited laboratory (Nanjing Geneseeq Technology
Inc., China) from May 2017 to April 2019. CH was defined
as nonsynonymous mutations in which the blood variant
allele fraction (VAF) is ≥2× that in the respective tumor.5
A total of 1,749 CH variants in 237 genes were identi-

fied in 1,301 (28.6%) patients, of which 26% carried more
than oneCHmutations (Figure 1B andTable S3).While the
majority of CH mutations were nonrecurrent, a high fre-
quency of DNMT3A (35.8%), TET2 (13.2%), ASXL1 (3.8%),
and TP53 (3.7%) alterations were identified (Figure 1C).
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By contrast, two other commonly reported CH-associated
genes, JAK2 (0.8%) and SF3B1 (0.8%), were found at low
frequencies. Alterations in DNMT3A, TET2, and ASXL1
were largely disruptive (Figure 1C and Figure S1A-C). The
R882 hotspot accounted for 11.5% of DNMT3A mutations.
Previous reports of CH show almost exclusive R882H and
few incidence of R882C in DNMT3A.4,5 In our cohort, we
found a diverse array of R882 variants (Figure 1D). Notably,
we also found a high frequency of NOTCH1 alterations
(Figure 1C and Figure S1D), with∼60% reported in various
cancers (COSMIC database), 26% of whichwere associated
with hematologic malignancies.
Consistent with previous studies,4–6 we observed an

increased incidence of CHwith age overall (Figure 2A) and
across cancers (Figure S2). Different cancer types varied in
CH prevalence, which is likely attributable to differences
in age of disease onset (Figure S2). Interestingly, aging was
also associated with accumulation of CH (Figure 2B) and
increases inmutational frequencies of individual CHgenes
(Figure 2C). Consistent with their role as early genes in
hematologic disease,9 DNMT3A, TET2, ASXL1, and TP53
alterations were highly enriched in cases with multiple
CH mutations (Figure 2D). Comparisons of the younger
(<65 years) and older (≥65 years) populations revealed no
clear differences in the age-related C>T transitions10 (Fig-
ure 2E), but more frequent C> T transitions in the context
of GCC in older patients (Figure 2F).
CH incidence was slightly higher in males than females

(Table S1 and Figure S3A). Mutational analysis revealed
increased MED12 alterations and lower frequencies of
DNMT3A, NOTCH1, TP53, GNAS, ATM, and NF1 alter-
ations in females (Figure S3B), but no apparent differences
in mutational signatures between the sexes (Figure S3C
and D). Mutational frequencies also varied by cancer
types (Figure S4A). For instance,DNMT3Amutationswere
more common in lung and gastric cancers compared with
colorectal cancer. Differences in mutational signatures
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F IGURE 1 Distribution of CH variants across patientswith diverse solid tumor types. A, Distribution of cancer types in the study.
B, No. of CH alterations in each patient.C, Distribution of different types of mutations among the top 15 recurrent CH genes.D,DNMT3A R882
“hot-spot” mutations across various cancer types

(Figure S4B) might be attributable to the environmental
forces underlying different cancer types, such as tobacco
exposure, chemoradiotherapy, and viral infection.
CH-associated mutations were detected in the respec-

tive tumors (CH-ST) of 995 (76.5%) patients. Median VAF
was 3.11% in the blood compared with 0.37% in the tis-
sue (Figure 3A). High CH-ST VAFs were associated with
blood/leukocyte infiltration (Figure S5A). Note that 453
(25.9%) of CH-ST mutations were functionally annotated
using OncoKB as (likely) oncogenic. Importantly, we
detected two EGFR kinase domain mutations (V742I in
lung cancer and R776H in soft-tissue sarcoma), as well as a
KRASmutation (F156L) and a loss-of-functionmutation in
BRCA2 (Table S4). Tumor-specific mutations in both CH+

andCH− samples showed significant overlap inVAFswith
those of CH-ST (Figure S5B).
Finally, we evaluated the associations between CH

and immunotherapy-related markers. The proportion of
microsatellite instability-high patients was comparable
between CH+ and CH− patients (2.1% vs 2.4%, P= .65, chi-
square test; Figure 3B). Using a cutoff of 10 mutations/Mb,
a higher proportion of CH+ patients had high tumormuta-
tional burden (TMB; 25.7% vs. 22.4%, P = .02, chi-square
test; Figure 3C), which can be explained at least in part
by an aging-associated increase in TMB (Student’s t test,
P < .0001; Figure 3D) and/or improper counting of CH
variants. In an independent set of 175 patients with diverse
cancers,we showed that incorporatingCH filters improved
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F IGURE 2 Age-associated accumulation of CH.A, Age distributions of the entire cohort (N= 4544) with CH (CH+), with CHdetected
in solid tumor (CH-ST), and without CH-associated mutations in the blood (CH-). Note a positive correlation with age in the CH+ or CH-ST
population, and a negative correlation with age in the CH- population. B, Accumulation of CH mutations with age. The median age at DNA
sampling is 63, 66, and 72 for patients with one, two, andmore than twoCHmutations, respectively.C, Heatmap showing frequency distribution
of patients within each age group across the top 15 recurrent CH genes. D, Patients displaying accumulation of CH alterations were enriched
for DNMT3A, TET2, ASXL1, and TP53 mutations. E and F, Mutational signatures of (E) single base substitutions and (F) substitutions with
their nucleotide context are compared between different age groups. C > T transitions in the context of GCC are indicated by arrows

the correlation between panel- and exome-based TMB esti-
mation (Spearman ρ = 0.842 with CH filter vs. 0.822 with-
out; Figure 3E). TMB cut-off levels can vary from 7.4 to 20
mut/Mb across different assays and cancer types. Of the 29
(16.6%) patients with TMB in the range of 7–20 mut/Mb,
nine were CH-positive (Figure 3E).
Our study provides the first report onCHandCH-ST in a

large population of Chinese cancer patients. Our findings,
along with other recent work,5–8 show high prevalence of
CH and CH-ST variants that challenges the interpretation
of tumor-only sequencing results. Given its highly diverse
and nonrecurrent nature, it is essentially impractical to
generate an extensive database encompassing all relevant
CH variations. Consequently, sequencing of matched nor-
mal samples should be recommended in clinical practice,
particularly for selection of targeted therapies. We also

demonstrate for the first time that CH filtering is techni-
cally important for improving panel-based TMB estima-
tion. Further large-scale prospective studies should evalu-
ate the impact of CH filtering on immunotherapy outcome
prediction.
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according to the protocols approved by the ethics commit-
tee of each hospital.
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