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Abstract

Astrocytes have been shown to modulate synaptic transmission and plasticity in specific

cortical synapses, but our understanding of the underlying molecular and cellular mecha-

nisms remains limited. Here we present a new biophysicochemical model of a somatosen-

sory cortical layer 4 to layer 2/3 synapse to study the role of astrocytes in spike-timing-

dependent long-term depression (t-LTD) in vivo. By applying the synapse model and

electrophysiological data recorded from rodent somatosensory cortex, we show that a signal

from a postsynaptic neuron, orchestrated by endocannabinoids, astrocytic calcium signal-

ing, and presynaptic N-methyl-D-aspartate receptors coupled with calcineurin signaling,

induces t-LTD which is sensitive to the temporal difference between post- and presynaptic

firing. We predict for the first time the dynamics of astrocyte-mediated molecular mecha-

nisms underlying t-LTD and link complex biochemical networks at presynaptic, postsynap-

tic, and astrocytic sites to the time window of t-LTD induction. During t-LTD a single

astrocyte acts as a delay factor for fast neuronal activity and integrates fast neuronal sen-

sory processing with slow non-neuronal processing to modulate synaptic properties in the

brain. Our results suggest that astrocytes play a critical role in synaptic computation during

postnatal development and are of paramount importance in guiding the development of

brain circuit functions, learning and memory.

Author summary

Brain development is dependent on neuroplasticity, the ability of the brain to modify its

structure and function. Experimental evidence suggests that astrocytes, the non-neuronal

cells in the brain, take part in shaping synaptic plasticity. In this study, we built a new

computational model of spike-timing-dependent long-term depression and addressed the

involvement of astroglial cells in modulation of synaptic glutamate transmission. Our

results suggest that astrocytes are an integral part of synaptic computations and may guide

brain circuit functions, learning and memory during postnatal development. Disruptions
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in these processes are likely involved in neurodevelopmental diseases such as schizophre-

nia and autism spectrum disorder. Modeling synaptic functions may help develop phar-

macological targets for treatments of brain disorders.

Introduction

Synaptic long-term plasticity, defined as the activity-dependent change in the strength or effi-

cacy of the synaptic connection between a pre- and postsynaptic neuron, is expressed in the

brain in diverse forms across multiple timescales [1]. Action potential (or spike) timing is one

of the many factors governing synaptic plasticity induction [2, 3]. In spike-timing-dependent

plasticity (STDP), the order and precise temporal difference between pre- and postsynaptic

action potentials determine the direction and magnitude of long-term plasticity. Depending

on the form of synaptic plasticity and the brain area, a large number of cellular and molecular

level mechanisms are involved [4–7]. In the developing mouse barrel area of the somatosen-

sory cortex, spike-timing-dependent long-term depression (t-LTD) [8] at layer 4 (L4) to layer

2/3 (L2/3) synapses has been shown to require activation of presynaptic mechanisms [9–14]

and involve astrocytic functions [15]. This t-LTD has been shown to emerge in the first postna-

tal week, be present during the second week, and disappear in the adult, whereas spike-timing-

dependent long-term potentiation (t-LTP) persisted into adulthood [10]. Long-term depres-

sion may provide an important mechanism for synapse pruning and subsequent neuron and

circuit remodeling during postnatal development [16].

Astrocytes, a type of non-neuronal cells in the mammalian brain, are recognized as impor-

tant homeostatic, metabolic, and neuromodulatory elements that are also coupled to the neu-

rovascular system [17, 18]. In the developing central nervous system, astrocytes promote the

formation of excitatory synapses and the establishment of synaptic connectivity [19]. Astro-

cytes can also sense and modulate synaptic functions [20]. Astrocytes maintain glutamatergic

synaptic transmission by glutamate uptake [21] and clear excess extracellular potassium ions

(K+) to spatially transfer K+ from regions of elevated concentration to regions of lower concen-

tration [22]. In addition, there is ample evidence to indicate that astrocytes actively contribute

to the information processing capabilities of neural circuits and ultimately affect animal behav-

ior [23, 24]. Astrocytes have, for example, been shown to influence brain state transitions [25],

promote the coordinated activation of neuronal networks [26], and modulate sensory-evoked

neuronal network activity [27] and brain rhythms during sleep [28]. Recent research has the

potential to revolutionize our current understanding of the role of astrocytes in the modula-

tion of brain network activity [17, 29].

Astrocytes are integral elements of synapses in developing rodent and human cerebral cor-

tices [30–32]. A single cortical astrocyte is estimated to contact 20,000 to 120,000 synapses in

rodents and up to 2,000,000 synapses in humans [30]. Several lines of evidence suggest that,

through this close association with neurons, astrocytes alter synaptic functions. Astrocytes

have been shown to modulate synaptic transmission [33, 34], long-term potentiation [34–40],

and long-term depression [15] in several brain areas, as well as provide a developmental switch

of synaptic transmission from LTD to LTP in hippocampus [41]. More and more details about

astrocytic cellular and subcellular mechanisms have recently been presented [40, 42–49]. It is

of interest to understand how these subcellular mechanisms in astrocytes and their processes

are linked with synaptic transmission and plasticity in neocortex [13, 15, 42, 50, 51]. In the

developing somatosensory cortex, t-LTD has been shown to depend on type 1 cannabinoid

receptor (CB1R) activation and increased astrocytic calcium (Ca2+) signaling [15].
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Nevertheless, the central questions still remain: Do cortical astrocytes in vivo have subcellular

mechanisms capable of synapse modification at fast enough timescales comparable to neuronal

ones? Does this modulation depend on the brain area and circuitry in question? Is this modu-

lation significant only in developing brain circuits or does it also happen in mature circuits?

The answers to these questions will significantly increase our understanding of mammalian

neocortical network functioning.

Computational modeling is an important complementary method for linking the dynam-

ics of different biochemical and biophysical reactions and processes together and for unrav-

eling the complexity of synaptic functions. Our goal here is to better understand through

computational modeling the role of cortical astrocytes in sensory processing, particularly in

synaptic plasticity, during postnatal development. To address this question we propose a

new biophysicochemical model of a somatosensory cortical L4 to L2/3 synapse and study

the role of astrocytes in t-LTD in vivo. We made several assumptions based on the experi-

mental electrophysiological, Ca2+ imaging, and other data (see Materials and methods and

S1 Appendix). The computational model was built in component-by-component manner

for the presynaptic L4 spiny stellate cell and postsynaptic L2/3 pyramidal cell as well as for

the nearby fine astrocyte process. After careful validation of each model component, all the

components were brought together to describe all the necessary elements of a somatosen-

sory cortical synapse. The integrated model takes into account the well-established biophys-

ical and biochemical mechanisms for this particular synapse, such as the voltage-gated ion

channels, transmitter-gated receptors, Ca2+-mediated signaling pathways including the neu-

ronal endocannabinoid and astrocytic inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) sig-

naling, as well as other crucial subcellular mechanisms. These mechanisms are described

using deterministic differential equations. The integrated model is carefully validated

against experimental data on synaptic plasticity [11, 12, 15]. Here we show that cortical

astrocytic Ca2+ dynamics can be modified by presynaptic L4 spiny stellate cell and postsyn-

aptic L2/3 pyramidal cell activity through the endocannabinoid signaling pathway. The sub-

sequent downstream signaling pathways in astrocytes have an influence on synaptic long-

term plasticity, particularly on the t-LTD in somatosensory cortex, through presynaptic N-

methyl-D-aspartate receptors (NMDARs) and calcineurin (CaN) signaling. Our study pro-

vides several predictions that can be tested in future electrophysiological, Ca2+ imaging, and

molecular biology experiments.

Results

We simulated a synapse model containing neuronal pre- and postsynaptic terminals and a fine

astrocyte process. Specifically, our computational model includes the axonal compartment of a

presynaptic L4 spiny stellate cell, the dendritic and somatic compartments of a postsynaptic

L2/3 pyramidal cell, and the nearby fine astrocyte process. Several previous modeling studies

[52–55] have had an influence on our synapse modeling project and the choices we made dur-

ing the work. In our in silico experiments, we studied which mechanisms are important in the

induction of t-LTD at L4-L2/3 synapses in somatosensory cortex, including key Ca2+-depen-

dent intracellular processes. We used stimulation protocols equivalent to the protocols applied

in electrophysiological experiments in vitro and in vivo to activate our in silico synapse model

[12]. We showed that t-LTD at an L4-L2/3 synapse can be explained by the activation of

Ca2+-dependent mechanisms in the fine astrocyte process and this further has an influence on

the probability of neurotransmitter release in the presynaptic neuron through NMDARs and

calcineurin signaling. In the absence of the Ca2+-dependent mechanism in the fine astrocyte

process, the synapse did not show t-LTD similarly to experimental data.
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Synapse model components

Our specific goal was to study the role of astrocytes in the modulation of t-LTD. We selected

and modeled some of the most important candidate signaling pathways that may be crucial in

explaining signaling in synapses, specifically the signaling from a presynaptic neuron to a post-

synaptic neuron, from the postsynaptic neuron to an astrocyte, as well as from the astrocyte to

the presynaptic neuron (Fig 1). We extended a previously published presynaptic one-compart-

mental neuron model [56] by adding (1) high-voltage-activated (HVA) N-type Ca2+ (CaNHVA)

channels [57], (2) NMDARs composed of GluN1 and either GluN2C or GluN2D subunits

(GluN2C/D-containing NMDARs) [58, 59], (3) Ca2+ signaling [57], (4) calcineurin signaling

[60], (5) calcineurin-dependence to available glutamate release, and (6) modified the known

equations of glutamate release to the synaptic cleft [61–65]. We modified a previously pub-

lished postsynaptic two-compartmental neuron model [66] by adopting (1) A-type K+ (KA),

delayed rectifier K+ (KDR), sodium (Na+), and persistent Na+ (NaP) channels [67], (2) L-type

HVA Ca2+ (CaLHVA) channels [54, 68], (3) low-voltage-activated (LVA) L-type Ca2+ (CaLLVA)

channels [69], (4) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors

(AMPARs) [70], (5) NMDARs composed of GluN1 and GluN2B subunits (GluN2B-contain-

ing NMDARs) [70], (6) metabotropic glutamate receptor (mGluR) activation to endocannabi-

noid release [53, 71], and (7) Ca2+ signaling including, for example, plasma membrane

Ca2+-ATPase (PMCA), sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA), and IP3R

models [72–74]. For the astrocyte model, we utilized previously published [72, 73, 75] and

extensively tested [76–79] Ca2+ signaling models, including IP3Rs and SERCA pumps on the

ER membrane, and added a modified version of a previously published model for IP3-depen-

dence on endocannabinoids [80] and a model for Ca2+-dependent glutamate exocytosis to the

extrasynaptic space [61–65]. In summary, we combined previously published validated model

components with novel components developed in this study to create a new synapse model.

Synapse model dynamics before, during, and after t-LTD induction: Fitting

the model to experimental data

In our simulations, we closely followed experimental stimulation protocols [12]. During our

stimulation protocol before t-LTD induction, we simulated our synapse model with five pulses

of presynaptic stimulus at a frequency of 0.2 Hz (Fig 2A). Our t-LTD induction protocol con-

sisted of 100 post-pre pairings at a frequency of 0.2 Hz where a postsynaptic stimulus occurred

between 10 ms and 200 ms before a presynaptic stimulus, thus the temporal difference (ΔT)

had values between −10 ms and −200 ms (Fig 2H). The protocol after t-LTD induction

included five pulses of presynaptic stimulus at a frequency of 0.2 Hz (Fig 2O), similarly as with

the protocol before t-LTD induction. All these different stimuli triggered changes in the pre-

and postsynaptic membrane potentials, similarly to experimental data [12, 15] (Fig 2B, 2C, 2I,

2J, 2P and 2Q), that led, for example, to the opening of pre- and postsynaptic Ca2+ channels

and glutamate release from the presynaptic neuron (Fig 2D–2G, 2K–2N and 2R–2U). The sim-

ulated presynaptic Ca2+ concentration values followed the experimental values [81–84] (Figs

2D, 2K and 2R and 3F and 3M). The glutamate concentration in the synaptic cleft increased to

about 500 μM after stimuli, which is close to the measured experimental values [85] (Fig 2G,

2N and 2U). The release probability of presynaptic glutamate vesicles and the concentration of

glutamate in the synaptic cleft were the lowest for the shortest ΔT due to ongoing astrocyte-

mediated molecular dynamics during depression (Fig 2L, 2N, 2S and 2U). The effect of depres-

sion is clearly seen after t-LTD induction (Fig 2Q and 2S–2U).

During the t-LTD induction protocol, the released glutamate in the synaptic cleft activated

AMPARs, NMDARs, and mGluRs in the dendritic membrane of the postsynaptic neuron, in

PLOS COMPUTATIONAL BIOLOGY Astrocyte-mediated spike-timing-dependent long-term depression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008360 November 10, 2020 4 / 29

https://doi.org/10.1371/journal.pcbi.1008360


addition to presynaptic NMDARs. The activation of these postsynaptic receptors together with

Ca2+ influx via CaLHVA and CaLLVA channels into the postsynaptic neuron induced a G-pro-

tein signaling cascade that activated phospholipase C (PLC) (Fig 3A and 3H). This led to the

production of biologically realistic concentrations of diacylglycerol (DAG) and IP3 in the post-

synaptic neuron. Then IP3 activated, together with Ca2+, Ca2+-induced Ca2+ release via IP3Rs

Fig 1. Schematic illustration of the synapse model. Pre- and postsynaptic neurons and a fine astrocyte process are presented with key model components. (1)

Presynaptic membrane potential depends on currents via CaNHVA, Na+, and K+ channels as well as via NMDARs. Presynaptic action potential and CaNHVA- and

NMDAR-mediated Ca2+ concentrations together with the influence of CaN affect the vesicular release. (2) The released glutamate in the synaptic cleft activates

postsynaptic mGluRs, NMDARs, and AMPARs in addition to presynaptic NMDARs. (3) Postsynaptic membrane potential in the soma depends on currents via Na+,

NaP, and KDR channels, whereas postsynaptic membrane potential in the dendrite depends on currents via CaLHVA, CaLLVA, Na+, and KA channels as well as via

NMDARs and AMPARs. The activation of postsynaptic mGluRs and NMDARs, together with the CaLHVA- and CaLLVA-mediated Ca2+ influx, triggers a G-protein

signaling cascade where GαGTP dissociates from mGluR-bound Gβγ and activates PLC and production of DAG and IP3. Increases in Ca2+ and IP3 concentrations

activate Ca2+ release via IP3Rs from the ER to the cytosol. On the other hand, PMCA and SERCA pumps transfer Ca2+ away from the cytosol and leak fluxes transfer

Ca2+ back to the cytosol. The production of DAG leads to a production of endocannabinoid 2-AG. (4) Endocannabinoid 2-AG released from the postsynaptic neuron

binds to the astrocytic CB1Rs and triggers Ca2+ signaling in the astrocyte. We modeled this step by directly modifying astrocytic IP3 concentration based on the

postsynaptic 2-AG concentration. (5) Astrocytic IP3 and Ca2+ activate similar ER-related events as in the postsynaptic neuron. Astrocytic Ca2+ increase then induces

glutamate exocytosis to the extrasynaptic space. (6) Glutamate in the extrasynaptic space and the spillover of glutamate from the synaptic cleft activate presynaptic

NMDARs. (7) Presynaptic NMDAR-mediated Ca2+ concentration activates CaN, and CaN has an effect on vesicular release together with presynaptic action potential

and CaNHVA-mediated Ca2+ concentration.

https://doi.org/10.1371/journal.pcbi.1008360.g001
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Fig 2. Pre- and postsynaptic neurons respond to t-LTD stimulation protocols through reduced synaptic glutamate release. The t-LTD stimulation

protocols consisted of the protocol before t-LTD induction composed of five presynaptic pulses at a frequency of 0.2 Hz illustrated in (A), the t-LTD

induction protocol with 100 post-pre pairings at a frequency of 0.2 Hz having the temporal difference ΔT as values between −10 ms and −200 ms illustrated

in (H), and the protocol after t-LTD induction composed of five presynaptic pulses at a frequency of 0.2 Hz illustrated in (O) [12]. The simulation results

are shown for six key model variables during the first two stimulus pulses of our protocol before t-LTD induction in (B–G), during a single post-pre
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from the ER to the cytosol in the postsynaptic neuron, which led to an increase in Ca2+ con-

centration in the cytosol. The production of DAG, on the other hand, resulted in a production

of 2-arachidonoylglycerol (2-AG) (Fig 3B and 3I), and ultimately in the release of endocanna-

binoid 2-AG from the postsynaptic neuron. All these are well-established signaling pathways

known to exist in cortical neurons.

Endocannabinoid 2-AG can bind to the astrocytic CB1Rs and trigger Ca2+ signaling in the

astrocyte [15, 42]. We modeled this step by directly modifying IP3 concentration in the astro-

cyte based on the postsynaptic concentration of 2-AG (Fig 3B, 3C, 3I and 3J), followed by an

increase in astrocytic Ca2+ concentration (Fig 3D and 3K) and ultimately glutamate exocytosis,

thus inducing glutamate release from the astrocyte to the extrasynaptic space (Fig 3E and 3L).

We chose the astrocytic Ca2+ threshold for glutamate release based on experimental data [86].

Similarly, we chose the maximum value of glutamate concentration in the extrasynaptic space

based on experimental findings [87].

Astrocytes have been shown to have an effect on presynaptic glutamate release by modify-

ing release probabilities [15, 36, 88]. In somatosensory cortex, astrocytes have exhibited reduc-

tion in the presynaptic release probabilities as a response to the t-LTD induction protocol [15].

In our synapse model, glutamate release from the presynaptic neuron depended, among other

things, on the presynaptic CaNHVA- and NMDAR-mediated Ca2+ concentrations (Figs 2D, 2K

and 2R and 3F and 3M), release probability of presynaptic glutamate vesicles (Fig 2E, 2L and

2S), presynaptic calcineurin concentrations [14] (Fig 3G and 3N), and fraction of presynaptic

glutamate release inhibition (fpre, see Materials and methods and S1 Appendix). The presynap-

tic NMDARs were activated by the glutamate in the extrasynaptic space and the spillover of

glutamate from the synaptic cleft. Our simulations showed that the glutamate in the extrasy-

naptic space substantially increased the presynaptic NMDAR-mediated Ca2+ concentration

(Fig 3F and 3M).

t-LTD amplitude depends on the temporal difference between post- and

presynaptic activity: Confirming the broad t-LTD time window

In our in silico experiments, we followed the experimental t-LTD stimulation protocols [12].

First, we estimated the amplitude of the excitatory postsynaptic potential (EPSP) before t-LTD

induction when the stimulation protocol consisted of only a presynaptic stimulus repeated five

times at a frequency of 0.2 Hz (Fig 2A). The EPSP before t-LTD induction is presented in Figs

2C and 4A (right). Then t-LTD was induced by the post-pre pairing protocol consisting of a

postsynaptic stimulus followed by a presynaptic stimulus with a temporal difference ΔT from

−10 ms to −200 ms and the pairing was repeated 100 times at a frequency of 0.2 Hz (Fig 2H).

In this case, the postsynaptic action potential in the soma was followed by an EPSP which is

shown during one presynaptic stimulus in Fig 4A (left) for ΔT from −10 ms to −200 ms (see

also Fig 2J). Presynaptic activity and thus EPSPs were delayed by ΔT in respect to the postsyn-

aptic action potential. After t-LTD induction, we estimated the changes in the EPSPs by stimu-

lating the synapse model with the same protocol as before t-LTD induction, including only a

pairing with five different ΔT occurring about in the middle of the 100 post-pre pairings of the t-LTD induction protocol in (I–N), and during a single

stimulus pulse of our protocol after t-LTD induction in (P–U, note the different x-axis in U). The presynaptic membrane potential (Vpre) in (B, I, P),

postsynaptic membrane potential in the soma (Vsoma,post) in (C, J, Q, note the different y-axis in Q), presynaptic CaNHVA-mediated Ca2+ concentration

([Ca2+]CaNHVA,pre) in (D, K, R), release probability of presynaptic glutamate vesicles (Prel,pre) in (E, L, S), fraction of releasable presynaptic vesicles (Rrel,pre)

in (F, M, T), and glutamate concentration in synaptic cleft ([Glu]syncleft) in (G, N, U) responded to the stimuli shown in (A, H, O), respectively. In (J), the

postsynaptic action potential in the soma was followed by an EPSP with a delay corresponding to ΔT. The lowest release probability of presynaptic

glutamate vesicles in (L, S), the lowest glutamate concentration in synaptic cleft in (N, U), and the highest fraction of releasable presynaptic vesicles in (M,

T) were obtained with the shortest ΔT due to the astrocyte-mediated signaling during depression.

https://doi.org/10.1371/journal.pcbi.1008360.g002
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Fig 3. Delayed activation of astrocytic Ca2+ signaling by postsynaptic endocannabinoids is followed by fast astrocytic glutamate release and

presynaptic Ca2+ and calcineurin activation. The stimulation protocol used was the t-LTD induction protocol with five different temporal differences ΔT

[12] (see Fig 2H). The simulation results are shown for seven key model variables during the first 200 s of the stimulation protocol in (A–G) and during

three post-pre pairings occurring about in the middle of the whole stimulation protocol in (H–N). The shorter the temporal difference ΔT, the higher the

concentration of postsynaptic Ca2+-GαGTP-PLC complex ([Ca_GαGTP_PLC]post) in (A, H), postsynaptic 2-AG concentration ([2-AG]post) in (B, I),
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presynaptic stimulus repeated five times at a frequency of 0.2 Hz (Figs 2O and 2Q and 4A

(right)).

The post-pre pairings induced presynaptically expressed t-LTD, sensitive to the temporal

difference between the pre- and postsynaptic activity (ΔT). The strongest LTD change was

observed for the shortest ΔT: the EPSP decreased from 4.9 mV (before t-LTD induction) to 3.1

mV (after t-LTD induction) (Fig 4A (right)). The time courses of the presynaptic glutamate

release inhibition fraction (fpre) for ΔT from −10 ms to −200 ms are shown in Fig 4B. A shorter

astrocytic IP3 concentration ([IP3]astro) in (C, J), and astrocytic Ca2+ concentration ([Ca2+]astro) in (D, K). The postsynaptic 2-AG concentration shown in

(B, I) triggered an increase in the astrocytic IP3 concentration shown in (C, J) which was followed by an increase in the astrocytic Ca2+ concentration shown

in (D, K). (E, L) After the astrocytic Ca2+ concentration reached the threshold, astrocyte released a fixed amount of glutamate to the extrasynaptic space and

this can be seen as an increase in the glutamate concentration in the extrasynaptic space ([Glu]extsyn). (F, M) Both glutamate in the extrasynaptic space and

the spillover of glutamate from the synaptic cleft were able to activate presynaptic NMDARs. The smaller changes in the presynaptic NMDAR-mediated

Ca2+ concentration ([Ca2+]NMDAR,pre) occurred due to the spillover of glutamate from the synaptic cleft, and the larger changes occurred due to the

glutamate in the extrasynaptic space. (G, N) The presynaptic NMDAR-mediated Ca2+ influx increased the presynaptic calcineurin concentration ([CaN]pre).

https://doi.org/10.1371/journal.pcbi.1008360.g003

Fig 4. Shorter temporal difference between pre- and postsynaptic activity leads to stronger t-LTD through astrocyte-mediated cellular and

subcellular mechanisms. The t-LTD stimulation protocols were obtained from experimental literature [12] and their use in in silico modeling is shown

in Fig 2A, 2H and 2O. (A) In the left, the postsynaptic membrane potential in the soma is shown during a single post-pre pairing of the t-LTD

induction protocol with a temporal difference ΔT between −10 ms and −200 ms at every 10 ms. The postsynaptic stimulus evoked a somatic action

potential followed by an EPSP generated by the presynaptic stimulus. The longer the temporal difference ΔT, the longer the delay for the EPSP. In the

right, the postsynaptic membrane potential in the soma, in other words in this case the postsynaptic EPSP generated by the presynaptic stimulus, is

shown during a single presynaptic stimulus occurring before (black) and after (color bar) t-LTD induction. The shorter the temporal difference ΔT, the

smaller the amplitude of the EPSP. (B) The fraction of presynaptic glutamate release inhibition (fpre) had the highest values with the shortest ΔT, i.e. the

strongest t-LTD, during the 100 post-pre pairings in the t-LTD induction protocol. Color bar is given in (A). (C) The final value of −fpre is shown as a

function of ΔT. (D) The ΔEPSP percentage is shown as a function of ΔT. We calculated the ΔEPSP percentage for every ΔT as the percentage change

between the somatic EPSP amplitude evoked by the presynaptic stimulus occurring before t-LTD induction (shown in (A, right) as black) and the

somatic EPSP amplitude evoked by the presynaptic stimulus occurring after t-LTD induction (shown in (A, right) with different colors given in the

color bar). Our synapse model confirmed the experimental data [12]. The shorter the temporal difference ΔT, the stronger the t-LTD.

https://doi.org/10.1371/journal.pcbi.1008360.g004
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ΔT led to a larger increase in fpre (Fig 4B), and thus stronger t-LTD (Fig 4D). The dependence

of final fpre values on ΔT is shown in Fig 4C. The fraction fpre had different resulting values

depending on ΔT used (Fig 4C), for example fpre = 0.5 for ΔT = −10 ms, fpre = 0.34 for

ΔT = −100 ms, and fpre = 0.03 for ΔT = −200 ms. The changes in the EPSP, estimated in Fig 4A

(right), showed similar dependence on ΔT: for example, ΔEPSP = −36.45% for ΔT = −10 ms,

ΔEPSP = −22.86% for ΔT = −100 ms, and ΔEPSP = −1.64% for ΔT = −200 ms (Fig 4D). Thus

the stimulation protocol induced t-LTD for ΔT values shorter than −200 ms and t-LTD was

the strongest for the shortest ΔT, which was consistent with the experimental results [12] (Fig

4D). The broad time window for t-LTD in somatosensory cortex has been reported in several

experimental studies [8, 12].

t-LTD requires astrocytic signaling and presynaptic NMDARs

Previous experimental studies have reported that presynaptic GluN2C/D-containing

NMDARs are required for t-LTD, whereas postsynaptic GluN2B-containing NMDARs are

necessary for t-LTP at the vertical L4 input onto L2/3 neuron [9, 12, 15, 89–91]. Our model

simulations showed that blocking postsynaptic GluN2B-containing NMDARs, thus changing

their conductance to zero, did not prevent the increase in fraction of presynaptic glutamate

release inhibition (fpre) (Fig 5B and 5C), and therefore did not abolish t-LTD (Fig 5A (top mid-

dle) and Fig 5D) when the same t-LTD induction protocol was used as in Fig 2H with a tempo-

ral difference ΔT equaling −10 ms. For a comparison, Fig 5A (top left) shows the original

synapse model with a temporal difference ΔT equaling −10 ms. Blocking presynaptic GluN2C/

D-containing NMDARs failed to increase fpre (Fig 5B and 5C) and prevented t-LTD (Fig 5A

(top right) and Fig 5D), following the same t-LTD induction protocol. Thus, our

Fig 5. Blocking astrocytic Ca2+ signaling and presynaptic NMDARs prevents t-LTD induction. (A) The postsynaptic EPSPs in the soma are shown before (black) and

after t-LTD induction (other colors than black) when manipulating postsynaptic NMDAR, presynaptic NMDAR, or astrocytic signaling, or stimulation protocols (Fig

2A, 2H and 2O). In top left, the post-pre pairing protocol with the temporal difference ΔT = −10 ms induced t-LTD (same synapse model as in Fig 4). In top middle,

blocking the postsynaptic NMDARs failed to prevent t-LTD with the post-pre pairing protocol for ΔT = −10 ms. In top right, blocking the presynaptic NMDAR, on the

other hand, prevented t-LTD with the post-pre pairing protocol for ΔT = −10 ms. In bottom left, blocking the fine astrocyte process also prevented t-LTD with the post-

pre pairing protocol for ΔT = −10 ms. In bottom middle, the presynaptic stimulus at a frequency of 0.2 Hz for 500 s failed to induce t-LTD. In bottom right, the

postsynaptic stimulus at a frequency of 0.2 Hz for 500 s failed to induce t-LTD. (B) The fraction of presynaptic glutamate release inhibition (fpre) is shown during the

whole t-LTD induction protocol for all six models described in (A). (C) The values of fpre at the end of the t-LTD induction protocol are shown for all six models

described in (A). The high values of fpre led to t-LTD. (D) The EPSP percentage is given for all six models described in (A). We calculated the EPSP percentage for every

ΔT by normalizing the EPSP amplitude occurring after t-LTD induction by the EPSP amplitude occurring before t-LTD induction, and multiplied them by 100%.

https://doi.org/10.1371/journal.pcbi.1008360.g005
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computational synapse model confirmed the experimental findings that presynaptic

NMDARs, but not postsynaptic NMDARs, are necessary for t-LTD induction.

Previous experimental studies have also shown that t-LTD requires astrocytic CB1R activa-

tion by neuronal endocannabinoid release followed by an increase in astrocytic Ca2+ signaling

and the exocytosis of glutamate from astrocytes [15]. The released glutamate then activates

presynaptic NMDARs and leads to t-LTD [15]. We therefore tested whether interfering with

the astrocytic activity leads to the inhibition of t-LTD by blocking the astrocyte, thus keeping

the astrocyte model in a steady state by setting all the astrocytic differential equations to zero

in our synapse model. The simulation results showed that fpre stayed at low levels (Fig 5B and

5C) and did not lead to t-LTD (Fig 5A (bottom left) and Fig 5D). Thus, our synapse model

confirmed the experimental findings that blocking the fine astrocyte process activity entirely

prevented t-LTD.

In addition, we tested the model by applying either a presynaptic (Fig 5A (bottom middle))

or a postsynaptic (Fig 5A (bottom right)) stimulus at a frequency of 0.2 Hz for 500 s, thus

repeating both stimulation protocols 100 times. In both cases, fpre did not increase substan-

tially, failing to induce t-LTD (Fig 5D). Our synapse model confirmed the experimental data

that an unpaired synaptic pathway remains unmodified [12].

Astrocytes sense the temporal difference of t-LTD and modify their Ca2+

signaling

Finally, we studied in more detail how Ca2+ concentration behaves in the fine astrocyte process

during the t-LTD induction protocol depicted in Fig 2H. The delay in the astrocytic Ca2+ peak

responses to the post-pre pairing onset varied with the temporal difference of post-pre pairings

(Fig 6A). The delay increased with the lengthening of the post-pre pairing temporal difference

(Fig 6B–6D).

We then addressed the occurrence of peaks in the fine astrocyte process. Our synapse

model showed that astrocytic Ca2+ peaks for different ΔT of the t-LTD induction protocol

occurred within 2 s of each other in the beginning of the protocol (Fig 6B), whereas the peaks

occurred within 10 s in the middle of the protocol (Fig 6C) and within 14 s towards the end of

the protocol (Fig 6D). The normalized mean peak value of the astrocytic Ca2+ concentration

increased with the shortening of the temporal difference between post-pre pairings, having the

highest values during the first 50 post-pre pairings and the lowest during the last 50 post-pre

pairings in the t-LTD induction protocol (Fig 6F). It is of interest to explore these in silico
results further in future wet-lab experiments to make it possible to build more sophisticated

and biologically relevant models for astrocytes.

Previous experimental results have shown that Ca2+ transients do not occur at a certain

fixed time point after each individual post-pre pairing, but are rather evenly distributed in the

5 s long period between each post-pre pairing [15]. We confirmed this experimental finding

by calculating the probability of astrocytic Ca2+ peaks occurring in the 5 s long period between

each pairing with different ΔT (Fig 6G). One of the reasons behind this distribution is that

astrocytes are activated slower than the individual post-pre pairings because of the slow endo-

cannabinoid signaling [15]. Our synapse model predicted that the astrocytic Ca2+ concentra-

tion oscillated every 13 s during the t-LTD induction protocol (13.34 s for ΔT = −10 ms and

13.67 s for ΔT = −200 ms), which is close to the reported experimental oscillation rate of every

15 s for ΔT = −25 ms [15]. Note that both the experimental and computational values are

about 3 times longer than the length between each post-pre pairings. The number of times the

astrocyte released glutamate during the whole 100 post-pre pairings in the t-LTD induction

protocol increased with the shortening of ΔT (Fig 6E and 6H). In our synapse model, this is
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Fig 6. Shorter temporal difference between pre- and postsynaptic activity leads to shorter delay in astrocytic Ca2+ response and more frequent glutamate release

from astrocyte. The stimulation protocol used was the t-LTD induction protocol for every temporal difference ΔT between −10 ms and −200 ms at every 10 ms [12] (Fig

2H). The astrocytic Ca2+ concentration ([Ca2+]astro) is shown during the whole simulation of the 100 post-pre pairings for five different ΔT in (A), and with twenty

different ΔT in the beginning of the simulation in (B), in the middle of the simulation in (C), and in the end of the simulation in (D). Color bar is given in (A). (E) The

glutamate concentration in the extrasynaptic space ([Glu]extsyn) is shown for the whole simulation for five different ΔT. Glutamate was released every time the astrocytic

Ca2+ concentration reached the threshold. (F) The normalized mean peak values of astrocytic Ca2+ concentration are shown during the first 50 post-pre pairings, last 50

post-pre pairings, and the whole 100 post-pre pairings of the t-LTD induction protocol with different ΔT. (G) The probability of astrocytic Ca2+ peaks is shown as a
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due to the fact that astrocytic Ca2+ peaks were slightly higher with shorter ΔT. There is experi-

mental evidence showing that Ca2+ peaks are not higher with shorter ΔT but instead Ca2+ tran-

sients are more frequent and an individual Ca2+ transient lasts longer [15]. Our astrocyte

model is based on the same mechanisms as the models published so far [78, 79]. This issue

with more frequent and longer Ca2+ transients clearly requires further experimental clarifica-

tion, so that future computational models may be extended to incorporate more realistic Ca2+

transients using available simulation tools, for example [92].

In summary, the model simulations confirmed several experimentally obtained results, such

as t-LTD sensitivity to ΔT [12, 15] and the role of astrocytic signaling in t-LTD [15]. Moreover,

the model simulations predicted the time courses of astrocytic Ca2+ signals and the putative

roles and time courses of presynaptic mechanisms in t-LTD. These predictions will be useful in

planning the future studies of astrocytes and synapses in somatosensory cortex in vivo.

Discussion

Astrocytes have been shown to dynamically modulate synaptic transmission and plasticity in

some cortical synapses, but how this occurs in time and space has remained unclear [15, 17,

27, 93]. We demonstrate with a new somatosensory cortical synapse model that a well-estab-

lished feedback signal from a postsynaptic neuron to a presynaptic neuron via a fine astrocyte

process can induce, maintain, and modulate spike-timing-dependency of long-term depres-

sion during postnatal development at cortical layer 4 to layer 2/3 synapses. This modulation

occurs through astrocyte-mediated molecular mechanisms to the presynaptic axonal terminal.

We predict for the first time the dynamics of these molecular mechanisms underlying spike-

timing-dependent LTD and link complex biochemical networks at the pre- and postsynaptic

as well as astrocytic sites to the electrophysiology and time window of spike-timing-dependent

plasticity induction at vertical L4-L2/3 synapses [12, 15]. The removal of any of the key mecha-

nisms, including the astrocytic mechanisms, impaired synaptic t-LTD. Our results indicate

that multiple biophysical and biochemical plasticity mechanisms at the L4-L2/3 neuronal syn-

apse and nearby fine astrocyte process contribute to enabling synaptic LTD in a developing

somatosensory cortex.

Our study highlights several important advancements in neuroscience. First, we link

together the dynamics of known cellular and molecular players of t-LTD during postnatal

development and describe each model component by mathematical equations and data from a

multitude of experimental and modeling studies. Second, we combine unique experimental

results on the time-dependency of t-LTD in a developing somatosensory cortex, obtained by

two independent research groups [11, 12, 14, 15], to validate our model. Third, our analysis

using the biophysically and biochemically detailed synapse model confirms the experimental

findings on astrocytes’ ability in setting the temporal difference of t-LTD at L4-L2/3 synapses

[15]. In summary, we confirm with our in silico synapse model the following experimental

findings and predictions (1–4).

1. The fine sensitivity of t-LTD to the temporal difference in a developing somatosensory cor-

tex is achieved through complex molecular signaling, similarly to experimental data and

predictions [11, 12, 15].

function of time between each post-pre pairing. Every 5 s long sweep between each of the post-pre pairings was divided into ten 0.5 s long bins. The time for the post-pre

pairing was in the beginning of the 5 s long sweep. The probability of astrocytic Ca2+ peaks was calculated for every bin during the whole t-LTD induction protocol with

different ΔT. The dashed line indicates the equal probability between the ten bins, so 0.1. Similarly to experimental data [15], Ca2+ peaks were not time-locked to the post-

pre pairing onset. Color bar is given in (A). (H) The number of times the astrocyte released glutamate during the 100 post-pre pairings in the t-LTD induction protocol is

shown with different ΔT.

https://doi.org/10.1371/journal.pcbi.1008360.g006
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2. At the L4 spiny stellate cell—L2/3 pyramidal cell synapse, t-LTD is orchestrated through

the postsynaptic release of endocannabinoid molecules (agonist 2-AG) detected by CB1Rs

on the fine astrocyte process [15].

3. Astrocytic Ca2+ transients induced by endocannabinoids and subsequent exocytosis of glu-

tamate from the fine astrocyte process are appropriate to induce and maintain t-LTD (com-

parable to experimental validation data [15]).

4. Glutamate release from the fine astrocyte process can be detected by presynaptic NMDARs

at the time courses appropriate for the modulation of synaptic release through calcineurin-

related signaling [14].

We modeled all the above-mentioned mechanisms using biologically realistic time con-

stants validated against published experimental data (see Materials and methods and S1

Appendix). The predictions made by our synapse model are readily available for further exper-

imental wet-lab testing. In addition, we provide all mathematical equations and their relation-

ships, all parameter values, all references used in the model construction, and commented

code upon publication in order to enable the reproduction of our results and facilitate repro-

ducible science [76–79, 94].

In a developing somatosensory cortex, t-LTD has been shown to require activation of

CB1Rs by postsynaptically released endocannabinoids, and increased astrocytic Ca2+ concen-

tration [15]. However, the spatial location and distribution of the CB1Rs is under debate. Ear-

lier it was assumed that t-LTD requires CB1Rs located on the presynaptic neuron [95], but

more recent evidence from several brain areas and spinal cord shows that CB1Rs are also

located on astrocytes [15, 96–98]. Agonists of CB1Rs have been found to evoke Ca2+ transients

in astrocytes [97] and in the micro-domains of astrocyte processes [15, 98]. Furthermore, it

has been shown that a prerequisite for t-LTD in the somatosensory cortex [15], and also in the

hippocampus [96], are astrocytic CB1Rs, not the presynaptic CB1Rs. Based on these most

recent findings we modeled the postsynaptically released endocannabinoid activation only on

the astrocytic CB1Rs [15]. In addition, we made an assumption that an increase in astrocytic

Ca2+ levels, due to endocannabinoids in our model, is mediated by IP3Rs on the ER membrane

[40] and subsequent Ca2+-dependent glutamate exocytosis [42, 99, 100]. Recently, studies have

found multiple types of Ca2+ signals in astrocyte processes [44], also in somatosensory cortex

in vivo [15, 101, 102]. These multiple types of Ca2+ signals may be explained by the activation

of different subtypes 1, 2, and 3 of IP3Rs [40]. Although evidence against [103, 104] and for

[47] IP3R-mediated Ca2+-dependent glutamate exocytosis in plasticity exist, we decided to test

with our model whether the kinetics of Ca2+-dependent glutamate exocytosis in astrocyte pro-

cesses can take part in mediating t-LTD observed in somatosensory cortex during postnatal

development. The controversial results between different studies may be explained by various

factors, including differences in the postnatal developmental stage of the rodent, the brain

area, the type of a synapse and brain circuitry, the motility of astrocyte processes, and the

experimental conditions as well as the different measurement techniques, including the use of

transgenic animals. Furthermore, other Ca2+-related mechanisms may coexist in astrocyte

processes [40, 42–49] which can also contribute to the modulation of plasticity.

In addition to astrocytic CB1Rs, the activation of presynaptic NMDARs is required for t-

LTD in the developing somatosensory cortex [9–14]. These presynaptic NMDARs have been

shown to be tightly linked with presynaptic Ca2+, proteins and associated signaling cascades to

control the release of neurotransmitters from the vesicles, the size of the vesicle pool, and/or

the replenishment of synaptic vesicle pools [14]. The exact signaling between astrocytic CB1Rs

and presynaptic NMDARs cooperatively leading to synaptic depression is, however, not fully
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understood. Moreover, the presynaptic NMDAR-dependent LTD (in the vertical pathway)

seems to be developmentally regulated and disappears by 3–4 weeks of age in the mouse bar-

rel cortex [10] and visual cortex [105] as well as in the mouse hippocampus [41]. Regardless

of the few missing components and debates on the exocytosis of astrocytic glutamate and

the presynaptic NMDARs [14, 17, 29, 106–108], we conclude that there is a growing body of

evidence suggesting the involvement of astrocytes in t-LTD during postnatal development.

Based on recent reconstruction studies of astrocytic morphologies [32] and imaging of

IP3R-mediated events in fine astrocyte processes [40], astrocytes indeed seem to make an

important contribution to synapses. Using computational modeling we present the links

between different molecular pathways contributing to the temporal difference of t-LTD and

the required time courses of the molecular players. The full synapse model couples the fol-

lowing key signaling cascades: (1) the signaling cascade from the postsynaptic terminal,

thus the release of endocannabinoids, to the astrocyte, (2) the signaling cascade from the

fine astrocyte process, including Ca2+-dependent glutamate exocytosis, to the presynaptic

terminal, and (3) the signaling cascade from the presynaptic NMDARs and calcineurin (a

protein phosphatase) to the vesicular release of synaptic glutamate. Based on our simulation

results endocannabinoid-induced, Ca2+-mediated glutamate release from fine astrocyte pro-

cesses in vivo can thus have a pivotal impact on synaptic properties and thereby on neuronal

activity, most profoundly in the developing somatosensory system.

There is plenty of experimental evidence that NMDAR-dependent synaptic plasticity can

be induced by several different mechanisms [14]. Studies with neocortical and hippocampal

synapses show that presynaptic NMDARs typically induce LTD and postsynaptic NMDARs

LTP. This indicates that presynaptic NMDARs control synaptic release and plasticity, particu-

larly in glutamatergic synapses. The expression of presynaptic NMDARs is, however, highly

heterogeneous and synapse specific [109]. For example, it has been shown that presynaptic

NMDARs can selectively modulate L4-L2/3 synapses in the somatosensory cortex, but not

L4-L4 or L2/3-L2/3 synapses [109]. Moreover, presynaptic NMDARs have been shown to

operate in unconventional ways in some synapses [110]. At the L4-L2/3 synapse, NMDARs

may therefore support a special form of plasticity, also confirmed by our modeling. Taken

together, these previous results on the heterogenous expression of presynaptic NMDARs may

explain the lack of presynaptic NMDAR-mediated plasticity in some studies. Furthermore,

our results suggest that the astrocytic modulation of NMDAR-dependent t-LTD is highly syn-

apse specific, and synapses that do not contain any presynaptic NMDARs cannot implement

astrocytic modulation of t-LTD during postnatal development. We are not aware of any study

showing that astrocytes are not modulating t-LTD at L4-L2/3 synapses. All these findings high-

light the acute need for detailed mechanistic modeling such as our present study where we

show astrocytic CB1R- and presynaptic NMDAR-dependent t-LTD in a developing somato-

sensory cortex. It is also likely that some additional plasticity mechanisms could be added to

the model or that their role could be fulfilled by multiple redundant parallel plasticity

pathways.

For more than ten years, STDP has been suggested to underlie the development of sensory

representations and synapse maturation in the somatosensory cortex [111]. In particular, t-

LTD at L4-L2/3 synapses in rodents has been shown to be vital for plasticity during postnatal

development [89]. A growing body of evidence also suggests that astrocytes have a fundamen-

tal role in cortical postnatal development and map plasticity [15, 51, 112]. It has been suggested

that the functional role of astrocytes in t-LTD at developing somatosensory L4-L2/3 synapses

might be to act as a time buffer (or, delay factor) for neuronal activity and sensory processing

that occurs on a fast millisecond timescale [15]. During these events, fast and correlated neuro-

nal activity is integrated into slower astrocytic Ca2+ dynamics. It can therefore be speculated
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that astrocytes monitor, integrate, and modulate the activity of synapses, on longer timescales,

to enhance the capacity of information processing in the brain to build a complex cognitive,

conscious experience of the acquired sensory information in higher animals and humans. We

have here demonstrated how this monitoring, integration, and modulation of activity is

orchestrated through biophysicochemical processes in a synapse to induce t-LTD. We con-

clude that modeling the dynamics of neuron-astrocyte signaling in a synapse can offer pro-

found mechanistic insights into the development of synaptic computation and information

processing in sensory systems.

Developing sensory circuits undergo synapse elimination, a process of pruning synapses

during development. Synapse elimination is essential for the formation of mature neuronal

circuits and proper brain functions in the cerebral cortex. Although less is known about the

cortical pruning compared to other areas, a disruption of this process is likely involved in neu-

rodevelopmental diseases such as schizophrenia, autism spectrum disorder, and epilepsy [16].

The specific molecular mechanisms that drive synapse elimination remain mostly unknown.

Interestingly, hippocampal astrocytes have been found to contribute to synapse elimination in

a subtype 2 IP3R-dependent manner through the activation of purinergic signaling [113]. On

the other hand, dendritic spines that have contacts with astrocytes have been found to survive

longer and be morphologically more mature than those without such contacts [114]. We argue

that astrocytes, potentially together with microglia, might contribute to the elimination of syn-

apses at L4-L2/3 using t-LTD. Overall, the astrocytic modulation of STDP may be one impor-

tant phase in the development of synapses and functional circuits for mature cortical sensory

processing.

Different forms of plasticity, including the Hebbian type of plasticity, have been studied

both in experimental and computational settings for a long time. There is accumulating evi-

dence that Hebbian framework and plasticity rules may depend on the 3rd and 4th factors,

such as neuromodulatory agents or neuroglial cells [115, 116]. The 3rd factor is usually

included in phenomenological models of synaptic plasticity [115–117]. To the best of our

knowledge, we present here the first computational study that provides strong supportive evi-

dence on the role of astrocytes and their processes as a putative 3rd factor in t-LTD in the

somatosensory cortex during postnatal development. Overall, our results highlight the impor-

tance of neuroglial mechanisms in STDP that may complement and stabilize developing

somatosensory L4 to L2/3 synapses. The synapses in other cortical layers and brain areas as

well as the inhibitory synapses deserve further study, both experimentally and

computationally.

We argue that to understand how the brain functions, we need to understand both the struc-

ture and function of all the different spatial scales, from genes to the whole brain. Although a

great deal of experimental work has been undertaken to study all these different scales, we still

have not solved many of the puzzles the brain holds [118]. Computational modeling tightly

integrated with experimental data is one of the tools that is used more and more to study brain

functions on different scales [52–55, 119]. Modeling approaches bridging different organiza-

tional levels and dynamical scales have been increasingly introduced to describe complex neu-

ronal systems [54]. We have here shown how computational modeling can provide important

additional insights into the newly developed experimental tools and protocols to study astro-

cytes and their genetic, molecular, morphological, and physiological profiling in in vivo [120,

121]. With computational modeling, we can test different hypotheses, ease the planning of

experimental studies, and, especially, explore the role of new mechanisms and their dynamics

(temporal behavior) in different experimental settings and brain phenomena.

Our biophysically and biochemically detailed model provides several predictions that could

be tested in future wet-lab experiments. The experiments should address the influence of
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molecular mechanisms, electrophysiological properties, and patterns of neuronal activity on

the t-LTD time window (Fig 4). An additional testable key prediction of our work is the astro-

cytic Ca2+ signals, shown in Fig 6, by using the same t-LTD induction protocol with different

temporal differences. The testing of these predictions requires a combination of electrophysio-

logical, Ca2+ imaging, and molecular biology techniques. New experimental data could also be

helpful in refining some of the model components, particularly the subcellular ones. There are

new emerging techniques for single cells developed in the intersection of engineering and biol-

ogy [122]. These techniques could be used to refine the description of signal transduction

pathways, especially the calcineurin-related pathway in the presynaptic terminal. The concen-

tration levels of key molecular species and the rates of molecular reactions could be measured

during plasticity induction both in a single cortical neuron and cortical astrocyte using novel

imaging techniques [121]. The NMDAR functioning should as well be further studied in wet-

lab experiments, particularly addressing the type, time courses, and density of presynaptic

NMDARs. There is a great demand for new targets for treating neurodevelopmental disorders

and diseases. Systematic collection of experimental data on the role of how astrocytic signaling

pathways impair synaptic plasticity in developmental brain disorders is crucial. Taken

together, all these future experiments will enable deeper insights into the players of long-term

plasticity in developing circuits in health and disease by providing data for construction and

validation of models.

It is extremely complex to model synaptic plasticity and the underlying biochemical net-

works in a biologically meaningful way. Despite the challenges, we were able to bring about a

combination of experimentally verified neuronal and astrocytic mechanisms and show how

they lead to the emergence of spike-timing-dependent long-term plasticity. Our analysis con-

firms the experimental findings on astrocytes’ ability in setting the temporal difference of t-

LTD at developing somatosensory L4-L2/3 synapses [15]. Furthermore, we predicted with our

in silico synapse model (1) which are the key molecules related to t-LTD, (2) how the molecular

reactions depend on the temporal difference of t-LTD, and (3) what are the time courses of

molecular interactions. The synapse model can be used to design future wet-lab experiments

and, ultimately, to clarify the controversies present in the field. Our study provides both neuro-

nal and neuroglial elements to build sophisticated and biologically relevant large-scale neuron-

astrocyte network models. With such models bridging different scales, we will expect to link

the molecular, synaptic, cellular, and network level dynamics to cognitive phenomena and to

assess the roles of astrocytes in higher brain functions, such as learning, memory, decision-

making, sleep, and, ultimately, consciousness.

Materials and methods

To study the role of astrocytes in modulation of t-LTD, we simulated an L4-L2/3 synapse in

somatosensory cortex. We described major biophysical and biochemical mechanisms for the

one-compartmental presynaptic L4 spiny stellate cell, two-compartmental (soma and den-

drite) postsynaptic L2/3 pyramidal cell, and one-compartmental fine astrocyte process (Fig 1).

We employed the following key assumptions to build our initial hypotheses about the testable

cellular and subcellular mechanisms: (1) Endocannabinoid 2-AG activates astrocytic CB1Rs

and triggers Ca2+ signaling in astrocytes in somatosensory cortex [15, 42, 97], (2) astrocytic

Ca2+-dependent glutamate exocytosis, together with a spillover of glutamate from the synaptic

cleft, has an effect on presynaptic glutamate release by modifying the release probabilities [36,

42, 88, 99], and (3) the link between the glutamate exocytosis from the astrocyte and the pre-

synaptically released glutamate is the protein phosphatase calcineurin which is activated by the

influx of Ca2+ through the presynaptic NMDARs [13, 14]. The model components are
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described using differential equations and validated against experimental data. We stimulated

the synapse model using t-LTD stimulation protocols with a varying temporal difference

between pre- and postsynaptic activity [12]. For clarity, only those differential equations that

we developed or modified from previously published models are given next. A complete

description of the model is given in S1 Appendix.

Presynaptic neuron model

The differential equation for the presynaptic membrane potential can be given as [56]

Cm;pre

dVpre

dt
¼ � ICaNHVA;pre � IK;pre � INa;pre � IL;pre

� ICa;NMDAR;pre � INa;NMDAR;pre þ Iext;pre ;

where Cm,pre is the presynaptic membrane capacitance per unit area, ICaNHVA,pre is the current

density via CaNHVA channels, IK,pre is the K+ current density, INa,pre is the Na+ current density,

IL,pre is the leak current density, ICa,NMDAR,pre and INa,NMDAR,pre are the Ca2+ and Na+ current

densities via NMDARs, and Iext,pre is the stimulus current injected into the presynaptic neuron

per unit area. The presynaptic channels are described by the Hodgkin-Huxley and Goldman-

Hodgkin-Katz formalisms [56, 57] as explained in S1 Appendix. The differential equations for

the gating variables of different currents are given in S1 Appendix [56, 57].

Presynaptic Ca2+ concentrations were elevated by Ca2+ influxes through presynaptic

NMDARs and CaNHVA channels. The differential equations for the presynaptic Ca2+ concen-

tration mediated by CaNHVA channels and by NMDARs are based on a previously published

study [123]. The concentration of Ca2+ mediated by CaNHVA channels ([Ca2+]CaNHVA,pre) acti-

vates vesicle exocytosis and glutamate release from the presynaptic neuron. The concentration

of Ca2+ mediated by NMDARs ([Ca2+]NMDAR,pre) activates presynaptic calcineurin [14], and

the differential equation for the presynaptic calcineurin concentration ([CaN]pre) is given in

S1 Appendix [60].

Calcineurin has been shown to regulate a specific phase of synaptic vesicle cycling, thus

influencing the vesicle release [11, 124–126]. We modeled this effect via a signaling pathway

linking calcineurin to vesicle release and recycling in the presynaptic terminal with the follow-

ing differential equation

d½X�ac;pre
dt

¼ p1;pre

½CaN�n2;pre
pre

Kn2;pre
A;pre þ ½CaN�

n2;pre
pre

Xtotal;pre � ½X�ac;pre
� �

;

where [X]ac,pre is the active concentration and Xtotal,pre is the total concentration of the unspec-

ified protein that affects the vesicle release, p1,pre is the rate constant, KA,pre is the calcineurin

concentration producing half occupation, and n2,pre is the Hill coefficient.

The differential equation for the fraction of releasable presynaptic vesicles (Rrel,pre) was

taken from previously published models [62–65], and the differential equation for the release

probability of presynaptic glutamate vesicles was combined and modified from previously

published equations [62–65] and is given as

dPrel;pre

dt
¼ � kf ;prePrel;pre

þ
X

j

1 � fpre
� � ½Ca2þ�

n1;pre
CaNHVA;pre

Kn1;pre
rel;pre þ ½Ca

2þ�
n1;pre
CaNHVA;pre

1 � Prel;pre

� �
dðt � tjÞ ;

where the fraction (fpre), which is the active concentration ([X]ac,pre) divided by the total
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concentration (Xtotal,pre) of the protein, affects the probability of presynaptic glutamate release.

Through fpre, we modeled the inhibiting role of calcineurin in vesicle exocytosis and glutamate

release [13, 14] in the presynaptic terminal. Parameters kf,pre, Krel,pre, and n1,pre describe the

facilitation rate constant, Ca2+ concentration producing half occupation used in calculation of

glutamate release, and Hill coefficient, respectively. The presynaptic glutamate release occurs

at the first time point t = tj such that [Ca2+]CaNHVA,pre� Cthr,pre and less than 10 ms has passed

from the previous presynaptic membrane potential crossing 0 mV from negative to positive

voltages (Vpre� 0,
dVpre
dt > 0) at that time point tj. The δ function has units of 1

ms.

The differential equation for the glutamate concentration in the synaptic cleft was com-

bined and modified from previously published glutamate equations [63–65] and glutamate-

activated postsynaptic equations related to mGluRs [53] and is given as

d½Glu�syncleft
dt

¼ � kGlu;f;postð1 � fGlu;preÞ½Glu�syncleft

� kmGluR;f ;postð1 � fGlu;preÞ½Glu�syncleft½mGluR�post
þkmGluR;b;post½Glu mGluR�post

þ
X

j

GpreNprePrel;preRrel;pre

kGlu;preNAVsyncleft
dðt � tjÞ ;

where kGlu,f,post, kmGluR,f,post, and kmGluR,b,post are the rate constants for the postsynaptic

mGluR glutamate uptake, and postsynaptic mGluR glutamate binding and unbinding, respec-

tively. Parameter fGlu,pre represents the spillover of glutamate from the synaptic cleft, and thus

the amount 1 − fGlu,pre denotes the part of glutamate in synaptic cleft that activates the postsyn-

aptic receptors. [mGluR]post and [Glu_mGluR]post denote the concentrations of postsynaptic

mGluRs and glutamate-mGluR complex, respectively. Parameters Gpre, Npre, kGlu,pre, NA, and

Vsyncleft denote the number of glutamate per presynaptic vesicle, number of readily releasable

presynaptic vesicles, scaling factor to convert from units M to μM, Avogadro’s constant, and

volume of synaptic cleft, respectively.

We modeled presynaptic GluN2C/D-containing NMDARs [58, 59], because experimental

studies have reported that presynaptic GluN2C/D-containing NMDARs are required for t-

LTD at L4 to L2/3 synapses [9, 12, 15, 89–91]. On the other hand, postsynaptic GluN2B-con-

taining NMDARs are necessary for t-LTP at L4-L2/3 and L2/3-L2/3 synapses, and postsynaptic

GluN2A-containing NMDARs are required in t-LTD at L2/3-L2/3 synapses [9, 12, 15, 89–91,

127]. In our synapse model, presynaptic NMDARs are activated by the glutamate in the extra-

synaptic space and the spillover of glutamate from the synaptic cleft. The differential equations

for the presynaptic variables can be seen in S1 Appendix. Intermediate variables, parameter

values, and initial values needed to solve the presynaptic neuron model are also given in S1

Appendix.

Postsynaptic neuron model

The postsynaptic neuron model had two compartments, a soma and a dendrite, modified

from a previously published study [66]. The differential equations for the membrane potentials

of these two compartments are

Cm;post

dVsoma;post

dt
¼ � IKDR;soma;post � INa;soma;post � INaP;soma;post

� IL;soma;post þ Icoupl;soma;post þ Iext;post
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and

Cm;post

dVdend;post

dt
¼ � IKA;dend;post � ICaLHVA;dend;post � ICaLLVA;dend;post

� INa;dend;post � IL;dend;post � IAMPAR;post

� ICa;NMDAR;post þ Icoupl;dend;post ;

where Cm,post is the membrane capacitance per unit area, IKDR,soma,post is the somatic KDR cur-

rent density, INa,soma,post and INa,dend,post are the somatic and dendritic Na+ current densities,

INaP,soma,post is the somatic NaP current density, IL,soma,post and IL,dend,post are the somatic and

dendritic leak current densities, Icoupl,soma,post and Icoupl,dend,post are the somatic and dendritic

coupling terms, Iext,post is the current injected into the soma per unit area, IKA,dend,post is the

dendritic KA current density, ICaLHVA,dend,post and ICaLLVA,dend,post are the dendritic CaLHVA

and CaLLVA current densities, and IAMPAR,post and ICa,NMDAR,post are the synaptic current den-

sities via AMPARs and NMDARs in the dendrite. Hodgkin-Huxley formalism was used to

describe the behavior of ionic currents [54, 67–69] as explained in S1 Appendix.

The differential equation for the fraction of postsynaptic AMPARs in open state can be

modified from previously published study [70] and is given as

dmAMPAR;post

dt
¼ aAMPAR;postð1 � fGlu;preÞ½Glu�syncleftð1 � mAMPAR;postÞ

� bAMPAR;postmAMPAR;post ;

where αAMPAR,post and βAMPAR,post describe the rate constants of opening and closing postsyn-

aptic AMPARs, respectively, and we can similarly write the equation for NMDARs. Other dif-

ferential equations for the gating variables of different currents related to the membrane

potential in the dendrite and in the soma as well as for the IP3R inactivation gating variable are

given in S1 Appendix [54, 67–69, 72, 73].

The biochemical mechanisms related to mGluRs, the activation of the G-protein signaling

cascade, and the production of endocannabinoids are included in the synapse model to study

the effect of endocannabinoids on the adjacent astrocyte. The differential equations starting

from the mGluR activation to the endocannabinoid 2-AG release were based on previously

published models [53, 71]. Glutamate in the synaptic cleft binds to postsynaptic mGluRs and

induces dissociation of the G protein α subunit bound with guanosine-5’-triphosphate

(GαGTP) from the mGluR-bound G protein with β and γ subunits (Gβγ). Calcium can bind to

PLC, and, in addition, GαGTP can enhance its activity. The postsynaptic Ca2+ equation was

based on previously published models [53, 72–74]. Active PLC produces IP3 and DAG from

phosphatidylinositol 4,5-bisphosphate (PIP2). After Ca2+ binds to DAG lipase, the complex

binds to DAG and catalyzes 2-AG synthesis. The differential equations, intermediate variables,

parameter values, and initial values needed to solve the postsynaptic neuron model are given

in S1 Appendix.

Astrocyte model

More and more evidence about the complexity of astrocyte processes is accumulating in vivo.

Several studies have revealed Ca2+ activity [27, 44, 101, 102, 128–131] and complex molecular

and biochemical mechanisms [40, 42–49] in the main and fine processes of astrocytes. Cur-

rently it is not clear how these signals and the underlying subcellular mechanisms are linked.

These recent findings encouraged us to test the dynamical capacity and the role of astrocytic

Ca2+-dependent glutamate exocytosis in the endocannabinoid-mediated signaling from the
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postsynaptic terminal to the presynaptic terminal to modulate synaptic functions. The fine

astrocyte process in our model is assumed to contain IP3R-mediated Ca2+-dependent gluta-

mate exocytosis [42, 99, 100], similar to earlier published models on astrocyte-neuron

interactions (for a summary of models, see [78, 79]). We modeled IP3R-mediated

Ca2+-dependent glutamate exocytosis as a generic glutamate exocytosis, not as a biochemi-

cally detailed vesicular release due to lacking molecular details [132, 133]. Contradictory

evidence has been presented on the involvement of astrocytic IP3Rs on synaptic plasticity in

hippocampal slices, using transgenic mice that lack the commonly expressed subtype 2 of

the IP3Rs in astrocytes [103, 134]. It is possible that other IP3R subtypes exist in astrocyte

processes [40], indeed knocking out the subtype 2 of IP3Rs has been shown to abolish all

Ca2+ signals in astrocyte soma but only about half in the astrocyte processes [44]. These

recent results about the diversity of IP3R subtypes in astrocyte processes [40] provide addi-

tional justification for our assumption to further examine the significance of the kinetics of

IP3R-mediated Ca2+-dependent glutamate exocytosis in t-LTD in somatosensory cortex [15,

42]. Other mechanisms that couple the endocannabinoids to astrocyte Ca2+ signaling may

coexist in somatosensory cortex in different phases of development and should be studied

in the future, but our study focused on the most modeled and tested Ca2+-dependent mech-

anism in astrocytes.

We modeled Ca2+ and IP3 concentrations, and the gating variable for IP3R inactivation in

the astrocyte based on previously published models [72, 73, 75, 80]. The differential equation

for the astrocytic IP3 concentration was modified to be

d½IP3�astro
dt

¼
IP?

3;astro � ½IP3�astro

tIP3;astro
þ rIP3;astroð½2-AG�post � AG?

postÞ ;

where IP?
3;astro, τIP3,astro, rIP3,astro, [2-AG]post, and AG?

post denote the resting concentration of IP3,

time constant for IP3 degradation, rate constant of IP3 production, concentration of the endo-

cannabinoid 2-AG released from the postsynaptic neuron, and resting concentration of 2-AG,

respectively. The differential equation for the fraction of releasable glutamate resources in the

astrocyte was taken from previously published models [62–65] and the glutamate concentra-

tion in the extrasynaptic space was also taken from the previously published model [64, 65].

The differential equations, intermediate variables, parameter values, and initial values needed

to solve the astrocyte model are given in S1 Appendix.

Stimulation protocols

The following protocols were used [12]:

1. The stimulation protocol before t-LTD induction consisted of five 10 ms long presynaptic

stimuli at a frequency of 0.2 Hz and with an amplitude of 10 mA
cm2 keeping the fraction of pre-

synaptic glutamate release inhibition (fpre) as constant zero (Fig 2A).

2. The t-LTD induction protocol consisted of a 10 ms long postsynaptic stimulus with an

amplitude of 25 mA
cm2 occurring between 10 ms and 200 ms before a 10 ms long presynaptic

stimulus with an amplitude of 10 mA
cm2 and the post-pre pairing was repeated 100 times at a

frequency of 0.2 Hz (Fig 2H). Thus, the temporal difference (ΔT) between the pre- and

postsynaptic stimulus in this study had negative values meaning that the postsynaptic stim-

ulus occurred before the presynaptic stimulus (ΔT had values between −10 ms and −200

ms). The initial value of fpre in these simulations was zero, but it increased during the stimu-

lation protocol to above zero depending on ΔT used in the protocol.
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3. The stimulation protocol after t-LTD induction consisted of five 10 ms long presynaptic sti-

muli at a frequency of 0.2 Hz and with an amplitude of 10 mA
cm2 (Fig 2O) keeping fpre as con-

stant value that is the final simulation value obtained from the simulation with the t-LTD

induction protocol. Thus, the fraction fpre had different constant values depending on ΔT

used in the t-LTD induction protocol (Fig 2H).

Data analysis

Data was analyzed in MATLAB1. We calculated the amplitude of the postsynaptic EPSP in the

soma during the first presynaptic stimulus in the stimulation protocol before t-LTD induction

and also for every ΔT in the stimulation protocol after t-LTD induction. To obtain the EPSP per-

centage, we normalized for every ΔT the EPSP amplitude occurring after t-LTD induction by the

EPSP amplitude occurring before t-LTD induction, and multiplied them by 100%. Furthermore,

we calculated the ΔEPSP percentage for every ΔT as the percentage change between the somatic

EPSP amplitude occurring before t-LTD induction and the somatic EPSP amplitude occurring

after t-LTD induction. Thus, the ΔEPSP percentage was obtained by subtracting the somatic

EPSP amplitude occurring before t-LTD induction from the somatic EPSP amplitude occurring

after t-LTD induction, dividing this change with the somatic EPSP amplitude occurring before t-

LTD induction, and finally multiplying by 100%. The shorter way to calculate the ΔEPSP per-

centage was to subtract 100% from the EPSP percentage. The experimental ΔEPSP data for com-

parison was calculated from the normalized EPSP slopes and obtained from the literature [12].

We calculated the Ca2+ peak values, peak times, and oscillation frequencies during the t-

LTD induction protocol for every ΔT. We divided the 500 s long post-pre pairing simulation

data into 5 s long sweeps, where each sweep represents one post-pre pairing (0.2 Hz stimulus).

We reorganized the peak times of Ca2+ oscillations into the 5 s long sweeps. Then we reorga-

nized the number of peaks occurring in ten 0.5 s long bins. We obtained the probability of

astrocytic Ca2+ peaks by normalizing the reorganized data by the total number of peaks [15].

Simulation details and code

Simulation code was written in Python 3.7. The code is available in the ModelDB [135] (http://

modeldb.yale.edu/266819) and in the author’s GitHub page (https://github.com/

TiinaManninen/synapsemodel). State variables were updated using the forward Euler method

with 0.05 ms step size.

Supporting information

S1 Appendix. Full description of the synapse model.

(PDF)
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