Skip to main content
. 2020 Oct 29;16(10):e1008263. doi: 10.1371/journal.pcbi.1008263

Table 1. Confusion Matrix, Accuracy, and other evaluation metrics obtained after combining 15 test MB datasets followed by applying the classifier on the combined dataset (N = 1,286 samples).

Confusion Matrix
Ref_Group3 Ref_Group4 Ref_WNT Ref_SHH
Pred_Group3 210 10 0 1
Pred_Group4 5 478 0 0
Pred_WNT 0 0 110 2
Pred_SHH 3 7 0 392
Overall Stats
Accuracy 97.70%
Kappa 96.70%
AccuracyLower 96.70%
AccuracyUpper 98.50%
AccuracyNull 40.60%
AccuracyPValue 0.00E+00
McnemarPValue NaN
Class Stats
Sensitivity Specificity Pos Pred Value Neg Pred Value
Class: Group3 96.30% 98.90% 95.00% 99.20%
Class: Group4 96.60% 99.30% 99% 97.70%
Class: WNT 100% 99.80% 98.20% 100%
Class: SHH 99.20% 98.80% 97.50% 99.60%
Precision Recall F1 Prevalence
Class: Group3 95.00% 96.30% 95.70% 17.90%
Class: Group4 99% 96.60% 97.80% 40.64%
Class: WNT 98.20% 100% 99.10% 9.03%
Class: SHH 97.50% 99.20% 98.40% 32.43%
Detection Rate Detection Prevalence Balanced Accuracy
Class: Group3 17.24% 18.10% 97.60%
Class: Group4 39.24% 39.70% 98%
Class: WNT 9.03% 9.20% 99.90%
Class: SHH 32.18% 33.00% 99.00%