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Abstract 

Objective:  Practice effects on cognitive tests obscure decline, thereby delaying detection of 

mild cognitive impairment (MCI). This reduces opportunities for slowing Alzheimer’s disease 

progression and can hinder clinical trials. Using a novel method, we assessed the ability of 

practice-effect-adjusted diagnoses to detect MCI earlier, and tested the validity of these 

diagnoses based on AD biomarkers.  

Methods:  Of 889 Alzheimer’s Disease Neuroimaging Initiative participants who were 

cognitively normal (CN) at baseline, 722 returned at 1-year-follow-up (mean age=74.9±6.8). 

Practice effects were calculated by comparing returnee scores at follow-up to demographically-

matched individuals who had only taken the tests once, with an additional adjustment for 

attrition effects. Practice effects for each test were subtracted from follow-up scores. The lower 

scores put additional individuals below the impairment threshold for MCI. CSF amyloid-beta, 

phosphorylated tau, and total tau were measured at baseline and used for criterion validation.   

Results:  Practice-effect-adjusted scores increased MCI incidence by 26% (p<.001). Adjustment 

increased proportions of amyloid-positive MCI cases (+20%) and reduced proportions of 

amyloid-positive CNs (-6%) (ps<.007). With the increased MCI base rate, adjustment for 

practice effects would reduce the sample size needed for detecting significant drug treatment 

effects by an average of 21%, which we demonstrate would result in multi-million-dollar savings 

in a clinical trial. 

Interpretation:  Adjusting for practice effects on cognitive testing leads to earlier detection of 

MCI. When MCI is an outcome, this reduces recruitment needed for clinical trials, study 

duration, staff and participant burden, and can dramatically lower costs. Importantly, biomarker 

evidence also indicates improved diagnostic accuracy. 
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Introduction 

Alzheimer’s Disease (AD) is a leading cause of death in adults over age 651 and an estimated 1 

in 85 people will be living with the disease by 2050.2 Give the protracted AD prodromal period,3 

emphasis is now on clinical trials that begin with cognitively normal (CN) individuals who may 

progress to mild cognitive impairment (MCI).3-6 Delayed detection of MCI is essentially 

misdiagnosis, i.e., labeling someone as CN when they, in fact, have MCI. It impedes 

identification of meaningful drug effects and may lead to misinterpretation of findings in clinical 

trials.7,8 Detection of MCI as early as possible is thus critical.  

Repeat cognitive assessments are necessary for accurately determining transitions from 

CN to MCI or MCI to dementia. However, repeat assessments are impacted by practice effects 

(PEs) that mask true decline and compromise diagnostic accuracy.9,10 PEs have been found 

across multiple cognitive domains and test-retest intervals as long as 7 years in older adults.10,11 

PEs after 3-6 months have been observed in those with MCI and even mild AD.12,13  

A common view of PEs is that they only occur when scores increase over time.9,13,14   

However, PEs can exist even when there is overall decline, as they may still cause 

underestimation of decline (Figure 1).9,13 In such situations, failure to account for PEs may delay 

MCI diagnosis because PEs would inflate scores above diagnostic impairment thresholds.9,10,15,16  

Despite their importance, PEs are largely ignored in longitudinal studies, clinical trials, 

and clinical practice.9,13,17-19 A review of PEs in MCI and AD samples noted considerable 

evidence of PEs (i.e., increased scores) in clinical trials.13 However, despite recognition that 

accounting for PEs may potentially improve clinical trials and diagnostic accuracy, there are 

minimal empirical data on PEs in clinical trials.9,13,14  

In a 6-year follow-up, MCI incidence doubled (4.6% vs 9.0%) when scores were adjusted 
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for PEs via a replacement-participants method that is able to gauge PEs even when performance 

declines.10 Increased incidence means earlier detection, but it is crucial to determine if it truly 

represents more accurate diagnosis rather than methodological artifact since PE adjustment 

lowers scores.  

Here, we employed a novel approach by identifying the equivalent of replacement 

participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In individuals who 

were CN at baseline, we hypothesized that: 1) we would observe PEs at the 12-month follow-up; 

and 2) accounting for PEs would increase the number of MCI diagnoses at follow-up. To 

demonstrate criterion validity, we hypothesized that: 3) PE-adjusted diagnoses would result in 

more AD biomarker-positive MCI cases and fewer biomarker-positive CN individuals than PE-

unadjusted diagnoses. Finally, we completed power/sample size calculations, hypothesizing that 

4) accounting for PEs would substantially reduce the number of participants needed for clinical 

trials. As a real-world example, we applied these estimates to a hypothetical trial with 

progression to MCI as a key outcome using recruitment data from a major clinical trial. Earlier 

and more accurate detection should thus have a substantial impact on clinical trials by reducing 

study duration, attrition, participant and staff burden, and overall cost.  

 

Participants and Methods  

Participants 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging, positron emission tomography, other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 
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progression of MCI and early AD. For up-to-date information, see www.adni-info.org. 

Participants from the ADNI-1, ADNI-GO, and ADNI-2 cohorts were included. 

We identified 889 individuals who were CN at baseline; 722 of them returned for a 12-

month-follow-up. Mean educational level of returnees was 16 years (SD=2.7), 47% were female, 

and mean baseline age was 74.9 years (SD=6.8). All participants completed neuropsychological 

testing at baseline and 12-month follow-up. After accounting for PEs, we re-diagnosed returnees 

at their 12-month follow-up as CN or MCI. 

 

Procedures  

Six cognitive tests were examined across the test-retest interval (mean=12.21 months; 

SD=0.97). Memory tasks included the Wechsler Memory Scaled-Revised, Logical Memory 

Story A delayed recall, and the Rey Auditory Verbal Learning Test delayed recall. Language 

tasks included the Boston Naming Test and Animal Fluency. Attention-executive function tasks 

were Trails A and Trails B. The American National Adult Reading Test provided an estimate of 

premorbid IQ. Participants completed the same version of tests at baseline and 12-month visits. 

PE-adjusted and unadjusted scores were converted to z-scores based on independent 

external norms that accounted for age, sex, and education for all tests except the AVLT.20  

Having found no external norms for the AVLT that were appropriate for this sample and 

accounted for age, education and sex, the AVLT was z-scored based on the ADNI participants 

who were CN at baseline (n=889). AVLT demographic corrections were based on a regression 

model that followed the same approach as the other normative adjustments. Beta values were 

multiplied by an individual’s corresponding age, education, and sex. The products were then 

removed from the AVLT raw scores. These adjusted AVLT scores were then z-scored.  
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We focused primarily on MCI diagnosed according to the Jak-Bondi approach.7,8,21 MCI 

was diagnosed when scores on ≥2 tests within the same cognitive domain were each >1 SD 

below normative means. Compared to MCI classifications using the standard Petersen criteria in 

ADNI, participants meeting Jak-Bondi criteria for MCI were previously shown to be more likely 

to progress to dementia and less likely to revert to CN, and demonstrated higher proportions with 

abnormal biomarkers and APOE-�4 alleles.7,8 To test whether the results were specific to a 

particular diagnostic approach, we performed a second set of analyses based on Petersen MCI 

criteria.22 

Biomarkers included cerebrospinal fluid amyloid-beta (Aβ), phosphorylated tau (p-tau), 

and total tau (t-tau) levels collected at baseline. The ADNI biomarker core (University of 

Pennsylvania) used the fully automated Elecsys immunoassay (Roche Diagnostics). Sample 

collection and processing have been described previously.23 Cutoffs for biomarker positivity 

were: Aβ+: Aβ<977 pg/mL; p-tau+: p-tau>21.8 pg/mL; t-tau+: t-tau>270 pg/mL 

(http://adni.loni.usc.edu/methods).24,25 There were 521 returnees with Aβ, 518 with p-tau, and 

519 with t-tau data. 

 

Practice effect calculation and statistical analysis 

 Practice effects were calculated using a modified version of a replacement-participants 

method.10 This method was selected in part because a meta-analysis noted that almost all studies 

of PEs considered only observed performance increases (Figure 1A), and recommended the 

replacement-participants methods in situations where decline is expected.9,15 A more recent 

review paper also posited that PEs can still exist when there is a decline in observed 

performance, but did not cite empirical evidence for that claim.13 In some situations  PEs will not 
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necessarily manifest as improvements for middle-aged and older adults, particularly for 

individuals on an AD trajectory.26 The replacement-participants approach involves recruiting 

participants for testing at follow-up who are demographically matched to returnees. The only 

difference between the groups is that replacements are taking the tests for the first time whereas 

returnees are retaking the tests. Comparing scores at follow-up between returnees and 

replacement participants (with additional adjustment for attrition effects) allows for detection of 

PEs when observed scores remain stable (Figure 1B) and even when they decline (Figure 1C). In 

both scenarios, scores would have been lower without repeated testing. Thus, the goal of the 

replacement method is to create follow-up scores over retest intervals that are free of PEs and 

comparable to general normative data. By design, this method is equally applicable for any 

sample and any test because the returnees and replacements are always matched on demographic 

characteristics, test measures, and retest interval.  

We are frequently asked how the replacement method compares to other PE methods, 

especially those that calculate PEs at an individual level. While understandable, in our view these 

questions are somewhat misguided as the methods address different issues. Studies of very short-

term (e.g., 1 week) PEs do not use replacement participants but do typically involve a 

comparison sample also retested tested after 1 week. Individuals with smaller 1-week PEs—

primarily on memory tests—have worse baseline ability, more abnormal baseline biomarkers, 

and increased risk for future decline and progression to dementia.14,27-29 Thus, the short-term PE 

method is useful for predicting relative future decline. However, short-term PEs are not a 

measure of an individual’s level of functioning at follow-up, especially if the follow-up is after a 

long retest interval. Short-term PEs are therefore uninformative about when a diagnostic 

impairment threshold is crossed. In contrast, the replacement method is not intended to predict 
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who is more likely to become impaired, but it can alter when an individual is defined to have 

crossed a diagnostic threshold at follow-up. It thus has the potential for earlier detection of 

diagnosis. 

Bootstrapping (5,000 resamples, with replacement) was used to calculate PE values for 

each cognitive test. As shown in Figure 2, the following steps were completed at each iteration of 

the bootstrap: participants with valid baseline data were identified (n=889). Box 1. Participants 

who also had 12-month follow-up data comprised the returnees (n=722). Box 2. A random 

subsample (n=100) of returnees was selected. Box 3 Baseline data for these participants were 

labeled as ReturneesT1; follow-up data for these participants were labeled ReturneesT2. Box 4. 

The 100 ReturneesT1 participants were removed from the pool of baseline data, leaving 789 

remaining baseline participants. Box 5. From these remaining 789 baseline participants,100 

potential pseudo-replacements were selected. This selection was random, except that the 

potential pseudo-replacements had to be within the age range of the 100 ReturneesT2 participants. 

Box 6. We refer to these as pseudo-replacements because ADNI did not recruit matched 

replacement participants for this purpose. Through an iterative process that added and/or 

subtracted participants one at time, the potential Pseudo-ReplacementsT1 (N=100) were matched 

at a mean level to the ReturneesT2 sample. These groups were constrained to be similar (ps >.70) 

on comparisons of age, birth sex, education, and premorbid IQ. These factors were chosen 

because they may affect cognition and/or PE magnitude.9,10 Once a mean-matched sample was 

found, it was labeled Pseudo-ReplacmentsT1, and this sample ranged in size from 80 to 120 

participants. It did not always equal 100 because a different number of individuals might need to 

be removed/added at different iterations in order to achieve mean level matching. The Pseudo-

ReplacmentsT1 sample and the ReturneesT2 sample were demographically matched and only 
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differed in that the ReturneesT2 had taken the tests before while Pseudo-ReplacmeentsT1 had 

taken the tests only once. Box 7. After the—on average—100 Pseudo-ReplacmentsT1 were 

removed from the pool of baseline data, there were an average of 689 remaining baseline 

participants (Box 4 minus 100). Box 8. 100 potential baseline participants who were age-

matched (p >.70) to the returnees at baseline (ReturneesT1) were selected from that pool. Box 9. 

After successful matching, this group of participants was labeled Age-Matched BaselineT1. The 

age-matched baseline sample is a subset of participants at baseline who were compared with 

returnee baseline scores in order to gauge attrition effects.  

Practice effects were calculated by comparing the mean scores of these subsamples at 

each bootstrapping iteration as follows:  

Difference score = ReturneesT2 – Pseudo-ReplacementsT1 

Attrition effect = ReturneesT1 – Age-Matched BaselineT1 

Practice effect = Difference score – Attrition Effect 

The difference score represents the sum of the practice effect and the attrition effect. The attrition 

effect accounts for the fact that individuals who return for follow-up may be, on average, higher-

performing or healthier than those who drop out. Since it is not possible to obtain an estimate of 

the mean outcome of the full baseline sample at the follow-up visit, we estimated an attrition 

effect by comparing returnees at baseline to the overall baseline sample for participants of a 

similar age at baseline. The bootstrapped nature of this approach results in an attrition effect that 

is matched at each iteration rather than an attrition effect based on those who truly attritted in 

ADNI. This improves the accuracy of each PE calculation because an individual iteration may be 

biased if the randomly selected returnees’ scores (ReturneesT1) are significantly higher or lower 

than those of the age-matched baseline sample. Additionally, the age-matched baseline is 
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randomly chosen and averaged across the entire bootstrapped analysis. This subsample retains 

the same distribution of returnees and attritors as the full baseline sample. Finally, the PE for 

each test equals the difference score minus the attrition effect.10,16 The PE for each test was then 

subtracted from each individual’s observed (unadjusted) follow-up test score to provide PE-

adjusted raw scores.  

In summary, this method identifies a comparison sample (pseudo-replacements) who are 

similar in age and other demographic characteristics to the returnees. The only difference 

between these samples is that returnees have taken the test before and pseudo-replacements have 

not. Because this analysis uses completed data, it requires no new participant recruitment, 

allowing the application of a replacement method of PE-adjustment to already completed studies. 

It is important to note that each participant’s baseline score could be placed in the matched 

baseline, the returnee baseline (if they also returned for the follow-up), or the pseudo-

replacement sample depending on the bootstrap iteration. However, if that score was included in 

the pseudo-replacement sample, the participant was removed from the returnee sample and the 

matched-baseline sample for that iteration.  

The samples are restricted at each iteration (approximately 100 pseudo replacements, 100 

returnees, and 100 matched-baseline participants) in order to provide highly matched-groups. 

This matching preserves properties of statistical methods so they can be applied to statistically 

evaluate simulation results.  All statistical methods require independence among observations or 

clusters of observations (such as baseline and follow-up data for each subject).  If independence 

is severely compromised, for example, by using a larger sampling rate, corrections of asymptotic 

variance become necessary.30  As we are primarily interested in demonstrating presence of PEs 

(direction and magnitude) and accuracy of such evidence depends only on number of bootstrap 
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replications, we used a reasonable group size (n = 100) to ensure stable estimates of PEs at each 

bootstrap iteration and applications of asymptotic variance without correction. The bootstrapped 

nature of this method allowed for a normal distribution of PEs.  

Adjusted raw scores at follow-up were converted to z-scores, which were used to 

determine PE-adjusted diagnoses. In other words, determination of whether an individual was 

below the impairment threshold was now based on the PE-adjusted scores. McNemar χ2 tests 

were used to compare differences in the proportion of individuals classified as having MCI 

before and after adjusting for PEs, and to determine if PE-adjusted diagnoses increased the 

number of biomarker-negative CN participants and biomarker-positive MCI participants. 

Cohen’s d was calculated for each PE by comparing unadjusted and adjusted scores. 

 To determine the impact of PE adjustment in a clinical trial, we calculated sample size 

requirements for a hypothetical clinical trial aimed at reducing progression to MCI at 1-year 

follow-up in amyloid-positive CN individuals using MCI incidence rates from the present study. 

We performed logistic regressions with drug/placebo as the predictor and diagnosis at follow-up 

as the outcome. Sample size estimates were determined across a range of drug effects (10%-40% 

reduction in MCI diagnoses) with α=.05 and power=.80. We then used this information to 

estimate the effects on required sample size and cost for a variant of the Anti-Amyloid Treatment 

in Asymptomatic Alzheimer’s Disease (A4) Study given α=.05, and power=.80. The A4 Study 

recruited amyloid-positive CN individuals to investigate whether anti-amyloid therapy can delay 

cognitive decline.3 Progression to disease is a common and meaningful outcome for clinical 

trials. For our hypothetical variation of the A4 Study, the outcome of interest was progression to 

MCI at 1 year rather than just comparing cognitive decline. These analyses were completed 

within the powerMediation package in R v3.6.1.31,32 
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RESULTS  

 PE magnitudes varied within and between cognitive domains (Table 1). PE-adjusted 

scores resulted in 113 (16%) converters to MCI; unadjusted scores resulted in 90 (12%) 

converters (Table 2A). Thus, there were 26% (p<.001) more individuals diagnosed with MCI 

after one year when using PE-adjusted scores (Table 2A). Table 2B shows that adjusting for PEs 

significantly increased the number of biomarker-positive participants who progressed to MCI 

(+15% to +20%) and decreased the number of biomarker-positive participants who remained CN 

(-5% to -6%). In particular, there was a 20% increase in amyloid-positive MCI cases and a 6% 

decrease in amyloid-positive CNs. These biomarker results suggest that PE-adjustment improved 

diagnostic accuracy. Table 3 shows the results when diagnoses were based on Petersen criteria.  

As can be seen in Table 3, although the proportions changed slightly, the pattern is the same as it 

was for the Jak-Bondi criteria. Moreover, all significant differences remained significant 

regardless of which diagnostic approach was implemented. 

 Next, we showed that the number of participants necessary to determine significant drug 

effect across all effect sizes was substantially reduced when accounting for PEs (Figure 3). This 

is likely due to the increased base rate and more accurate diagnoses of PE-adjusted incident MCI. 

On average, adjusting for PEs reduced the number of participants required by 21.1% (533 

participants) across effect sizes (range=114-2291 participants). The inset within Figure 3 focuses 

on differences for hypothetical PE-adjusted and unadjusted samples of ~1,000.  

We then applied our findings to recruitment data from the A4 Study33 (Figure 4A). 

Obtaining the cognitively normal, amyloid positive A4 sample of 1323 required the recruitment 

of 5.11 times as many people for initial screening (n=6763) and 3.39 times as many people to 

undergo amyloid PET imaging (4486).33 Our calculations showed that this sample size of 1323 
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would be powered to detect a 27.4% drug effect on incident MCI outcomes. Due to the higher 

base rates of incident MCI at follow-up after PE adjustment, calculations from the R 

powerMediation package showed that only 1045 participants would be required. As shown in 

Figure 4A, the number of initial screens and amyloid PET scans would, in turn, be substantially 

reduced to 5340 and 3543, respectively. Figure 4B also shows the range of sample size 

reductions for differing drug effect sizes for initial screening (reduced ns from 583 to 11711) and 

amyloid PET imaging (reduced ns from 386 to7768). As estimated drug effect sizes gets smaller, 

the reductions in necessary sample size, and the cost reductions that those reductions would 

engender, get substantially larger.  

 

DISCUSSION 

Accounting for cognitive PEs resulted in a 26% increase in 12-month MCI incidence. 

The increase in biomarker-positive MCI (+20% amyloid-positive) and reduction in biomarker-

positive CN participants (-6% amyloid-positive) supports diagnostic validity. Therefore, this 

approach reduces the observed discrepancy between biologically- and clinically-based 

diagnoses.34 Importantly, given 26% more cases in only 12 months, these results confirm our 

hypothesis that adjusting for PEs using this method leads to earlier detection of MCI. Individuals 

diagnosed with MCI based on PE-adjusted scores—who would otherwise have been considered 

CN—would be expected to progress to AD dementia sooner than true CN participants. 

Progression at later follow-ups (24 months, 36 months) was consistent with this hypothesis, but 

sample sizes were too small for statistical comparisons.  

Results of the present study suggest that failure to account for PEs leads to a substantial 

number of false negatives as 18% of biomarker-positive MCI cases were labeled as CN at 
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follow-up. Accounting for PEs also appeared to improve accuracy, reducing false positives by 

5%. As such, not adjusting for PEs will weaken our ability to accurately determine the effect of 

novel treatments and to compare biomarker differences between cases and controls, a goal of 

current research guidelines.35  

To quantify how clinical trials would be improved by PE adjustment, we estimated 

sample sizes necessary to power a simulated clinical drug trial. Other things being equal, 

detecting differences or making predictions is less accurate for low base rate events,36 and our PE 

adjustment increased the base rate of MCI at 12-month follow-up. Progression to disease is the 

most common outcome of interest in clinical trials, and results indicate that smaller samples 

would be needed for clinical trials with a PE-adjusted endpoint. Across effect sizes, there was an 

average reduction of 21% in necessary sample size when using PE-adjusted diagnoses; sample 

size reductions were greater with smaller treatment effect sizes (Figures 3, 4a). Based on 

screening/recruitment numbers in the A4 Study,33 Figure 4A showed that determining conversion 

to MCI using PE-adjusted scores would mean 1423 fewer initial screenings and 943 fewer 

amyloid PET scans. At $5000 per scan, cost savings for that alone would be $4.72 million. Initial 

screening—which included cognitive testing, clinical assessments, and APOE genotyping—for 

1423 individuals would result in considerable additional cost savings, estimated at $3.35 million. 

Cost saving will be partially offset by needing additional participants to serve as replacement 

participants for calculating PEs. In prior work, 150-200 replacement participants was sufficient.10 

With replacements for 3 follow-up sessions with 200 participants each, we estimated additional 

costs of $615,000. Estimated overall savings would be $7.45 million. Moreover, PE-adjusted 

diagnoses result in earlier detection, which mean shorter follow-up periods. Reduced study 

duration would lead to still further cost reductions and benefits including lower participant and 
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staff burden, fewer invasive procedures, and likely reduced attrition.  

Delayed detection of MCI is extremely costly from a public health perspective. In 2018, 

the Alzheimer’s Association projected an estimated U.S. national savings of $231 billion by 

2050 if those on the AD-trajectory were diagnosed during the MCI, rather than the dementia, 

stage.1 In clinical practice, the MCI stage represents a critical time for preparation and 

intervention for individuals who will progress to AD-related dementia. If PEs delay detection of 

MCI, clinicians may also be providing inadequate care to those most at risk.  

A 2012 meta-analysis and 2015 review described several approaches to estimating 

PEs.9,13 One method is not necessarily better than another, and some simply address different 

issues. Almost all non-replacement approaches are only informative about relative differences or 

focus on change scores rather than producing stand-alone follow-up scores adjusted for PEs. One 

approach is to retest participants after a short interval and use the second testing as the 

comparison for future assessments. Individuals with smaller PEs at 1 week are more likely to 

have worse baseline biomarker profiles and experience steeper 1-year decline compared to other 

participants.14,28,29 However, this method requires an additional test session for the entire sample. 

Other studies have found that additional baseline tests improves prediction of progression to 

MCI 7,37-41 Whether complete retesting after a week improves prediction over the less 

burdensome and less costly inclusion of additional measures at baseline testing remains to be 

determined. Similarly, regression-based methods require a large, normative change sample.  

Change is assessed relative to that sample, but PEs are still unknown in the normative sample. 

Both methods gauge only relative change.  They cannot be used for absolute diagnostic cutoff 

thresholds, and thus cannot have any effect on when a person crosses an impairment threshold 

resulting in conversion to MCI. Nor can they calculate PEs in the presence of a mean-level 
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decline over time, which is expected in older adults. The replacement-participants method 

requires a small number of additional participants relative to an entire study sample. It generates 

adjusted scores at follow-up that are not obscured by age-related decline.  The other methods can 

compare trajectories of people already diagnosed as MCI or CN, but only the replacement 

method—which generates absolute PE-adjusted scores—can alter when MCI is detected. 

Although the replacement-participants method reduces all scores, it does not change individual 

differences in any way. Thus, it also allows for comparison of trajectories. 

Surprisingly, we found no practice effect on the AVLT. This may have occurred because, 

despite receiving the same version at the 12-month visit, some participants also completed an 

alternate version of the AVLT at a 6-month visit. The reduced 12-month practice effect for 

AVLT is consistent with the well-known phenomenon of retroactive interference, i.e., the 

different 6-month version interfering with the PE from exposure to the baseline/follow-up 

version. Prior studies, including our own, have consistently found PEs on the AVLT or similar 

episodic memory measures.9,10,16 Thus, the present estimate of the impact of PEs may be a 

conservative one. It is also noteworthy that despite the lack of an apparent AVLT practice effect 

in the current study, we still found an increase in amnestic MCI cases after adjusting for PEs. 

This highlights the importance of including more than one test in each cognitive domain as 

specified in the Jak-Bondi approach.7,8,10,37 Finally, we note that use of alternate forms is 

considered suboptimal as even well-matched forms are not equivalent and add an additional 

source of test-retest variance.42 

The replacement-participant method is not dependent on any particular MCI diagnosis 

approach. Percent changes differed for Jak-Bondi and Petersen criteria, but all significant 

differences remained for both diagnostic approaches.  
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We acknowledge some limitations of the study. ADNI is not a population-based study 

and is not representative of the general population in terms of sociodemographic factors. 

However, replacement methods have been shown to be effective in other studies, including 

population-based samples.10,16 The method currently only examines PEs across 2 time points. As 

PEs persist over time, their magnitude may differ with additional assessments. We do not know 

what the effects would be in cases with multiple follow-up visits. Future studies will benefit from 

PE adjustments that are able to separate age-related decline from PEs over multiple retest visits. 

As noted, including matched replacements for third and fourth visits could still be cost-effective. 

Some participants who do not qualify after initial screening or those who do not agree to 

biomarker assessment might still qualify to serve as replacement participants. Ultimately, the 

field would benefit from the development of PE norms, particularly those stratified by age and 

testing interval, which could obviate the need for replacement participants. Importantly, the PE 

magnitudes in these analyses should not be directly used in any other study. Our results and 

those of other studies suggest that PEs are often sample specific and that the need to be 

calculated for each study.9,27 The above sample size estimations are a hypothetical example of 

how the method may affect a clinical trial. The goal was to provide more empirical evidence 

supporting the use of PE-adjustment, as suggested by many other studies.13,14 

In summary, adjusting for PEs results in earlier and more accurate detection of MCI. 

Reluctance to include additional replacement-participant testing is understandable as it increases 

cost and participant burden. In the end, however, it would substantially reduce the necessary 

sample size, follow-up time, burden, and cost for clinical trials or other longitudinal studies. 

Although the magnitude of PEs may not be generalized from one sample to another, the method 

is appropriate for all ages and retest intervals because replacements are always matched on these 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.03.20224808doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.03.20224808
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
18

features. The method is also not dependent on any specific approach to the diagnosis of MCI. 

Additionally, have shown that the replacement-participant method can be adapted for ongoing or 

already completed studies that did not specifically recruit matched-replacement participants. 

Given the public health importance of the earliest possible identification of AD pathology, it is 

strongly recommended that accounting for PEs be a planned component of clinical trials, routine 

clinical work, and longitudinal studies of aging and aging-related cognitive disorders. 
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Tables and Figures 
 
Table 1: Descriptive statistics and calculated practice effects for tests among participants who 
were cognitively normal at baseline  

 Memory 
Attention/Executive 

Function 
 

Language 
Raw mean score  

(SD) RAVLT 
Logical 
Memory Trails A Trails B 

Boston 
Naming 

Category 
Fluency 

All  
baseline 

8.25  
(3.89) 

10.74 
(4.28) 

34.57 
(10.76) 

87.49 
(40.27) 

27.49 
(2.21) 

20.05  
(5.25) 

Returnees Baseline 
8.19  

(3.69) 
10.53 
(4.22) 

34.43 
(10.87) 

86.21 
(38.51) 

27.46 
(2.14) 

20.08  
(5.28) 

Returnees 
Follow-Up 

8.43  
(4.47) 

11.65 
(4.83) 

25.43 
(12.63) 

86.22 
(43.73) 

28.02 
(2.13) 

20.17  
(5.26) 

Replacements 
Follow-Up, 

8.16  
(3.93) 

10.78 
(4.37) 

34.91 
(10.74) 

89.78 
(42.77) 

27.46 
(2.38) 

19.91  
(5.20) 

Attrition  
Effect -.06 -.21 -.17 -.99 -.03 .03 

 
Practice 
Effect 

 
-.06 

 
1.08 

 
-9.94 

 
-2.89 .58 .23 

 
Cohen’s  

d .01 .22 .79 .07 .27 .04 
“All baseline” refers to all cognitively normal participants’ first assessment, including those that did not 

return for a 12-month visit. “Returnee Baseline” refers to baseline test scores for the portion of 

participants who returned for the 12-month follow-up visit (n=722). “Returnee Follow-Up” refers to 12-

month scores for the portion of participants who returned for the 12-month follow-up (n=722). 

“Replacement Follow-up” refers to the pseudo-replacement scores. The scores for memory tasks 

indicate the number of words remembered at the delayed recall trials. Scores on the attention/executive 

functioning tests indicate time to completion of task. On these tasks, higher scores indicate worse 

performance. Scores on the Boston Naming Task indicate number of correct items identified; scores on 

Category Fluency indicate number of items correctly stated. Practice effects and attrition effects are in 

raw units. As such, the negative practice effects and attrition effects for the Trails tasks demonstrates 

that practice decreased time (increased performance). Cohen’s d is given for the difference between PE-

adjusted and unadjusted scores of returnees at follow-up. RAVLT= Rey Auditory Verbal Learning Test. 
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Practice Effects 

 

 
Table 2 Impact of practice effects 
 
A. Progression from cognitively normal to MCI 
  # of cases, 

based on 
PE-unadjusted 
cognitive scores  

# of cases,  
based on 

PE-adjusted 
cognitive scores 

 
 

Difference 
(%) # of cases 

 
 
 

χ
2; p 

MCI diagnosis 90 113 +23 (+26%) 20.0; <.001 

Amnestic domain impaired 74 88 +14 (+19%) 12.1; .005 

Attention/Executive 
domain impaired 

15 26 +11 (+73%) 9.01; .003 

Language domain impaired 11 14 +3 (+27%) 1.3; .25 
 
 
B. Concordance of MCI diagnosis and biomarker-positivity 
 
 
 
 
Converters to MCI 

# of returnees 
who are 

biomarker-positive 
and MCI 

(PE-unadjusted) 

# of returnees 
who are 

biomarker-positive 
and MCI 

(PE-adjusted) 

 
 
 

Difference 
(%) # of cases 

 
 
 
 

p 
Aβ+ 44 53 +9 (+20%) .007 

p-tau+ 47 56 +9 (+19%) .031 

t-tau+ 40 46 +6 (+15%) <.001 
 
 
 
Stable CN 

# of returnees who 
are biomarker-
positive and CN 
(PE-unadjusted) 

# of returnees who 
are biomarker-
positive and CN 
(PE-adjusted) 

 
 

Difference 
(%) # of cases 

 
 
 
p 

Aβ+ 157 148 -9 (-6%) .007 

p-tau+ 175 166 -9 (-5%) .031 

t-tau+ 122 116 -6 (-5%) <.001 
Follow-up diagnoses were made with practice effect-unadjusted (PE-unadjusted) or practice effect-

adjusted (PE-adjusted) scores. The difference in the number of cases is calculated by subtracting the 

number of cases, based on PE-unadjusted scores, from the number of cases based on PE-adjusted scores. 

The percent difference (%) in number of cases is the differences in number of cases divided by the 

number of cases based on PE-unadjusted cognitive scores (e.g., 26%=23/90). χ2 is McNemar χ2. 

Individuals could be impaired in more than one domain. Consequently, the sum of impaired individuals 

within each domain is greater than the total number of MCI cases. The MCI diagnosis row counts an 

individual only once, even if they are impaired in more than one domain.   
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1A 1B 1C 

 
 

 
Figure 1: Practice effects with and without true decline. The solid line represents true cognitive ability. 

The diagonal dashed line represents observed performance, which is inflated due to a practice effect 

(vertical arrow). 1A: Typically observed practice effect: an individual’s score increases from baseline to 

follow-up, demonstrating a typical practice effect. 1B: Practice effect in the context of cognitive decline. 

In this scenario, an individual’s score is decreasing overtime. A practice effect still exists but is masked 

by cognitive decline such that the individual’s performance appears to be stable but is actually better 

than it would have been without previous exposure to the test. 1C: Practice effects impair detection of 

MCI. In this situation, an individual has declined below an MCI cutoff. However, practice effects are 

inflating their score so that they now fall above the MCI cutoff and will be diagnosed as cognitively 

normal at follow-up.  

 
 

MCI 
Cutoff 

5
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Practice Effects 

 

 
 
 

 
Figure 2: Participant selection and practice effect calculation within a single iteration of the pseudo-replacement method. Practice effects were cal

by comparing the mean scores of these subsamples using the equations provided below the flowchart. The difference between the mean of Returne

scores and the mean of the matched Pseudo-ReplacementsT1 scores equates to the sum of practice effect and attrition effect. The attrition effect acc

for the fact that individuals who return for follow-up may be a higher performing or healthier than the full baseline sample. The practice effect for 

test equals the difference score minus the attrition effect. 
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Practice Effects 

 

 
Figure 3: Effect of practice effect-adjusted vs unadjusted scores on a hypothetical clinical trial. 
Comparison of estimated sample sizes (Y-axis) necessary for detecting a significant drug effect (X-axis). 
The drug effect is operationalized as percent reduction in mild cognitive impairment (MCI) diagnoses at a 
1-year follow-up between the treatment group and the placebo group. For example, a drug effect of 30% 
means that 30% more participants remained cognitively normal when treated with the drug than when give
the placebo.   
The red line represents a trial that uses MCI incidence rates based on practice effect (PE)-adjusted 
diagnoses and the blue line represents a trial that uses incidence rates based on unadjusted diagnoses. MCI
incidence rates were based on the subsample of participants from the present study who were amyloid-
positive and cognitively normal at baseline. The model examined was a logistic regression with diagnosis a
follow-up (MCI vs cognitively normal) as the outcome variable. The predictor was a two-level categorical
variable representing placebo or drug. Alpha was set at .05, power was .80, and the hypothetical sample 
was evenly split into treatment and placebo groups.  
Across all effect sizes (10%-40% reduction in treatment vs placebo conversation rates) the PE-adjusted tria
required fewer participants than the PE-unadjusted trial. The inset shows results for hypothetical samples 
with ~1000 participants. If this study used PE-unadjusted outcome measures (blue line), it would require a
effect size of 31.2% to reach a significant result with ~1000 participants. Using PE-adjusted diagnoses, onl
790 participants would be required for the same study with the same drug effect, a reduction of 210 
participants. A PE-adjusted study with ~1000 participants (red line in the inset) would be able to detect a 
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smaller drug effect of 27.9%. With this 3.3% reduction in effect size, a PE-unadjusted study would require 
an additional 266 participants at this drug effect level (1266 vs 1000). 
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A: 27.4% drug effect, alpha=.05,  

power .80 
 

 
B: Reduction in recruitment sample size across effect sizes

  
 

Figure 4: Comparison of recruitment design for detection of a drug effect based on A4 Study33 recruitment. 
Using sample size estimates from Figure 3, we present how planning to adjust for practice effects would alter 
clinical drug trial, using A4 Study recruitment as an example. The A4 Study had a total sample of 1323 
participants after recruitment as shown in the top row of gray boxes (based on Figure 1 in Sperling et al., 2020
[25] A: Based on sample size estimates from Figure 3, a sample of 1323 would enable a study to detect a 
significant drug effect of 27.4% at an alpha of .05 and .80 power. The top row of the flow chart presents the 
recruitment for the A4 study. This study reported an initial screening (6763 participants) followed by amyloid
PET (4486 participants) imaging to achieve their sample of 1323 amyloid-positive (AB+), cognitively normal
(CN) participants. Achieving the final sample size thus required an n for the initial screening that was 5.11 tim
as large as the final sample size, and an n for amyloid PET imaging that was 3.39 times as large as the final 
sample. Our power analyses suggest that the same effect size is achieved with only 1042 participants if a trial 
adjusted follow-up scores for practice effects. That, along with the reductions in initial screening and PET sca
is shown in the middle row of the flow chart.  The bottom row shows the sample size reductions for initial 
screening, PET screening, and the initial biomarker-positive and cognitively normal sample. B: The figure 
presents the reduction in recruitment sample size (Y-axis) across effect sizes ranging from 10% to 40% (X-ax
The orange line represents how many fewer participants would be necessary at initial screening if a study had
planned to adjust for practice effects at follow-up. The green line represents how many fewer participants wou
be necessary for amyloid PET imaging if a study had planned to adjust for practice effects at follow-up. The 
black line represents what the final sample size would be. The numbers were calculated for each effect size in
the way described in panel A. Each curve was calculated for each effect size at 1% increments in the manner 
described in panel A. The dotted blue line shows at effect size of 27.4%. 
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