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Abstract

A metric phylogenetic tree relating a collection of taxa induces weighted rooted triples and 

weighted quartets for all subsets of three and four taxa, respectively. New intertaxon distances are 

defined that can be calculated from these weights, and shown to exactly fit the same tree topology, 

but with edge weights rescaled by certain factors dependent on the associated split size. These 

distances are analogs for metric trees of similar ones recently introduced for topological trees that 

are based on induced unweighted rooted triples and quartets. The distances introduced here lead to 

new statistically consistent methods of inferring a metric species tree from a collection of 

topological gene trees generated under the multispecies coalescent model of incomplete lineage 

sorting. Simulations provide insight into their potential.

Keywords

Phylogenetic tree; Distance; Quartet; Multispecies coalescent; Consensus tree

1 Introduction

We introduce new intertaxon distances that are computed for taxa on an unrooted metric 

phylogenetic tree based on its displayed rooted triples or quartets. The distances depend 

upon the weights—the lengths of the unique internal edge—of the rooted triples or quartets. 

These distances differ from the original intertaxon distance on the metric tree, but exactly fit 

the tree topology, allowing standard distance methods to be used to recover the tree from 

knowledge of only its weighted rooted triples or quartets. If the rooted triple or quartet data 

are noisy, so that not all are correct, this distance can still be used to estimate the tree. While 

the tree estimate will have edge lengths estimating those on a remetrized tree, a simple 

adjustment gives estimates of the original edge lengths. Thus, these distances lead to new 

distance-based consensus 

methodsforobtainingalargemetrictreefromacollectionofweightedrootedtriplesor quartets. In 

particular, since the weights in coalescent units can be estimated from the distribution of 

topological gene trees under the standard model of incomplete lineage sorting, these 

distances can be used in new statistically consistent methods of metric species tree inference 

from topological gene trees.
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This final application is, in fact, our motivation for developing these distances. Statistical 

inference of a species tree under the multispecies coalescent (MSC) model of incomplete 

lineage sorting is a fundamental problem in current phylogenetic data analysis. For large 

datasets (many taxa, with sequences from many loci) that are increasingly common in 

empirical studies, the simultaneous inference of gene and species trees by Bayesian methods 

(Liu 2008; Heled and Drummond 2010) may require excessive computation time. Other 

methods proceed by first inferring gene trees for each locus, and then treating these as data 

for a second inference of the species tree, by focusing on summaries of the gene trees such 

as rooted triples, splits, or quartets (Liu et al. 2010; Vachaspati and Warnow 2015; Zhang et 

al. 2018).

This work continues a thread of developments initiated with several methods of this second 

sort introduced by Liu and collaborators (Liu et al. 2009; Liu and Yu 2011) for inferring a 

species tree from a collection of topological gene trees, either rooted or unrooted, under the 

MSC model. These methods, called STAR and NJst, proceed by first remetrizing the gene 

trees in a way that reflects only their topologies, next computing intertaxon distance matrices 

from each remetrized tree, and then averaging these matrices. Finally, a standard distance 

method such as Neighbor Joining is used to construct a species tree from this average 

distance. Despite this seemingly simplistic approach, the methods are statistically consistent 

under the MSC model (Allman et al. 2013, 2018) and show strong performance in 

simulation studies (Vachaspati and Warnow 2015). Moreover, they have been shown to be 

based on the underlying notions of displayed clades and splits on the gene trees (Allman et 

al. 2013, 2018). A third method, STEAC (Liu et al. 2009), took a similar averaging approach 

while retaining metric information on the gene trees. Its statistical consistency, however, 

requires assumptions on the relationship of gene tree metric units (substitution units) to 

species tree metric units (coalescent units) which may be difficult to justify.

Motivated by the STAR and NJst algorithms, the RTDC and QDC methods (Rhodes 2019) 

are based on similar distances defined from displayed topological rooted triples and quartets 

on gene trees and give statistically consistent inference of topological species trees from 

gene trees under the MSC. Although the use of the quartet and rooted triple distances results 

in a slower algorithm than the split or clade approaches of STAR and NJst, inference with 

them is more robust to missing taxa on gene trees and gives similar performance to, for 

instance, the highly developed quartet-based inference software ASTRAL. Moreover, the 

quartet distance has been generalized to the level-1 network setting (Allman et al. 2019b), 

playing a key role in the NANUQ method for fast inference of hybridization networks.

While the results presented here are analogs for metric trees of the results for topological 

trees of (Rhodes 2019), the remetrizations we develop are genuinely new, and not simple 

extensions of the topological quartet and rooted triple ones. Moreover, since the weights in 

coalescent units of rooted triples and quartets can be inferred from topological gene tree data 

under the MSC, one can estimate these new intertaxon distances on a species tree from 

topological gene trees alone. Thus, from the same gene tree data considered in (Rhodes 

2019), one obtains not only an estimate of the topology of the species tree, but a metric 

estimate as well. While the ability to infer a metric species tree is thus similar to STEACs, 

the approach introduced here crucially uses no metric gene tree information, and thus, its 
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consistency does not depend on any assumptions of the relationship of metric units on gene 

trees and the species tree. It is thus statistically consistent under much broader assumptions. 

Although the limited simulation results we present indicate that further work will be 

necessary to produce algorithms competitive with other approaches, these distances provide 

new tools for understanding how information on a species tree can be extracted from the 

gene trees.

Although we position this work in the context of species tree inference, the basic problem of 

inferring a tree from weighted quartets is not new. Characterizations of those weighted 

quartet systems that define a metric tree have been given for both binary (Dress and Erdős 

2003) and non-binary (Grünewald et al. 2008) trees, insettings where all weights are known 

exactly. The weighted quartet distanced fined here offers advantages in any setting where 

there may be noise in the weights, and an exact fit to a single tree is not possible. Then, any 

of the many methods of fitting a tree to a distance matrix may be applied for an approximate 

solution. The question of when exact subtree weights uniquely determine a tree was also 

investigated in (Pachter and Speyer 2004), though the notion of weight in that work is 

different than is used here.

The remainder of this paper proceeds as follows. After introducing notation and definitions 

in Sect. 2, the weighted rooted triple metrization and its associated distance are developed in 

Sect. 3. Section 4 develops the analogs for weighted quartets. Several algorithms using these 

distances for the inference of a tree from its displayed quartets or a collection of gene trees 

are formalized in Sect. 5. Finally, Sect. 6 presents some preliminary simulation results and 

discusses some of the practical issues of using these distance for inference.

Implementations of the quartet versions of the algorithms developed and used in this paper 

are available in the R package MSCquartets (Allman et al. 2019a).

2 Background and Notation

By a rooted topological phylogenetic tree Tr on X, we mean a rooted tree whose root has 

degree ≥ 2 and all other internal nodes have degree ≥ 3, with leaves bijectively labeled by 

elements of the finite taxon set X. Directing edges away from the root, we have an ancestral 

partial order on the nodes, with the root ancestral to all others.

A rooted metric phylogenetic tree (Tr, λr)on X is a rooted topological tree together with a 

function λr which assigns nonnegative weights, or edge lengths, to all edges of Tr. We use T 
and (T, λ) to denote the unrooted topological and metric species trees obtained from Tr and 

(Tr, λr) in the obvious way, by suppressing the root node if it has degree 2, and undirecting 

edges.

The most recent common ancestor of taxa x, y ∈ X on a rooted tree Tr is a the minimal node 

ancestral to both, denoted MRCA(x, y). By the descendants of a node v, denoted desc(v), we 

mean the subset of X labeling leaves that have v as an ancestor.

When considering the multispecies coalescent model (MSC) (Pamilo and Nei 1988), we 

denote its species tree parameter by (σr, λr). Edge lengths on a species tree are measured in 
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coalescent units, which are units of time (in generations) inversely scaled by population size, 

so that the rate of coalescence of two gene lineages in an edge (i.e., population) on the 

species tree is normalized to 1. Such a parameter determines a probability distribution on 

rooted and unrooted topological gene trees on X, which we denote as Tr or T. Under the 

MSC, non-binary topological gene trees have probability 0 even when the species tree is 

non-binary. Assuming one gene lineage is sampled for each taxon in X, the topological tree 

σr and the edge lengths λr(e) for all internal edges e on σr are identifiable from the 

distribution of rooted topological gene trees Tr, although lengths of pendant edges on σr are 

not. In fact, σr and λr(e) are identifiable for internal edges e even from the distribution of 

unrooted topological gene trees T when |X| ≥ 5. However, if |X| = 4, only the unrooted σ and 

its one internal edge length are identifiable (Allman et al. 2011).

A resolved rooted triple is a 3-taxon rooted tree, denoted by ab|c = ba|c where the taxa a, b 
form a clade. The unresolved rooted triple, a star tree on a, b, c is denoted abc. A rooted tree 

σr or Tr on X displays the rooted triples it induces on 3-taxon subsets of X. A weighted 
rooted triple is a pair of a rooted triple together with a weight, a nonnegative real number. 

We view the weight for a resolved rooted triple as a length for the single internal edge of the 

triple and allow a weight of zero only if the rooted triple is unresolved. A rooted triple ab|c is 

said to separate the pair a and c, as well as the pair b and c. An unresolved rooted triple does 

not separate any pairs of taxa on it. The set of rooted triples on X separating taxa a, b is 

denoted ℛT ab, and the subset of these rooted triples displayed on Tr by ℛT ab(Tr).

Similarly, a resolved quartet is a 4-taxon unrooted tree, denoted by ab|cd = ba|cd = ab|dc = 

ba|dc where the taxa a,b and c,d form cherries. The unresolved quartet, a star tree on a, b, c, 

d is denoted abcd. An unrooted tree σ or T displays the quartets it induces on 4-taxon 

subsets. A weighted quartet is a pair of a quartet together with a weight, a nonnegative real 

number. We view the weight for a resolved quartet as a length for the single internal edge of 

the quartet tree and only allow the weight 0 for the unresolved quartet. A quartet ab|cd is 

said to separate the taxon pair a and c, as well as the pairs a, d and b, c and b, d. An 

unresolved quartet does not separate any pairs of taxa on it. The set of quartets on X 
separating taxa a, b is denoted as Qab, and the subset of these quartets displayed on T by Q
ab(T).

Any metric tree (Tr, λr) or (T, λ) on X induces a metric dλ on X, using the sum of edge 

weights along paths between the taxa. As is well known, however, a metric d on X need not 

arise from such a weighting. If d = dλ for some λ on T, then we say d is a tree metric on T 
with weighting λ.

For nodes v and w on T, define Pv,w = {e1, e2,...,ek} to be the path from v to w on T. For a 

rooted tree Tr, we use the same notation for the set of edges which forms a path from v to w 
when undirected.

3 Weighted Rooted Triple Metrization of a Rooted Tree

Given a rooted metric tree, we introduce a remetrization of the tree, so that internal edge 

lengths become a product of their original lengths and an integer factor dependent on the 
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placement of the edge in the topological tree. Although this introduces no new information, 

the value of doing this, which will be developed in later section, is to enable an algorithmic 

approach to inferring a metric tree from its weighted rooted triples, even in the presence of 

noise. The key theoretical underpinning of this is Theorem 3.1 of this section.

Let (Tr, λr) be a rooted metric phylogenetic tree on X. For any vertex v on Tr, denote by n(v) 

the number of taxa in X which are not descendants of v. We remetrize Tr to obtain a new 

metric tree (T r, λr) as follows: First for each internal edge e = (u, v) with u the parent of v, let

λr(e) = λr(e) ⋅ n(v) . (1)

Then, assign pendant edge lengths in such a way that the tree becomes ultrametric (i.e., all 

root-to-leaf distance are equal). To do this, we choose any number M greater than the 

remetrized length of every path of internal edges from the root to any other internal vertex, 

and to a pendant edge e = (u, v), we assign length

λr(e) = M − ∑
e ∈ Pr, u

λr(e) > 0

The precise value of M will not matter in what follows, so we assume some choice has been 

made and fixed. We refer to this remetrization as the weighted rooted triple metrization, due 

to Theorem 3.1.

To further elucidate the need for a choice of M, for x, y ∈ X, let

fλr(x, y) = ∑
e ∈ Pr, MRCA(x, y)

λr(e) .

Then, −fλr (x, y) is the Gromov product (essentially the Farris transform) (Dress et al. 

2007)associated with dλr(x, y) = 2 M − fλr(x, y) . For x ≠ y, the Gromov product is 

independent of the choice of M, but carries all information on the topology of the tree and its 

internal edge lengths. However, for tree building, it is convenient to pass to a tree metric, 

which requires a choice of M. Nonetheless, the Gromov product and the tree metric are 

essentially interchangeable notions.

We now show the intertaxon distance dλr associated with the weighted rooted triple 

metrization can also be expressed in terms of information on rooted triple trees induced from 

Tr. For a fixed tree (Tr, λr) on X displaying a rooted triple xy|z, let w(xy|z) = wλr (xy|z) 

denote the length of the internal edge on the induced metric tree on x, y, z, which we call the 

weight of xy|z.

Theorem 3.1

Suppose a rooted metric phylogenetic tree (Tr, λr) is given the rooted triple remetrization, 

(T r, λr). Then, for all x, y ∈ X, x ≠ y,
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dλr(x, y) = 2 M − ∑
xy ∣ z on Tr

wλr(xy ∣ z) ,

where the sum is over all z ∈ X such that xy|z is displayed on Tr.

Before proving this theorem in full generality, we illustrate it with examples of caterpillar 

and balanced trees.

Example 3.2—Consider a binary rooted caterpillar tree (Tr, λr) on N taxa

(…(((a1, a2):λN − 2, a3):λN − 3, a4), …, aN − 1):λ1, aN)

with the internal edges of weight λ1, λ2,...,λN−2 from the root toward the cherry. Under the 

rooted triple metrization, for each ai, aj, 1 ≤ i < j ≤ N,

fλr ai, aj = ∑
e = (v, w) ∈ Pr, MRCA ai, aj

λr(e) ⋅ n(w)

= λ1 + 2λ2 + ⋯ + (N − j)λN − j.

Also,

∑
aiaj ∣ b on Tr

w aiaj ∣ b = λN − j + λN − j + λN − (j + 1) + ⋯

+ λN − j + λN − (j + 1) + ⋯ + λ1
= λ1 + 2λ2 + ⋯ + (N − j)λN − j,

where the terms arise from considering, in order, b = aj+1, aj+2,...,a1. Thus, 

fλr(ai, aj) = ∑aiaj ∣ b on Trw(aiaj ∣ b) as Theorem 3.1 shows more generally.

Example 3.3—Let N = 2m and Tr be a binary rooted balanced tree

(…((a1, a2), (a3, a4)), …, ((aN − 3, aN − 2), (aN − 1, aN))…)

on N taxa. Suppose Tr is given an equidistant metric λr where as one moves from the root 

toward any leaf, the internal edge weights are in order λ1, λ2,...,λm−1. Then, edge lengths 

for T r, λr  are

λ1 = λ1
N
2 , λ2 = λ2

3N
4 , λ3 = λ3

7N
8 , ....

Also, if the MRCA(ai, aj) is the child vertex of an edge of length λk, then
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fλr ai, aj = ∑
e = (v, w) ∈ Pr, MRCA ai, aj

λr(e) ⋅ n(w)

= N
2 λ1 + 3N

4 λ2 + ⋯ + N 1 − 1
2k λk .

But also

∑
aiaj ∣ b on Tr

w aiaj ∣ b = λk + ⋯ + λ1 + ⋯ + λk + ⋯ + λ1
N
2 times

+ λk + ⋯ + λ2 + ⋯ + λk + ⋯ + λ2
N
4 times

+ ⋯ + λk + ⋯ + λk
N
2k times

= N
2 λ1 + N

2 + N
4 λ2 + ⋯

+ N
2 + N

4 + ⋯ + N
2k λk .

Then, fl (ai, aj) = Σaiaj|b on Tr w(aiaj\b) as Theorem 3.1 demonstrates more generally.

Proof of Theorem 3.1—With v = MRCA(x, y) let r = v0, v1, v2,...,vn = v be the ordered 

nodes on the path on Tr from the root r to v, as shown in Fig. 1. Let

ki = |desc vi − 1 | − |desc vi |,

the drop in number of descendants from vi−1 to vi. For edge ei = (vi−1, vi), let λi = λ(ei). 

Then,

∑
xy ∣ z on Tr

wλr(xy ∣ z) = λnkn + λn + λn − 1 kn − 1 + ⋯

+ λn + λn − 1 + ⋯ + λ1 k1 .
(2)

For instance, the term λnkn on the right side arises because, as can be seen in Fig. 1, there 

are kn rooted triple trees xy|z, one for each z on the subtree Kn, whose internal edge length is 

λn. While Fig. 1 depicts no polytomies at the vi, the formula is valid even if polytomies are 

present.

Rearranging Eq. (2) gives

∑
xy ∣ z on Tr

w(xy ∣ z) = λn kn + ⋯ + k1 + λn − 1 kn − 1 + ⋯ + k1 + ⋯ + λ1k1

= λn ⋅ n vn + λn − 1 ⋅ n vn − 1 + ⋯ + λ1 ⋅ n v1
= fλr(x, y) .
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Then, by definition of dλ(x, y), we have

dλr(x, y) = 2 M − fλr(x, y) = 2 M − ∑
xy ∣ z on Tr

w(xy ∣ z) ,

as claimed.

4 Weighted Quartet Metrization of an Unrooted Tree

For an unrooted metric tree, we define a remetrization similar to that of the last section, 

using weighted quartets.

Let (T, λ) be an unrooted metric tree on taxa X with λ(e) the length of edge e. Each edge e 
of T determines a split (bipartition) of X, X =Me ⌴ Ne, according to the taxa on the 

connected components of the graph resulting from deleting e. We remetrize T by assigning 

to each internal edge e length

λ(e) = |Me| − 1 |Ne| − 1 λ(e),

and to pendant edges e length λ(e) = 1. This gives a new metric tree(T, λ) which we refer to 

as having the weighted quartet metrization, due to Theorem 4.2. The distance between x and 

y on the remetrized tree is

dλ(x, y) = 2 + ∑
e ∈ Px, y

|Me| − 1 |Ne| − 1 λ(e) .

We will show this intertaxon distance can also be expressed in terms of information from 

quartet trees induced from T. As a first step, for a quartet Q, let E(Q) denote the set of edges 

on the path in T which induces the internal edge of the quartet tree, and N(e; x, y) be the 

number of quartets Q ∈ Qx,y, that is, quartets separating x, y, for which e ∈ E(Q). Then,

N(e; x, y) = ∑
Q ∈ Qx, y
e ∈ E(Q)

1 .
(3)

Lemma 4.1

Let T be an unrooted metric phylogenetic tree on taxa X. Then, for all x, y ∈ X, x ≠ y, and 
internal edges e ∈ Px,y

N(e; x, y) = |Me| − 1 |Ne| − 1 (4)
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Proof—Let Px,y = {e1,...,en+1} and Mi|Ni be the split on T associated with ei. If the path 

from x to y contains no polytomies, from Fig. 2, we see by Eq. (3) that if ki denotes the 

number of taxa on the subtree Ki, then

N e2; x, y = k1k2 + k1k3 + ⋯ + k1kn = k1 k2 + k3 + ⋯kn
N e3; x, y = k1k3 + ⋯ + k1kn + k2k3 + + ⋯ + k2kn

= k1 + k2 k3 + ⋯ + kn ,

and more generally

N ei; x, y = ∑
j = 1

i
kj ∑

j = i + 1

k + 1
kj = |Mei| − 1 |Nei| − 1 ,

as claimed. If there are polytomies along the path from x to y, one readily sees the same 

formula applies. □

For a fixed tree (T, λ) on X displaying a quartet Q = xy|zv, let w(Q) = wλ(Q) denote the 

length of the internal edge on the induced metric tree on x, y, z, v, which we call the weight 
of Q.

Theorem 4.2

Let (T, λ) be an unrooted, binary metric tree on X with x, y ∈ X. Then

dλ(x, y) = 2 + ∑
Q ∈ Qx, y

w(Q) .

Proof—By definition of w(Q), we have w(Q) = Σe∈E(Q) λ(e). Then,

2 + ∑
Q ∈ Qx, y

w(Q) = 2 + ∑
Q ∈ Qx, y

∑
e ∈ E(Q)

λ(e)

= 2 + ∑
e ∈ Px, y

λ(e) ∑
Q ∈ Qx, y
e ∈ E(Q)

1

= 2 + ∑
e ∈ Px, y

λ(e)N(e; x, y) by equation (3),

= 2 + ∑
e ∈ Px, y

λ(e) |Me| − 1 |Ne| − 1 by Lemma (4.1),

= dλ(x, y) .

Example 4.3—The unrooted 8-taxon caterpillar tree

(T , l) = (…(((a1, a2):λ1, a3):λ2, a4), …, a6):λ5, a7), a8),

shown in Fig. 3, when remetrized with the quartet metrization λ has internal edges of weight

(1 ⋅ 5)λ1, (2 ⋅ 4)λ2, (3 ⋅ 3)λ3, (4 ⋅ 2)λ4, (5 ⋅ 1)λ5,
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and pendant edges of length 1.

Let x = a3 and y = a6. Then, we have

dλ a3, a6 = 2 + (2 ⋅ 4)λ2 + (3 ⋅ 3)λ3 + (4 ⋅ 2)λ4 .

The 13 quartet trees on T separating a3 and a6 are shown in Fig. 4, so

∑
Q ∈ Qa3, a6

w(Q) = 2 ⋅ λ2 + 1 ⋅ λ3 + 2 ⋅ λ4 + 2 ⋅ λ2 + λ3 + 2 ⋅ λ3 + λ4

+ 4 ⋅ λ2 + λ3 + λ4
= (2 ⋅ 4)λ2 + (3 ⋅ 3)λ3 + (4 ⋅ 2)λ4
= dλ a3, a6 ,

as Theorem 4.2 states.

Example 4.4—Consider an unrooted balanced tree

(((a1, a2):λ1, (a3, a4):λ2):λ3, ((a5, a6):λ4, (a7, a8):λ5))

on 8 taxa as shown in Fig. 5. After remetrization, we have internal edges of weight

(1 ⋅ 5)λ1, (1 ⋅ 5)λ2, (3 ⋅ 3)λ3, (1 ⋅ 5)λ4, (1 ⋅ 5)λ5 .

Suppose x = a3 and y = a6. Then,

dλ a3, a6 = (1 ⋅ 5)λ2 + (3 ⋅ 3)λ3 + (1 ⋅ 5)λ4 .

On the other hand, by listing the 13 quartet trees separating a3 and a6, we find:

∑
Q ∈ Qa3, a6

w(Q) = 2 ⋅ λ2 + 4 ⋅ λ3 + 2 ⋅ λ4 + 2 ⋅ λ2 + λ3 + 2 ⋅ λ3 + λ4

+ 1 ⋅ λ2 + λ3 + λ4
= (2 + 2 + 1)λ2 + (4 + 2 + 2 + 1)λ3 + (1 + 2 + 1)λ4,

which is equal to dλ (a3, a6).

5 Weighted Quartet Distance Supertree and Consensus Algorithms

Since, by Theorems 3.1 and 4.2, the pairwise distances between taxa on trees given the 

rooted triple or quartet remetrizations of the previous sections can be computed from 

knowing only the weighted rooted triples or weighted quartets displayed on the original tree, 

they lead to new methods of inferring a large metric tree from that information.

After computing pairwise distances from weighted rooted triples or quartets using the 

formulas of Theorems 3.1 or 4.2, a standard distance-based tree construction algorithm can 
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be used to build the remetrized tree. Then, the individual internal edge lengths can be 

adjusted to remove the multiplier arising from the tree topology in the remetrization. If the 

tree construction method is robust to some noise, then the presence of a sufficiently small 

number of erroneous quartets, or sufficiently small errors in the weights, should still allow 

for construction of an approximation to the original metric tree, with pendant edges weights 

set to 1.

5.1 Inferring a Tree from Displayed Weighted Quartets

In the quartet case, we present this as a formal algorithm. Let ℳ denote any method of 

constructing a metric tree from pairwise distances between taxa. For example, for ℳ, one 

might choose Neighbor Joining (NJ) (Studier and Keppler 1988) or FastME (Lefort et al. 

2015).

Algorithm 5.1—(WQDS/ℳ) Weighted Quartet Distance Supertree with method ℳ

Input: A collection Q of weighted quartets on taxa in X

1. For each pair x, y ∈ X of taxa, x ≠ y, with Qx,y ⊂ Q the subset of weighted 

quartets separating x and y, define the distance

dλ(x, y) = 2 + ∑
Q ∈ Qx, y

w(Q) .

2. Use the distance method ℳ to build an unrooted metric tree (T, λ) from dλ.

3. For each internal edge e on T with associated split Me|Ne, let

λ(e) = λ(e)
|Me| − 1 |Ne| − 1 .

For pendant edges e, let λ(e) = 1.

Output: An unrooted metric tree (T, λ) on X.

The first step of this algorithm, when applied to a set composed of one weighted quartet per 

choice of 4 taxa in X, has running time O(|X|4): One must consider 
|X|
4  quartets, each of 

which contributes to 4 of the 
|X|
2  sums in that step. If ℳ is NJ, the second step requires time 

O(|X|3) to obtain a metric tree. By traversing the edges of the tree once, one can compute the 

Me, Ne and adjust the edge lengths as in step 3, for an additional time of O(|X|). Thus, the 

entire algorithm is accomplished in time O(|X|4).

For WQDS to be used, its input of weighted quartet trees must first be obtained. For one 

genetic locus one might, for example, infer all metric quartet trees on X by standard 

phylogenetic methods and use the resulting weighted quartets. However, as direct inference 

of large trees for one locus is already well established and relatively quick, and older quartet 

methods for this problem are no longer in use, we do not further explore that application. 
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Instead, we consider a problem of greater current interest: inferring a species tree from a 

collection of gene trees.

5.2 Inferring a Species Tree from Gene Trees

The standard model for the generation of gene trees from a fixed metric species tree is the 

multispecies coalescent model (MSC) (Pamilo and Nei 1988). The species tree, denoted by 

σr, is rooted with edge weights in coalescent units. Coalescent units are obtained from more 

biologically natural units by inversely scaling the number of generations the edge represents, 

by the population size, as these cannot be separately identified under the MSC. If the 

population size is a constant N and the edge represents t generations, the edge weight is 

simply t/N. If the population varies with time s ∈ [0, t] along the edge, then the weight is

∫0
t 1
N(s)ds .

Under the MSC with one sampled gene lineage per taxon, if the species tree σr displays a 

quartet ab|cd with weight x (the length of the induced quartet tree’s internal edge in 

coalescent units), then the probabilities that a gene tree will display each of the three 

resolved quartet topologies on these taxa are (Allman et al. 2011)

pab ∣ cd = 1 − 2
3exp( − x), pac ∣ bd = 1

3exp( − x), pad ∣ bc = 1
3exp( − x) .

If the rooted triple ab|c with weight x is displayed on σr, then the same formulas give 

probabilities of a gene tree displaying rooted triples ab|c, ac|b, and bc|a respectively (Pamilo 

and Nei 1988). In particular, since x > 0, the quartet or rooted triple with the highest 

probability of being displayed on a gene tree is the one displayed on the species tree.

This suggests the following algorithm for inferring an unrooted metric species tree from a 

collection of gene trees under the MSC.

Algorithm 5.2—(WQDC/ℳ) Weighted Quartet Distance Consensus with method ℳ

Input: A collection of n topological gene trees on taxa X

1. For each subset of four taxa x, y, z, w ∈ X, determine the counts of the quartets 

xy|zw, xz|yw, and xw|yz displayed on the gene trees.

2. For each subset of four taxa x, y, z, w ∈ X, choose the dominant (i.e., most 

frequent) quartet as the estimated quartet topology. In the case of a tie, choose 

from the most frequent uniformly at random. With ndom the number of gene trees 

displaying the dominant quartet on x, y, z, w, solve the equation

1 − 2
3e−x =

ndom
n

to find x as the estimated weight of the dominant quartet tree.
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3. Apply WQDS/ℳ to the set of 
n
4  estimated weighted dominant quartets.

Output: An unrooted metric tree on X

As discussed in Rhodes (2019), step (1)(a) can be accomplished in time O(|X|4n), with step 

(2) requiring only time O(|X|4). Combined with the computational time for WQDS/ℳ for ℳ
=NJ shown earlier, the total time is O(|X|4n). Thus, the most time intensive step in the 

algorithm is tallying the displayed quartets.

Let us say a distance method M of constructing a metric tree from pairwise distances is well 
behaved if (1) when applied to a tree metric returns the unique tree it fits, and (2) is 

continuous at all tree metrics. The second requirement means that a sufficiently small 

perturbation in a distance table fitting a binary tree will result in an output of the same 

binary tree topology, with only small perturbations in the edge weights. Both NJ and 

Minimum Evolution (ME) are well behaved, though in practice, the heuristic FastME is 

often used in place of ME.

Theorem 5.3—Let ℳ be any well-behaved distance method for tree building. Under the 
MSC model with one sampled lineage per taxon per gene, on a binary rooted metric species 
tree (σr, λr), the output of the WQDC/ℳ algorithm is a statistically consistent estimator of 
both the unrooted topological tree σ and the internal edge lengths λ.

Proof: Consider a collection of n gene trees generated under the MSC on (σr, λr). Then, for 

each choice of four taxa x, y, z, w, by the law of large numbers as n → ∞ the probability 

that the dominant quartet topology matches the quartet displayed on the species tree → 1. 

Similarly, for any choice of ϵ > 0, the probability that the estimated weight x is within ϵ of 

the quartet weight on the species tree also → 1. Since there are a finite number of sets of 4 

taxa, as n → ∞, the probability that all dominant quartet topologies match that on the 

species tree and all weights are within ϵ of the true value also → 1.

Thus, for any choice of ϵ > 0, with probability → 1 as n → ∞ the computed pairwise 

quartet distances will be within ϵ of the true values on the species tree with the quartet 

remetrization. Since ℳ is well behaved, with probability → 1, it will return the unrooted 

topology of σ, with internal edge lengths differing from true remetrized values by arbitrarily 

small amounts. Adjusting the lengths of the internal edges to estimate the original species 

tree edge lengths involves dividing by a number ≥ 1, so as n → ∞, these estimates can also 

be made within ϵ of the true values with probability 1. □

It is actually not necessary that all taxa in X are on all gene trees for statistical consistency. 

As was done in (Rhodes 2019) for the method QDC, one can relax that condition as long as 

(1) the pattern of missingness of taxa is independent of the gene tree topology, and (2) as the 

total number of gene trees goes to infinity, so does the number on which each set of 4 taxa 

appears.

Note that WQDC/ℳ as presented above does not allow for inference of pendant edge 

weights on σ. However, if input gene trees have at least 2 samples per taxon, one can infer 
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those as well, by simply considering an extended species tree obtained by appending two 

edges of length 0 to each leaf. Similar modifications allow for more samples per taxon.

Remark 5.4: For Weighted Rooted Triple Distance Supertree with method ℳ (WRTDS/ℳ), 

one replaces the formulas in steps (1) and (3) of Algorithm 5.2 with similar one arising from 

Theorem 3.1 and Eq. (1). Note that ℳ can now be chosen to assume ultrametricity of the 

distance (e.g., UPGMA), since dl  approximates an ultrametric tree metric. If such an ℳ is 

used, then a rooted tree will be returned, and an estimate of both the rooted topology and all 

its internal edges will be inferred.

Weighted Rooted Triple Distance Consensus with method ℳ (denoted WRTDC/ℳ) is given 

by modifying Algorithm 5.2 to count displayed rooted triples and use WRTDS/ℳ.

A consistency result for WRTDC/ℳ can be shown similarly to Theorem 5.3.

Remark 5.5: In applying WQDC/ℳ to data, there is one serious practical issue that may 

need to be addressed. In a finite sample of gene trees, one may find that the dominant quartet 

for a set of 4 taxa is displayed on every gene tree. Then, solving

1 − 2
3e−x = 1

leads to an estimated weight of ∞ for that quartet. While this correctly indicates the weight 

should be large, it does not give the finite estimate that is typically needed for applying a tree 

building method.

Since the MSC does not give expected counts of 100% for one quartet topology for any 

finite edge weight, this situation can be interpreted as a sign of an insufficient number of 

gene trees in the data set to properly estimate the weight. One approach to addressing this is 

to treat counts of (n, 0, 0) for the 3 topologies on a given set of 4 taxa as having dominant 

count n out of a total of n + 1. That is, we reduce the ratio to slightly less than 1. This 

modification can be viewed as use of a MAP estimate based on a choice of a particular 

exponential prior for branch lengths (see Sayyari and Mirarab 2016). However, there is no 

particular motivation for choosing the particular exponential parameter, so the modification 

remains somewhat ad hoc.

This adjustment will result in all infinite weights being replaced by the same finite number. 

But note that such weights need not result in a good approximation to the desired distance 

between taxa. A better approach, though one that may not be feasible given practical data 

collection constraints, is simply to obtain more gene trees so this situation does not occur or 

restrict to collections of taxa that are closely enough related so that all sets of 4 taxa show 

some quartet discordance across the gene trees.

As will be shown through simulations in the next section, WQDC/ℳ may not perform as 

well as other methods for inferring the topology of the species tree. The reason for this 

appears to be our inability to obtain accurate estimates of the weight of quartets when they 

are displayed on all, or almost all, gene trees. While the heuristic described above gives us a 
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finite estimate which is necessary to have the finite distances between taxa that the algorithm 

requires, it is unlikely to be very accurate. Even if a handful of gene trees display a quartet 

other than the dominant one, the estimate of the weight is often not very accurate.

This is not an unusual situation as it often occurs when four taxa are widely placed on a 

species tree and can occur for taxa whose displayed quartet has only a single edge of the 

species tree as its internal edge, providing that edge is long in coalescent units. However, 

simulations suggested to us that a tree inferred by WQDC/ℳ often did correctly display 

many correct splits, and those with long edge lengths tended to be correct. That observation 

is the basis for the following algorithm. It proceeds by using WQDC/ℳ to pick only one 

split on the species tree with the largest weight, then dividing the taxa into two groups by 

this split, and recursively building subtrees on these groups. This process seeks to divide the 

taxa into smaller groups that will be closer together, so that the poor behavior caused by long 

edges will not be present in the later stages of the recursion. While it cannot be expected to 

improve edge length estimates of longer edges, the hope is that the shorter lengths will be 

estimated well.

Algorithm 5.6—(Recursive WQDC/ℳ) Recursive Weighted Quartet Distance Consensus 

with method ℳ

Input: A collection of n topological gene trees on taxa X, and positive number L

1. For each subset of four taxa x, y, z, w ∈ X, Determine the counts of the quartets 

xy|zw, xz|yw, and xw|yz displayed on the gene trees.

2. If X has 3 or fewer taxa, return the unique unrooted tree on X with all edge 

lengths 1. Otherwise,

(a) Apply Steps (2) and (3) of WQDC/ℳ to the quartet counts obtain an 

estimated metric species tree τ.

(b) If all internal edge weights on τ are less than L, return τ.

(c) Let X0|X1 be the split of X associated with the longest edge of τ, and l
X0|X1 its length. In the case of a tie, choose the edge uniformly at 

random from the longest edges.

(d) Create taxon sets X0′ = X0 ∪ y1  and X1′ = X1 ∪ y0 , where y0, y1 

represent “composite taxa” for the split sets X0, X1. For each choice of 

4 taxa in Xi′ compute quartet counts as follows: For quartets containing 

y1−i, sum over x ∈ X1−i the counts from Step (1) containing x in place 

of y1−i. For quartets containing only elements in Xi, retain the quartet 

counts from Step (1).

(e) Recursively apply Step (2) to the quartet counts for X0′  and X1′  to obtain 

metric trees τ0, τ1 on X0′ , X1′ .
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(f) Form a metric tree σ by identifying leaf y1 on τ0 with y0 on τ1, 

suppressing that node, and assigning the conjoined edge length lX0|X1. 

Return σ.

Output: An unrooted metric tree on X

Step (1) requires time O(|X|4n). One application of Step (2) (without the recursive call) on 

quartet counts for k taxa has time O(k4). In the worse case, the split sets have sizes 2, k − 2 

for each recursive call and at every step there is an internal edge weights ≥ L, leading to time 

O(|X|4n + |X|5) for the entire algorithm. However, variations on this algorithm, in which all 

splits with weights over L in the tree of Step (1), are retained might reduce the typical 

running time considerably in practical use.

A reasonable choice for the parameter L might be L = 2. This corresponds to the quartets 

defining an edge of length < 2 having an expected frequency of at most 1 − (2/3) exp(−2) ≈ 
0.9098 of the displayed gene quartets matching the species tree quartet.

6 Algorithm Performance in Simulations

Although the algorithms of the last section provide statistically consistent estimators of a 

species tree from gene trees under the MSC model, their practical performance will be 

affected by several factors. First, even if gene trees are sampled from the MSC with no error, 

an algorithm cannot be expected to always infer the underlying species tree from a finite 

sample of gene trees. Second, if the input gene trees for the algorithm are inferred from 

sequences that were simulated along the gene trees under some standard substitution model, 

there is likely to be some inference error in the gene trees due to the finiteness of sequences. 

Finally, for empirical data, neither the MSC nor the substitution models may exactly 

describe the true processes, so that there is additional error from model misspecification. 

Although the performance of phylogenetic inference methods under model misspecification 

is rarely investigated, simulations can provide insight into the effects of the first two issues.

As an initial, and limited, investigation into the performance of the algorithms of the last 

section, we present some simulation analysis following the framework of (Rhodes 2019), 

using the simulated Avian data sets of Bayzid et al. (2015) which were also used in 

Vachaspati and Warnow (2015). All calculations were performed in R using the ape (Paradis 

and Schliep 2018) and MSCquartets (Allman et al. 2019a) packages.1 These data sets for a 

fixed species tree contain both a sample of gene trees under the MSC, and inferred gene 

trees from sequences simulated on the sampled gene trees. In addition, there are similar 

datasets for rescalings of the species tree by factors of 0.5 and 2, to, respectively, increase 

and decrease the amount of incomplete lineage sorting. For details on the simulation and 

gene tree inference procedure, see the referenced publications.

To reduce computation time, we pass from the original 48-taxon species tree, to the 30-taxon 

subtree described in Rhodes (2019). We similarly pass to subtrees of both gene trees 

sampled under the MSC and subtrees of inferred gene trees. Although these subtrees of 

1R scripts for the analysis are available at: https://jarhodesuaf.github.io/software.html.
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inferred gene trees may not be exactly the trees that would be inferred from the subset of 

sequences, differences are likely to be small.

Total processing time for a dataset of 1000 gene trees on 30 taxa required about 27–30min 

for any of the WQDC variant algorithms on a standard laptop computer. The bulk of this 

time, averaging 27.78min, was for tabulating all quartets displayed on the gene trees, though 

a more efficient implementation, including parallelism, should reduce this computation time 

considerably. WQDC required an additional 0.01min, and its recursive variants 1.72min.

We quantify the accuracy of methods in two ways. First, for topological accuracy, we 

compute the normalized Robinson–Foulds (RF) distance between the true unrooted species 

tree and the inferred one. The normalization is such that two trees displaying none of the 

same non-trivial splits will have distance 1, and two binary 30-taxon trees differing by a 

single NNI move have distance 2/2(30 − 3) = 0.037.

Second, for metric accuracy, we use a nonstandard variant of a distance of Kuhner and 

Felsenstein (1994) between the true species tree and the inferred one. For the KF distance as 

implemented in ape, for each tree, one first forms a vector whose entries correspond to all 

possible splits of the taxa, with an entry of the length of the edge defined by the split if it is 

displayed on the tree and 0 otherwise. The Euclidean distance between the vectors for the 

two trees then gives the distance. The variant we use, denoted KF[x], replaces any vector 

entry corresponding to a trivial split with 1 and any entry larger than x with x. This treatment 

of trivial splits is necessary since pendant edge lengths cannot be inferred from this data. 

The treatment of entries larger than x prevents a split that is displayed on both trees with 

defining edges of length ≥ x but of significantly different sizes from influencing the distance. 

We use x = 2 here, since such long edges on the true species tree give rise to expected 

quartet counts in which one is large and the others small. These are precisely the counts for 

which stochastic variation produces large variation in estimated lengths. Note that if two 

trees differed by splits with edge lengths ≥ 2, then their KF[2] distance would be at least 4. 

Thus, a KF[2] distance less than 4 indicates the two tree topologies agree on all long edge 

splits. The choice of 2 here is of course arbitrary, but based on the reasoning given at the end 

of the last section.

The simulated data sets contain 20 replicates of 1000 sampled and inferred gene trees for 

each condition, with gene trees inferred from 500 base sequences. In Figs. 6 and 7, we 

illustrate the mean over the replicates of the distances of inferred species trees from the true 

one. Results are given for g = 100, 400, 700, and 1000 gene trees, by using only the first g 
gene trees in each simulated collection. We present results of WQDC (Algorithm 5.2) using 

both the NJ and fastME algorithms for tree building, as well as Recursive WQDC 

(Algorithm 5.6) using FastME for L = 2, 0. For comparison to other methods, we include 

ASTRAL and QDC, which were already compared for topological inference in Rhodes 

(2019). Internal edge lengths for trees inferred by these methods, which infer only 

topological trees, were assigned by methods that use only counts of quartets for sets of four 

taxa defining those edges, see Zhang et al. (2018) and Allman et al. (2019a) for precise 

descriptions.

Yourdkhani and Rhodes Page 17

Bull Math Biol. Author manuscript; available in PMC 2021 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For gene trees sampled from the MSC, with no inference error, Fig. 6 indicates that WQDC, 

with either distance method, has considerably poorer topological and metric accuracy than 

the other methods used. While Fig. 7 shows similar results for the methods applied to 

inferred gene trees, the gap in performance between these methods and others is narrowed. 

The recursive WQDC, with L = 0 or 2, offers a clear improvement over non-recursive 

WQDC in all situations. This suggests that the source of the poor performance of the non-

recursive WQDC is indeed the poor estimation of long edge lengths, as the recursive 

algorithm operates in such a way that after splits for such edges are put into the tree being 

inferred, the length of those edges no longer influences future steps. Finally, since there is no 

substantial difference in the performance of the recursive WQDC for L = 0 and L = 2, it 

appears only long edges degrade performance. Since larger values of L reduce running time, 

this can have an impact for practical use.

When compared to QDC or ASTRAL, the recursive WQDC’s performance is usually worse. 

For topological accuracy, the normalized RF distance is, however, generally less than the 

0.037; a single NNI move produces for a 30-taxon tree, so the difference is not great. 

Interestingly, for metric accuracy, recursive WQDC often matches the best performing 

algorithm.

Nonetheless, on this, one set of simulations ASTRAL gives the best topological and metric 

accuracy among all these quartet-based methods. This suggests that if either variant of 

WQDC is to be useful for empirical inference of species trees, additional development will 

be needed. We note that while its unweighted analog QDC also is slightly outperformed by 

ASTRAL, it nonetheless serves as a crucial building block to the NANUQ algorithm for 

network inference (Allman et al. 2019b), which does have several practical advantages over 

other network inference methods. There may be similar roles for WQDC.
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Fig. 1. 
An N-taxon binary tree with root v0 and vn = MRCA(x, y). The Ki are subtrees, on ki taxa
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Fig. 2. 
The path between taxa x and y on an N-taxon unrooted binary metric tree. The Ki represent 

subtrees
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Fig. 3. 
An 8-taxon metric caterpillar tree (T, λ) (top) and its quartet remetrization (T , λ) (bottom)
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Fig. 4. 
The 13 quartet trees on (T, λ) separating a3 and a6. Multiple taxa on a leaf represent choices 

leading to multiple quartet trees
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Fig. 5. 
An unrooted 8-taxon balanced metric tree, with original edge lengths (top) and quartet 

remetrization (bottom)
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Fig. 6. 
Simulation results on accuracy of methods of inference of species trees from gene trees 

sampled under the MSC
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Fig. 7. 
Simulation results on accuracy of methods of inference of species trees from gene trees 

inferred from sequences simulated on trees sampled under the MSC
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