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Abstract Charcot–Marie-Tooth disease type 2A (CMT2A) is an untreatable childhood peripheral

neuropathy caused by mutations of the mitochondrial fusion protein, mitofusin (MFN) 2. Here,

pharmacological activation of endogenous normal mitofusins overcame dominant inhibitory effects

of CMT2A mutants in reprogrammed human patient motor neurons, reversing hallmark

mitochondrial stasis and fragmentation independent of causal MFN2 mutation. In mice expressing

human MFN2 T105M, intermittent mitofusin activation with a small molecule, MiM111, normalized

CMT2A neuromuscular dysfunction, reversed pre-treatment axon and skeletal myocyte atrophy,

and enhanced axon regrowth by increasing mitochondrial transport within peripheral axons and

promoting in vivo mitochondrial localization to neuromuscular junctional synapses. MiM111-treated

MFN2 T105M mouse neurons exhibited accelerated primary outgrowth and greater post-axotomy

regrowth, linked to enhanced mitochondrial motility. MiM111 is the first pre-clinical candidate for

CMT2A.

Introduction
Charcot–Marie-Tooth disease (CMT) describes a family of genetically diverse and clinically heteroge-

neous peripheral neuropathies (Fridman et al., 2015). Type 2A CMT (CMT2A) is caused by muta-

tions of the mitochondrial fusion protein, mitofusin 2 (MFN2) (Züchner et al., 2004), and is

distinguished from other CMT subtypes by onset of neuromuscular signs in early childhood and pro-

gressive loss of neuromuscular coordination and strength in arms throughout the first two decades

of life, thought to be the consequence of dying-back of long peripheral nerves (Fridman et al.,

2015; Feely et al., 2011; Bombelli et al., 2014; Yaron and Schuldiner, 2016; Berciano et al.,

2017). Because there are currently no disease-modifying treatments, CMT2A is managed with

braces, wheelchairs, and social support.

Over 100 different dominant missense MFN2 mutations are implicated in CMT2A

(Beręsewicz et al., 2018). MFN2 and related MFN1 are nuclear-encoded dynamin-family GTPases

Franco, Dang, et al. eLife 2020;9:e61119. DOI: https://doi.org/10.7554/eLife.61119 1 of 26

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.61119
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


located at the mitochondrial outer membrane-cytosol interface where they promote mitochondrial

fusion essential to mitochondrial respiratory function and repair (Chan, 2012). Dominant inhibition

by MFN2 mutants of mitochondrial fusion (Chen and Chan, 2006; Pareyson et al., 2015), mitoph-

agy (Rizzo et al., 2016; Filadi et al., 2018), and/or neuronal mitochondrial transport

(Pareyson et al., 2015; Baloh et al., 2007; Crunkhorn, 2018) are proposed to evoke neuronal

degeneration in CMT2A.

Because CMT2A is an autosomal dominant genetic condition, gene editing could potentially cor-

rect causal MFN2 mutant alleles, but the large number of different causal CMT2A MFN2 mutations

complicates an editing approach. Alternately, forced expression of normal mitofusins could oppose

mutant MFN2 dysfunction, as demonstrated in a recent study in transgenic mice (Zhou et al.,

2019). However, MFN gene therapy would be difficult to discontinue or reverse if postulated

adverse effects of MFN overactivity are encountered (El Fissi et al., 2018). Here, we describe a ther-

apeutic approach to CMT2A that is agnostic to MFN2 genotype and does not require genetic

manipulation: intermittent or ‘burst’ activation of endogenous normal mitofusins. Pharmacological

mitofusin activators improved mitochondrial morphology, fitness, and motility in human and mouse

CMT2A neurons in vitro. Daily administration of a short acting mitofusin activator to mice with late

stage CMT2A reversed neuromuscular dysfunction. Mechanistically, neuronal repair and regenera-

tion were linked to enhanced mitochondrial transport to, and mitochondrial occupation within, axo-

nal termini. Reversal of pre-existing CMT2A neuromuscular degeneration in vivo has not previously

been achieved by any means, and provides a powerful rationale for advancing mitofusin activators

to first in human trials.

Results

Genetically diverse CMT2A patient neurons exhibit similar
mitochondrial phenotypes
One of the central features of CMT2A is the large number of different MFN2 mutations that provoke

the syndrome. Common MFN2 GTPase and coiled-coiled domain mutations induce more severe and

earlier onset disease, whereas rare carboxy terminal domain mutations confer later onset and milder

disease (Feely et al., 2011; Stuppia et al., 2015). We compared mitochondrial phenotypes in cells

from four CMT2A patients, two having MFN2 mutations within the canonical dynamin/Fzo-like

GTPase domain (MFN2 T105M in the G1 motif and MFN2 R274W between the G4 and G5 motifs),

eLife digest Charcot-Marie-Tooth disease type 2A is a rare genetic childhood disease where

dying back of nerve cells leads to muscle loss in the arms and legs, causing permanent disability.

There is no known treatment.

In this form of CMT, mutations in a protein called mitofusin 2 damage structures inside cells

known as mitochondria. Mitochondria generate most of the chemical energy to power a cell, but

when mitofusin 2 is mutated, the mitochondria are less healthy and are unable to move within the

cell, depriving the cells of energy. This particularly causes problems in the long nerve cells that

stretch from the spinal cord to the arm and leg muscles.

Now, Franco, Dang et al. wanted to see whether re-activating mitofusin 2 could correct the

damage to the mitochondria and restore the nerve connections to the muscles. The researchers

tested a new class of drug called a mitofusin activator on nerve cells grown in the laboratory after

being taken from people suffering from CMT2A, and also from a mouse model of the disease.

Mitofusin activators improved the structure, fitness and movement of mitochondria in both human

and mice nerve cells. Franco, Dang et al. then tested the drug in the mice with a CMT2A mutation

and found that it could also stimulate nerves to regrow and so reverse muscle loss and weakness.

This is the first time scientists have succeeded to reverse the effects of CMT2A in nerve cells of

mice and humans. However, these drugs will still need to go through extensive testing in clinical

trials before being made widely available to patients. If approved, mitofusin activators may also be

beneficial for patients suffering from other genetic conditions that damage mitochondria.
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and two with mutations in the MFN2 coiled-coiled helix bundle core (MFN2 H361Y and R364W).

(Figure 1—figure supplement 1). Donor patient characteristics are in Table 1.

To avoid loss of some CMT2A-associated mitochondrial phenotypes in iPSC-derived neurons

(Rizzo et al., 2016; Saporta et al., 2015), we directly reprogrammed CMT2A patient fibroblasts

into motor neurons via microRNA-mediated neuronal conversion (Figure 1b; Abernathy et al.,

2017). Reprogramming efficiency was similar between CMT2A and control patient fibroblasts:>90%

neurons (measured as b-III tubulin staining), and >85% motor neurons (measured as b-III tubulin,

HB9/MNX1 co-staining) (Figure 1—figure supplement 2). Compared to neurons reprogrammed

from individuals with no evident disease at the time of sampling and who had none of the tested

MFN2 mutations by Sanger sequencing (‘normal’), all four CMT2A motor neuron lines exhibited frag-

mented mitochondria (decreased mitochondrial aspect ratio; length/width) that is a consequence of

impaired fusion in this context Franco et al., 2016; accompanying mitochondrial depolarization

reflected characteristic functional impairment (Figure 1c; Crowley et al., 2016). Moreover, all four

CMT2A motor neuron lines exhibited abnormal mitochondrial transport through axons, with dimin-

ished proportion and velocity of motile mitochondria (Figure 1c). Mitochondrial fragmentation,

respiratory dysfunction, and dysmotility observed in reprogrammed neurons are prototypical fea-

tures of CMT2A (Baloh et al., 2007; Zhou et al., 2019; Verhoeven et al., 2006; Rocha et al.,

2018).

Dominant inhibition of normal MFN1 and MFN2 by CMT2A MFN2 mutants produces an imbal-

ance between mitochondrial fission and fusion that underlies mitochondrial pathology in CMT2A

(Zhou et al., 2019). This dynamic imbalance can be reversed in transfected mouse cells and in vivo

mouse models by forced overexpression of normal MFN1 or MFN2 (Zhou et al., 2019; Detmer and

Chan, 2007). We posited that pharmacological activation of normal endogenous human MFN1 and

MFN2 would also reverse mitochondrial abnormalities in CMT2A patient motor neurons. Chimera C

is one of a new class of direct mitofusin activators that promotes conformational activation of MFN1

and MFN2, thereby stimulating endogenous mitofusins to improve mitochondrial dysmorphology

and dysfunction (Rocha et al., 2018; Dang et al., 2020). Chimera C (100 nM, 48 hr) enhanced mito-

chondrial fusion (i.e. it increased aspect ratio) and improved respiratory function (i.e. it reversed

mitochondrial depolarization) in cells lacking either MFN1 or MFN2, but had no effects in cells lack-

ing both mitofusin targets (Figure 1—figure supplement 3). Chimera C (100 nM, 48 hr) also

improved mitochondrial aspect ratio, depolarization, and motility in all four CMT2A patient motor

neuron lines (Figure 1c).

Neuron-specific expression of MFN2 T105M in mice recapitulates key
features of human CMT2A
Children with CMT2A are typically healthy during early years, but develop signs of neuromuscular

dysfunction during the mid first decade of life. Neurogenic distal limb muscular atrophy is progres-

sive until the end of the second decade, at which time the disease stabilizes; longevity is normal, but

Table 1. Characteristics and sources of human primary fibroblasts used for motor neuron reprogramming studies.

Diseases Mutation Age Sex Passage# Source Fibroblast ID

CMT2A MFN2 Thr105Met 41 F P4-P10 Dr. Robert H. Baloh -

CMT2A MFN2 Arg274Trp 23 M P4-P10 Dr. Barbara Zablocka -

CMT2A MFN2 His361Tyr 41 M P4-P10 Dr. Robert H. Baloh -

CMT2A MFN2 His364Trp 28 F P6-P10 Dr. Michael E. Shy -

CMT1A PMP22 DUP 28 F P4-P10 Coriell Institute GM05167

CTRL 1 - 68 F P3-P7 NINDS ND34769

CTRL 2 - 71 F P3-P7 NINDS ND36320

CTRL 3 - 55 F P3-P7 NINDS ND29510

CTRL 4 - 66 M P8-P10 NINDS ND29178

CTRL 5 - 72 M P3-P7 NINDS ND34770

CTRL 6 - 55 M P4-P10 NINDS ND38530
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Figure 1. Mitochondrial abnormalities in reprogrammed CMT2A patient motor neurons and their improvement after mitofusin activation. (a) Model

structure of MFN2 showing location of CMT2A patient mutations. (b) Schematic depiction of fibroblast reprogramming procedure to produce motor

neurons. (c) Mitochondrial testing in reprogrammed motor neurons from four CMT2A patients with different MFN2 mutations and representative of

Figure 1 continued on next page
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disability is permanent (Fridman et al., 2015; Feely et al., 2011). No mouse models of CMT2A reca-

pitulate all of these key clinical features in the absence of confounding developmental phenotypes

(Zhou et al., 2019; Detmer et al., 2008; Cartoni et al., 2010; Bannerman et al., 2016; Dorn, 2020).

Therefore, a prerequisite for proof-of-concept testing of mitofusin activation in vivo was to generate

a mouse CMT2A model having greater similarity to the human condition.

By combining Rosa26 <fs-MFN2(T105M)> (Bannerman et al., 2016) and Mnx1-Cre (HB9)

(Yang et al., 2001) alleles (Figure 2a) we drove human MFN2 T105M expression in mouse neurons

(Figure 2b; CMT2A mouse). Neuromuscular functional integrity over time was assessed as the dura-

tion mice could walk on an elevated accelerating rotating cylinder without falling off (RotaRod

latency). RotaRod latency of CMT2A mice was normal at 10 weeks of age, progressively declined

thereafter, and stabilized beyond 30 weeks (Figure 2c). As in clinical CMT2A, axonal mitochondria

of MFN2 T105M mice were fragmented with disorganized cristae (Sole et al., 2009; Figure 2d).

Neuroelectrophysiological testing of CMT2A patients characteristically reveals reduced com-

pound muscle action potentials (CMAP) with normal nerve conduction velocities (Berciano et al.,

2017; Harding and Thomas, 1980). Recapitulating this clinical finding, sciatic nerve-tibialis muscle

CMAP amplitudes of 50-week-old MFN2 T105M mice were diminished with no change in signal

latency, which reflects conduction velocity (Figure 2e). Tibialis myofiber atrophy and loss of large

axons without demyelination in the MFN2 T105M mouse (vide infra) also mimicked clinical CMT2A

(Verhoeven et al., 2006; Muglia et al., 2001; Neves and Kok, 2011).

To further evaluate the relevance of the MFN2 T105M mouse to human CMT2A, dorsal root gan-

glion (DRG) sensory neurons were isolated and placed in culture, the MFN2 T105M transgene

induced with Adeno-Cre, and neurons assayed for the mitochondrial pathologies delineated in

reprogrammed CMT2A patient motor neurons (vide supra). CMT2A-associated abnormalities in

axon mitochondrial aspect ratio and transport (Figure 2f) and polarization status (Figure 2—figure

supplement 1) were each mimicked in mouse CMT2A DRGs. As in reprogrammed human CMT2A

motor neurons, mitofusin activation improved these abnormalities (Figure 2f and Figure 2—figure

supplement 1, compare to Figure 1c).

Burst mitofusin activation reverses neuromuscular dysfunction in
CMT2A mice
Collectively, the above results show that activating mitofusins can improve multiple mitochondrial

abnormalities manifested by cultured human and mouse CMT2A neurons. To determine whether

benefits of mitofusin activation in cultured neurons would translate to therapeutic effects on neuro-

muscular dysfunction in CMT2A we contemplated an in vivo trial in our CMT2A mouse. However,

Chimera C is rapidly degraded by the liver and undergoes first-pass metabolism, making it impracti-

cal for in vivo studies (Dang et al., 2020). We therefore evaluated in vivo efficacy of mitofusin activa-

tion in CMT2A using MiM111, a structurally distinct compound having a mitofusin activation profile

similar to Chimera C (Figure 1—figure supplement 3), but which is metabolically stable with good

nervous system bioavailability (Dang et al., 2020). We hypothesized that intermittent or ‘burst’ mito-

fusin activation (a dosing schedule that reversed mitochondrial dysfunction for <12 hr each day) (Fig-

ure 3—figure supplement 1) would confer therapeutic benefits by cyclically enhancing

mitochondrial fitness and transport, while minimizing the possibility of mitofusin toxicity that might

occur with constant mitofusin activation (El Fissi et al., 2018; Meyer et al., 2017).

Based on a minimum effective MiM111 plasma concentration of 30 ng/ml (Dang et al., 2020) and

a plasma t1/2 of 2.3 hr with Cmax of 24,000 ng/ml after intramuscular administration of 30 mg/kg (Fig-

ure 3—figure supplement 1), we estimated that daily IM dosing would reverse mitochondrial

Figure 1 continued

three normal control subjects. Open circles are baseline; closed circles are 48 hr after addition of mitofusin activator Chimera C (100 nM). Each circle is

one neuron from two or three independent reprogrammings. P values from ANOVA.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Genotyping of CMT2A patient cells.

Figure supplement 2. Direct reprogramming of human skin fibroblasts to neurons.

Figure supplement 3. Chemical characteristics and functional profiling of mitofusin activators used in this study.
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dysmotility in CMT2A mice for ~12 hr out of every 24 hr. Indeed, Figure 3—figure supplement 1

show that mitochondrial motility in sciatic nerve axons of MFN2 T105M mice was normalized 4 hr

after a single intramuscular injection of MiM111 (30 mg/kg), declined by approximately half after 12

hr, and returned to CMT2A baseline after 24 hr.

If CMT2A neuron die-back is reversible then burst mitofusin activation should improve neuromus-

cular degeneration in MFN2 T105M mice who had progressed to the severe and stable CMT2A phe-

notype. To test this notion, 50-week-old MFN2 T105M mice and littermate controls were

randomized to receive daily MiM111 or its vehicle. Researchers blind to genotype and treatment

group performed Rotarod and neuro-electrophysiological testing after 4 and 8 weeks (Figure 3b).

Figure 2. Characteristics of a neuron-specific MFN2 T105M mouse model of CMT2A. (a) Schematic depiction Mfn2 <fs-T105M>expression strategy. (b)

Immunoblot analysis of MFN2 expression in mouse sciatic nerves. (c) Serial RotaRod latency studies; CMT2A is green squares (n = 16), wild-type (WT)

control is open circles (n = 6). (d) Electron micrographs of axonal mitochondrial from sciatic nerves (50 weeks). (e) Comparative neuro-electrophysiology

study results of 50-week-old mice in panel c. (f) Response of CMT2A dorsal root ganglion neurons to mitofusin activation with Chimera C (100 nM, 48

hr). Top images are confocal micrographs of DRGs stained for mitochondria (red) and axons (green). Insets are higher power magnification to see

mitochondrial morphology. Bottom images are kymographs showing mitochondrial (red) motility. Vertical columns are stationary mitochondria; lines

transiting left to right or right to left are moving. P values are from t-test from 3 or four independent experiments.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Flow cytometric profiling of mitochondrial polarization status in mouse dorsal root ganglion (DRG) neurons.
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The characteristic decreases in RotaRod latency and CMAP amplitude in MFN2 T105M mice (see

Figure 2c and e) were reversed 4 weeks after MiM111 treatment and remained near normal after 8

weeks (Figure 3c and d); MiM111 had no effect on control mice (Figure 3—figure supplement 2).

Compared to sciatic nerves of vehicle-treated MFN2 T105M CMT2A mice, MiM111 treatment

reduced axon damage (Figure 4a), increased axon diameter (Figure 4b), and increased staining for

superior cervical ganglion 10 (SCG10; a marker of neuron regeneration) (Shin et al., 2014;

Figure 3. Mitofusin activation reverses neuromuscular dysfunction in MFN2 T105M mice. (a) Ex vivo mitochondrial motility in CMT2A mouse sciatic

nerve axons 4 hr after intramuscular administration of mitofusin activator MiM111 or vehicle. Top panel is kymographs. Bottom panel emphasizes motile

mitochondria with red and blue lines transiting antegrade or retrograde, respectively. (Note, mitochondrial transport in ex vivo sciatic nerves favors the

antegrade [spine to foot] direction because mitochondria are recruited to the site of nerve injury at the distal amputation site [Zhou et al., 2016]). (b)

Experimental design to evaluate efficacy of MiM111 in late murine CMT2A. (c) RotaRod latency in vehicle- (green) and MiM111-treated (blue) MFN2

T105M mice. (d) Neuroelectrophysiology studies: (left) representative CMAP tracings; (right) quantitative data. Each symbol in c and d is one mouse. P

values from ANOVA. WT control values are open circles in panels c and d; complete WT control data are in Figure 3—figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. In vivo pharmacokinetics and target engagement of MiM111 administered intramuscularly.

Figure supplement 2. Effects of MiM111 on neuromuscular function in control mice.

Franco, Dang, et al. eLife 2020;9:e61119. DOI: https://doi.org/10.7554/eLife.61119 7 of 26

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.61119


Figure 4. Mitofusin activation reverses histopathological findings in MFN2 T105M mice. (a) Toluidine blue stained sections of mouse mid tibial nerves.

Arrows show blue-stained damaged axons in CMT2A mice. Quantitative group data for damaged axons and SCG10-regenerating axons (see

Figure 4—figure supplement 1) are on the right. (b) Electron micrographs of mid-tibial nerve axons from CMT2A mouse study groups after 8 weeks of

therapy. Note heterogeneity in axon size (top images; left graph) and mitochondrial abnormalities (bottom images, right graph). (c) Wheat germ

agglutinin (WGA) labeled sections of tibialis anterior muscle and quantitative myocyte cross sectional area. (d) Confocal micrographs of neuromuscular

junctions to show mitochondrial occupancy yellow organelles within red synapses (also see Figure 4—figure supplement 1). Each symbol represents

results from one mouse. Data are means ± SD; p values are 1- or 2-way ANOVA.

Figure 4 continued on next page
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Figure 4—figure supplement 1). These findings suggest that mitofusin activation reversed CMT2A-

induced neuronal degeneration.

Skeletal myocytes of CMT2A mouse tibialis muscle innervated by the sciatic nerve were abnor-

mally small (Figure 4c), reflecting neurogenic muscle atrophy (because the MFN2 T105M transgene

is directed by neuron-specific HB9-Cre). In agreement with muscle atrophy being a secondary effect,

skeletal myocyte mitochondria of CMT2A mice appeared structurally normal (Figure 4—figure sup-

plement 1) compare to sciatic nerve axon mitochondria in Figures 2d and 4b. Therefore, normaliza-

tion of tibialis myocyte diameter after mitofusin activation (Figure 4c) indicates restoration of

neuromuscular integrity.

Collectively, the above findings provide indirect support for the idea that CMT2A mice suffer

from distal neuron dieback that can be reversed by activating mitofusins. Reasoning that decreased

neuromuscular junction density in CMT2A mice would constitute direct evidence for dieback, we

quantified neuromuscular junctional synapses containing receptors for the neurotransmitter acetyl-

choline (AchR) in tibialis muscles of CMT2A mice. Compared to normal mice, CMT2A mice

had ~50% fewer synaptic junctions/myocyte, which was reversed after mitofusin activator treatment

(Figure 4—figure supplement 1). Strikingly, mitochondrial occupancy of vehicle-treated CMT2A

neuromuscular synaptic junctions was also reduced by ~half compared to normal mice, and was nor-

malized by MiM111 treatment (Figure 4d). Because mitochondrial transport can play a central role

in neuron repair and regeneration (Sheng, 2017), the observation that MiM111 promoted mitochon-

drial localization within terminal neuromuscular synaptic junctions provided a plausible mechanistic

link between mitofusin activation, mitochondrial motility, neuronal regrowth, and reversal of neuro-

muscular dysfunction in this preclinical CMT2A model.

Enhanced mitochondrial function in mitofusin-activated CMT2A DRGs
leads to accelerated axon growth
Reversal of CMT2A-induced distal neuron die back implies neuronal regrowth. Indeed, sensory DRG

neurons isolated from CMT2A mice and cultured in the presence of MiM111 (100 nM, 48 hr) exhib-

ited not only enhanced mitochondrial fusion (increased aspect ratio) and transport (greater mito-

chondrial motility and velocity), but axon outgrowth (length and branching) (Figure 5). Similar

effects were seen in CMT2A DRGs treated with Chimera C (100 nM, 48 hr) (Figure 5—figure supple-

ment 1). Both MiM111 and Chimera C provoked mitochondrial redistribution to axonal termini of

cultured CMT2A DRGs (Figure 5—figure supplement 1) recapitulating mitochondrial occupation of

neuromuscular synapses after MiM111 treatment of CMT2A mice in vivo (see Figure 4d).

Comparing the mitochondrial motility, aspect ratio, and neuron growth responses at different

times after mitofusin activation revealed significantly increased mitochondrial trafficking within 2 hr,

whereas enhanced axon outgrowth was significant after 24 and 28 hr, and mitochondrial aspect ratio

(i.e. fusion) was significant only after 48 hr (Figure 5—figure supplement 2). Given the established

role for mitochondrial transport in neuronal repair (Sheng, 2017), this temporal sequence lends cre-

dence to the idea that accelerated neuron growth is a consequence of enhanced mitochondrial func-

tion and redistribution.

Mitofusin activation accelerates in vitro CMT2A axon regeneration
after axotomy
DRG outgrowth measures in vitro regrowth of neuronal extensions that are amputated during the

cell isolation trituration procedure. We considered that a more appropriate model of regrowth after

dieback in CMT2A would test intact neurons lacking only the distal axons. Because CMT2A mouse

neurons grow poorly in tissue culture in the absence of mitofusin activators (vide supra), this was not

feasible using DRGs. Therefore, we seeded cortical neurons collected from MFN2 T105M allele mice

in chambers separated from empty chambers by linear microchannels. In the absence of Cre-recom-

binase these ‘normal’ neurons grew axons through the microchannels that branched into the empty

Figure 4 continued

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effects of MiM111 on neuromuscular integrity in CMT2A MFN2 T105M mice.
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Figure 5. Mitofusin activation reverses mitochondrial pathology and stimulates growth of CMT2A dorsal root ganglion neurons in vitro. (a) Confocal

micrographs of CMT2A mouse DRGs cultured for 48 hr with MiM111 or its vehicle. Note greater neuronal process length and branching in MiM111-

treated neuron. Exploded insets (right) show neuronal process termini. Mitochondria express mitoDS Red; neuronal processes stained for b-III tubulin

are green. (b) Kymographs of mitochondrial motility in neuronal processes of live DRGs from studies shown in (a). Top panel is raw data. Bottom panels

emphasize motile mitochondria with red and blue lines transiting left to right or right to left, respectively. (c-f) Quantitative group data demonstrating

effect of MiM111 on CMT2A DRG mitochondrial aspect ratio (c), motility (d, e), neuronal process length and branching (e), and proportion of neuronal

process termini containing mitochondria (f).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Mitofusin activation with Chimera C reverses mitochondrial pathology and stimulates growth of CMT2A dorsal root ganglion

neurons in vitro.

Figure supplement 2. Time course studies of DRG mitochondria responses to mitofusin activation after aspiration axotomy.
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chambers (Figure 6a). Adenoviral Cre was then used to activate the CMT2A MFN2 T105M trans-

gene, followed after 48 hr by aspiration amputation of the branched axonal termini (Figure 6b and

c). Mitochondrial motility and aspect ratio were measured 1 hr before and after axotomy; axon

regrowth was measured 3 days after axotomy. The aspect ratio of mitochondria in the distal linear

axons of normal and CMT2A neurons was unaffected either by axotomy or by MiM111 (Figure 6d,

left panel). By contrast, and consistent with a previous study in normal neurons (Zhou et al., 2016),

mitochondrial motility was reduced by axotomy (Figure 6d middle panels). Mitofusin activation with

MiM111 after axotomy restored mitochondrial motility and neuronal outgrowth to pre-axotomy lev-

els. Thus, the link between experimentally activating mitofusins, the subsequent increase in mito-

chondrial transport, and enhanced neuronal growth/repair was consistent for mouse CMT2A sciatic

nerve axons in vivo, cultured CMT2A DRG neuron outgrowth, and cultured CMT2A cortical nerve

regrowth after distal axotomy.

Discussion
These preclinical studies show that activating endogenous normal mitofusins can improve stable

neuromuscular dysfunction caused by a CMT2A MFN2 mutant. Pharmacological mitofusin activation

enhanced CMT2A neuron growth in vivo and in vitro by promoting mitochondrial fitness and

Figure 6. Mitofusin activation stimulates post-axotomy regrowth of CMT2A cortical neurons in vitro. (a) Schematic depiction of microfluidic platform.

Yellow areas show proximal axon where mitochondrial motility was measured and distal axon where mitochondrial aspect ratio was measured. (b)

Experimental design. DIV is days in vitro. Red arrows are times of pre- and immediate post-axotomy mitochondrial studies. (c) Representative images of

CMT2A neuron terminal branches at different times relative to aspiration axotomy. (d) Quantitative group data demonstrating effect of MiM111 on

CMT2A cortical neuron mitochondrial aspect ratio (left panel), motility (middle panels), and axon length (right panel).
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transport, thereby reversing CMT2A-associated mitochondrial fragmentation, depolarization and

stasis. We believe the key benefit that accrued from directly activating mitofusin-mediated mito-

chondrial fusion and motility was improved delivery of healthy mitochondria to neuromuscular junc-

tions and axon growth buds. To our knowledge, this is the first report of any experimental

intervention that fully reverses in vivo CMT2A phenotypes, demonstrating the feasibility of a clinically

translatable disease-modifying therapeutic modality for this incurable condition.

Our studies integrated findings from multiple complementary experimental platforms. Motor neu-

rons directly reprogrammed from CMT2A patient fibroblasts have not previously been described,

and provided a platform in which effects of therapeutic interventions could be assessed on different

patients’ mutations and individual genetic backgrounds using a disease-relevant cell type. Com-

pared to iPS cell-derived CMT2A neurons (Rizzo et al., 2016; Saporta et al., 2015), direct reprog-

ramming more faithfully reproduced prototypical CMT2A mitochondrial phenotypes. Compared to

the parental patient fibroblasts (Dang et al., in preparation), neurons permitted assessment of the

CMT2A-associated mitochondrial motility disorders. While CMT2A has both sensory and motor neu-

ropathy components, we reprogrammed specifically for motor neurons because motor components

of this disease are the major source of patient disability.

All mouse disease models have advantages and limitations. Our CMT2A mouse model expresses

human MFN2 T105M using a ‘motor neuron selective’ promoter (vide infra), and therefore does not

exhibit sensory nerve involvement that is sometime manifested in clinical CMT2A. However, com-

pared to other CMT2A mice, the current model more faithfully recapitulates CMT2A neuromuscular

dysfunction that is the dominant cause of morbidity in the human condition (Fridman et al., 2015;

Feely et al., 2011; Bombelli et al., 2014; Yaron and Schuldiner, 2016; Berciano et al., 2017). We

previously used young adult mice carrying this combination of MFN2T105M and HB9-Cre alleles to

evaluate effects of a topically applied prototype mitofusin activator on mitochondrial motility in sci-

atic nerve axons ex vivo (Rocha et al., 2018). It was not known if, with age, these mice would

develop neuromuscular signs similar to clinical CMT2A. As shown here, motor function in these mice

is normal at age 10 weeks, but declines until age 30 weeks whereupon it stabilized for at least

another 20 weeks. This pattern is similar to the clinical course of CMT2A, in which apparently normal

children typically manifest neuromuscular signs in the mid first decade of life, exhibit progressive

loss of motor function in distal extremities over the next 10–15 years, and then stabilize. Moreover,

the functional (neuroelectrophysiological), histological, and ultrastructural features of axonal tissue in

the mice were similar to the human condition. Together with the positive response to mitofusin acti-

vation in patient neurons, the improvement in neuromuscular function and cell/organelle pathology

in MiM111-treated CMT2A mice supports the approach of mitofusin activation for the clinical

disease.

Perhaps the most remarkable finding here is that mitofusin activation reversed the signs of

CMT2A in mice with severe, stable disease. Every measured endpoint was improved, including gross

neuromuscular function (RotaRod), electrophysiological metrics of neuromuscular integrity (CMAP),

read-outs for axon degeneration, and multiple histological and ultrastructural assays of mitochon-

drial pathology in neurons. In vivo and in vitro results pointed to enhanced CMT2A neuron repair

and regrowth as a central reason for phenotype reversal. Because it is not possible to functionally

dissociate mitofusin-mediated increases in mitochondrial fusion and motility, it is unclear if one or

the other of these responses preferentially underlies the neuroregenerative effects of mitofusin acti-

vation. However, it seems reasonable to postulate that mitochondrial delivery to distal neurons has

greatest importance in the long peripheral nerves innervating hands, forearms, feet, and forelegs,

i.e. those areas most impacted in CMT2A (Fridman et al., 2015; Feely et al., 2011; Bombelli et al.,

2014; Yaron and Schuldiner, 2016; Berciano et al., 2017). In agreement with this notion, we

observed a positive correlation between mitochondrial delivery to or occupancy of axonal termini

and CMT2A neuron growth in vivo and in vitro.

As introduced above, damaging MFN2 mutations are a straightforward cause of CMT2A, but

MFN2 multifunctionality complicates delineating the underlying cellular pathology (Filadi et al.,

2018; Dorn, 2020). For this reason, the specific functional benefits accruing from mitofusin activa-

tion in CMT2A cannot unambiguously be defined. Mitochondrial fusion and motility are impaired in

CMT2A (Chen and Chan, 2006) and allosteric mitofusin activation corrects both of these parameters

(Franco et al., 2016; Rocha et al., 2018; Dang et al., 2020). Mitochondrial respiratory dysfunction,

measured here as loss of inner membrane polarization, is a consequence of diminished fusion-
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mediated homeostatic repair (Chen and Chan, 2006), and its improvement can therefore also be

explained by enhanced fusogenicity. MFN2 has a role in mitophagic mitochondrial quality and quan-

tity control (Chen and Dorn, 2013; Gong et al., 2015), and allosteric mitofusin activation sup-

pressed the increase in autophagy/mitophagy induced by CMT2A mutant MFN2 T105M in cultured

cells (Rocha et al., 2018). Finally, MFN2 can mediate physical interactions and calcium signaling

between mitochondria and endoplasmic reticulum that may also have a role in CMT2A

(Larrea et al., 2019), but effects of mitofusin activation on mitochondria-reticular interactions have

not been described.

Here, we studied two structurally distinct but functionally similar allosteric mitofusin activators, a

new class of drug that is the first to directly enhance mitochondrial fusion and transport. Although

the prototype compounds were found not to be ‘druggable’, a new generation of mitofusin activa-

tors have addressed pharmaceutical limitations of the initial chemical series (Dang et al., 2020). As

described previously (Rocha et al., 2018; Dang et al., 2020), mitofusin activators have minimal

effects in normal cells, likely because increasing the probability that mitofusins are in their open/

‘active’ conformation is a subtle intervention that can be readily compensated for in the absence of

a pre-existing imbalance between mitochondrial fusion and fission. The current in vivo studies used a

short-acting compound administered once daily to evaluate the effects of intermittent, or burst,

mitofusin activation on CMT2A neuromuscular dysfunction. We considered that continuous long-

term activation of mitochondrial fusion and transport might possibly be deleterious (El Fissi et al.,

2018) (although it is worth noting that adverse effects of MFN1 and MFN2 overexpression in trans-

genic mice have not been reported). Moreover, we reasoned that the problem underlying CMT2A is

the cumulative effects of long-term mitochondrial stasis and dysfunction on mitochondrial fitness

and neuromuscular integrity. This scenario can explain why CMT2A progresses over many years in

people and many weeks in mice. Our aim with burst activation was to turn back the disease clock

through daily re-setting of mitochondrial function. By intermittently mobilizing healthy mitochondria

to distal areas of physiological need, and simultaneously removing senescent or impaired mitochon-

dria, neuron repair, renewal, and neuromuscular signaling were improved.

A mouse is not a man and human neuroregenerative capacity declines with age (Mattson and

Magnus, 2006). For this reason we do not expect that mitofusin activation can fully reverse CMT2A

phenotypes in older human patients with long-term stable disease. Nevertheless, the current results

suggest that pharmacological mitofusin activation could offer the first disease-altering therapy for

younger CMT2A patients. An intriguing possibility is that mitofusin activation may also have a thera-

peutic role in some of the many other neurodegenerative conditions not directly caused by mitofusin

defects wherein mitochondrial fusion or transport are defective (Dang et al., in preparation;

Knott et al., 2008; Burté et al., 2015).

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
Mus
musculus

Mfn-2 NCBI Gene Gene ID: 170731 MFN2
ENSMUSG00
000029020

Gene
(Human)

MFN-2 NCBI Gene Gene ID: 9927 MFN2
ENSG0000
0116688

Genetic reagent
(M. musculus)

Rosa-STOP-mMFN
Thr105Met
(T105M) mice

(C57BL/6 Gt(ROSA)
26 Sortm1 (CAG
MFN2*T105M)
Dple/)

The Jackson
Laboratory:
025322

C57Bl/6

Genetic reagent
M. musculus

HB9-Cre mice (B6.129S1-Mnx1tm4
(cre)Tmj/J)

The Jackson
Laboratory :
006600

C57Bl/6

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
M. musculus

C57BL/6J mice C57Bl/6 The Jackson
Laboratory :
000664

C57Bl/6

Mfn2 null
M. musculus

Mfn2 null MEFs ATCC CRL-2994 Murine
embryonic
fibroblasts

Mfn1/Mfn2 null
M. musculus

Mfn1 and Mfn2
double knock
out MEFs

ATCC CRL-2993 Murine
embryonic
fibroblasts

Mfn1 null
M. musculus

Mfn1 null MEFs ATCC CRL-2992 Murine
embryonic
fibroblasts

Cell line
(H. sapiens)

Dermal
fibroblast
(MFN2 T105M)

Dr. Robert
H. Baloh
(Cedars Sinai)

Female

Cell line
(H. sapiens)

Dermal
fibroblast
(MFN2 H361Y)

Dr. Robert
H. Baloh
(Cedars Sinai)

Male

Cell line
(H. sapiens)

Dermal fibroblast
(MFN2 R274W)

Dr. Barbara
Zablocka
(Mossakowski
Med Res Ctr)

PMID:28076385 Male

Cell line
(H. sapiens)

Dermal fibroblast
(MFN2 R364W)

Dr. Michael
E. Shy (University
of Iowa)

Female

Cell line
(H. sapiens)

Dermal
fibroblast
(Normal)

NINDS ND34769 Female

Cell line
(H. sapiens)

Dermal
fibroblast
(Normal)

NINDS ND36320 Female

Cell line
(H. sapiens)

Dermal
fibroblast
(Normal)

NINDS ND29510 Female

Transfected
construct (Human
Adenovirus
Type5 (dE1/E3))

Adenovirus
b-galactosidase

Vector Biolabs Cat#: 1080

Transfected
construct
(Human Adenovirus
Type5 (dE1/E3))

Adenovirus
Mito-Ds-Red2

Signagen Cat#: 12259

Transfected
construct
(Human Adenovirus
Type5 (dE1/E3))

Adenovirus
Cre-recombinase

Vector Biolabs Cat#: 1794

Recombinant
DNA reagent

rtTA-N144
(plasmid)

Addgene Cat#: 66810 Lentiviral construct
to transfect and
express the plasmid

Recombinant
DNA reagent

pTight-9-
124-BclxL
(plasmid)

Addgene Cat#: 60857 Lentiviral construct
to transfect and
express the plasmid

Recombinant
DNA reagent

LHX3-N174
and ISL1-
N174 (plasmid)

PMID:28886366 Lentiviral construct
to transfect and
express the plasmid

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-Mfn-2
(Mouse
monoclonal)

AbCAM Cat#: ab56889 (1:1000)

Antibody Anti-COX-IV
(Rabbit
polyclonal)

AbCAM Cat#: ab16056 (1:1000)

Antibody Anti-Stathmin-2
(Rabbit polyclonal)

Novus
Biologicals

Cat#: NBP1-49461 (1:1000)

Antibody Anti-GAPDH
(Mouse
monoclonal)

AbCAM Cat#: ab8245 (1:3000)

Antibody Anti-FSP-1
(Rabbit
polyclonal)

Novus
Biologicals

Cat#: NBP1-49461 (1:400)

Antibody Anti-MNX1
(Mouse
monoclonal)

DSHB Cat#: 81.5C10 (2 mg/ml)

Antibody Anti-b-tubulin III
(Mouse
monoclonal)

Biolegend Cat#: 801201 (1:200)

Antibody Alexa-Fluor 488
(Goat
anti-mouse)

ThermoFisher Cat#: A11029 (1:400)

Antibody Alexa- Fluor 488
(Goat anti-
rabbit)

ThermoFishe Cat#: A11008 (1:400)

Antibody (Goat anti-
rabbit IgG)

ThermoFisher Cat#: 31460 (1:3000)

Antibody Alexa- Fluor 594
(Goat anti
rabbit)

ThermoFisher Cat#: A32740 (1:400)

Antibody (Peroxidase-
conjugated
anti-mouse IgG)

Cell Signaling Cat#: 7076S (1:3000)

Antibody (a-Bungarotoxin
Alexa flour 594)

ThermoFisher Cat#: B12423 (0.5 mg/ml)

Sequence-
based
reagent

HB9CRE Fw The Jackson
Laboratory

006600 CTAGGCCACAGA
ATTGAAAGATCT

Sequence-
based
reagent

HB9CRE Rv The Jackson
Laboratory

006600 GTAGGTGGAAA
TTCTAGCATCATCC

Sequence-
based
reagent

HB9CRE TG Fw The Jackson
Laboratory

006600 GCGGTCTGGCA
GTAAAAACTATC

Sequence-
based
reagent

HB9CRE TG Rv The Jackson
Laboratory

006600 GTGAAACAGCAT
TGCTGTCACTT

Sequence-
based
reagent

Mfn2 T105M
M Fw

The Jackson
Laboratory

025322 GACCCCGTT
ACCACAGAAGA

Sequence-
based
reagent

Mfn2 T105M
M Rv

The Jackson
Laboratory

025322 AACTTTGTCC
CAGAGCATGG

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based
reagent

Mfn2 T105M
Wt Fw

The Jackson
Laboratory

025322 AAGGGAGCTGC
AGTGGAGTA

Sequence-
based
reagent

Mfn2 T105M
Wt Rv

The Jackson
Laboratory

025322 CCGAAAATCT
GTGGGAAGTC

Sequence-
based
reagent

MFN2 T105M Fw This paper PCR primers for
cell line mutation
validation

TTGCACTGAA
TAGGGCTTTG

Sequence-
based
reagent

MFN2 T105M Rv This paper PCR primers for
cell line mutation
validation

CATTCACCTC
CACAGGGTG

Sequence-
based
reagent

MFN2 R274W Fw This paper PCR primers for
cell line mutation
validation

CGTGGTAGGTG
TCTACAAGAAGC

Sequence-
based
reagent

MFN2 R274W Rv This paper PCR primers for
cell line mutation
validation

CTGGTGAGG
GCTGATGAAAT

Sequence-
based reagent

MFN2 H361Y
and R364W Fw

This paper PCR primers for
cell line mutation
validation

CCTGGCAGTGA
AAACCAGAG

Sequence-
based
reagent

MFN2 H361Y
and R364W Rv

This paper PCR primers for
cell line mutation
validation

AAGGCGTGT
CCTAACTGCC

Chemical
compound,
drug

Trans-MiM111 Mitochondria
in Motion, Inc

Cpd 13b in
PMID:32506913

Chemical
compound,
drug

Chimera C Paraza Pharma Cpd 2 in
PMID:32506913

Chemical
compound,
drug

Papain Sigma Cat#: P4762

Chemical
compound,
drug

Laminin Sigma Cat#: L2020

Chemical
compound,
drug

Poly-d-Lysine Sigma Cat#: P7886

Chemical
compound,
drug

Poly-ornithine Sigma-Aldrich Cat#: P4957

Chemical
compound,
drug

Fibronectin Sigma-Aldrich Cat#: F4759

Chemical
compound,
drug

Polybrene Sigma-Aldrich Cat#: H9268

Chemical
compound,
drug

Doxycycline Sigma-Aldrich Cat#: D9891

Chemical
compound,
drug

G418/Geneticin Invitrogen Cat#: 10131-035

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

Retinoic Acid Sigma Cat#: R2625

Chemical
compound,
drug

BDNF, NT-3,
CNTF, GDNF

Peprotech Cat#: 450-02,
Cat#: 450-03,
Cat#: 450-13,
Cat#: 450-10

Chemical
compound,
drug

Dibutyryl cAMP Sigma Cat#: D0627

Chemical
compound,
drug

Valproic acid Sigma Cat#: 676380

Chemical
compound,
drug

Puromycin Invitrogen Cat#: A11138-03

Chemical
compound,
drug

Collagenase Worthington
Biochemical

Cat#: 41J12861

Chemical
compound,
drug

(2-Hydroxypropyl)-
b-cyclodextrin

Sigma Cat#: 332607

Chemical
compound,
drug

Carbonyl
cyanide-p-trifluoro
methoxyphenyl
hydrazone

Sigma Cat#: C2759

Chemical
compound,
drug

B27 supplement Gibco Cat#: 17504-044

Chemical
compound,
drug

Insulin-transferrin-
sodium selenite

Sigma Cat#: 1884

Chemical
compound,
drug

Glucose Sigma Cat#: G5767

Chemical
compound,
drug

L-glutamine Gibco Cat#: 25030-149

Chemical
compound,
drug

Goat serum Jackson
Immunoresearch

Cat#: 005-000121

Chemical
compound,
drug

Glutaraldehyde Electron
Microscopy
Science

Cat#: 16216

Chemical
compound,
drug

MitoTracker
Green

Thermo Fisher Cat#: M7514

Chemical
compound,
drug

Calcein AM Thermo Fisher Cat#: C3100MP

Chemical
compound,
drug

Hoechst Thermo Fisher Cat#: H3570

Chemical
compound,
drug

MitoTracker
Orange

Thermo Fisher Cat#: M7510

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

Tetramethylrhodamine
ethyl ester

Thermo Fisher Cat#: T-669

Software,
algorithm

ImageJ C. A. Schneider https://imagej.
net/Sholl_Analysis

Software,
algorithm

Viasys Healthcare
Nicolet Biomedical
instrument with
Viking Quest version
11.2 software

Middleton Cat#: OL060954

Software,
algorithm

Gallios instrument
with FlowJo
10 software

Beckman
Coulter

N/A

Other RotaRod Ugo Basile Cat#: 47650

Other XonaChips Xona
Microfluidics

Cat#: XC450

Mouse lines
Rosa-STOP-mMFN Thr105Met (T105M) mice (C57BL/6 Gt(ROSA)26 Sortm1 (CAG-MFN2*T105M)

Dple/J) from The Jackson Laboratory (Bar Harbor, Maine, USA; Stock No: 025322, RRID:MGI:_JAX:

025322) were crossed to HB9-Cre mice (B6.129S1-Mnx1tm4(cre)Tmj/J) from The Jackson Laboratory

(Stock No: 006600, (RRID:MGI:_JAX:006600)) to generate neuron-targeted MFN2 T105M mice. HB9

is a motoneuron-specific promoter (Yang et al., 2001), but JAX data indicates that this HB9-Cre line

also drives expression in some sensory DRG neurons (https://images.jax.org/webclient/img_detail/

20564/). All experimental procedures were approved by Washington University in St. Louis School of

Medicine Animal Studies Committee; IACUC protocol number 19–0910, Exp:12/16/2022.

Cell lines
Normal mouse embryonic fibroblasts (MEFs) were prepared by enzymatic dissociation from embry-

onic day E.13.5–14.5 C57BL/6J mice (The Jackson Laboratory Cat:# 000664, RRID:IMSR_JAX:

000664). Mfn1 null and Mfn2 null Mfn1/Mfn2 double null MEFs fibroblasts were purchased from

American Type Culture Collection (ATCC Manassas, Virginia, USA) (CRL-2992, RRID:CVCL_L691 and

CRL-2994, RRID:CVCL_L692 and CRL-2993, RRID:CVCL_L693 respectively). Human fibroblast: Der-

mal fibroblast (MFN2 T105M) and Dermal fibroblast (MFN2 H361Y) from Dr. Robert H. Baloh

(Cedars Sinai), Dermal fibroblast (MFN2 R274W) from Dr. Barbara Zablocka (Mossakowski Med Res

Ctr), Dermal fibroblast (MFN2 R364W) from Dr. Michael E. Shy (University of Iowa). Dermal fibroblast

(Normal) from NINDS respectively: ND34769, (RRID:CVCL_EZ04, ND36320, RRID:CVCL_EZ16 and

ND29510, RRID:CVCL_Y813).

Viral vectors
Adenovirus expressing human FLAG-hMFN2 -T105M was prepared at Vector Biolabs (Malvern, PA,

USA). Adenoviri expressing b-galactosidase (Ad-CMV-b-Gal; #1080), and Ad-Cre (#1794) were pur-

chased from Vector Biolabs. Adenovirus for Mito-Ds-Red2 came from Signagen (Cat:#SL1007744).

Lentivirus packaging vectors: psPAX2 (Addgene, Cat#: 12260) pMD2.G (Addgene, Cat#: 12259),

Lentiviral vectors with recombinant DNA: rtTA-N144 (Addgene, Cat#: 66810) pTight-9–124-BclxL

(Addgene, Cat#: 60857), human LHX3-N174 and human ISL1-N174 were packaged and used as

described (Abernathy et al., 2017).

Antibodies
Mouse monoclonal anti-mitofusin 2 (Cat # ab56889 - 1:1000, RRID:AB_2142629), anti-COX-IV (Cat

#ab16056 - 1:1000, RRID:AB_443304) and anti-GAPDH (Cat #ab8245 - 1:1000, RRID:AB_2107448)
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were from AbCAM (Cambridge, MA, USA). Rabbit polyclonal anti-Stathmin-2/Superior Cervical Gan-

glion 10 (SCGN10; Cat # NBP1-4946, RRID:AB_10011569) was from Novus Biologicals (Littleton,

CO, USA).Rabbit polyclonal FSP-1 was from Sigma Millipore (Cat # 07–2274, RRID:AB_10807552).

Anti-mouse monoclonal -MNX1was from DSHB (1:10, Cat# 81.5C10, RRID:AB_2145209). Mouse

monoclonal anti-b -tubulin III (Cat # 801201- 1:500, RRID:AB_2313773) was from Biolegend (San

Diego, CA, USA). Peroxidase-conjugated anti-mouse IgG (Cat #7076S - 1:1000, RRID:AB_330924)

was from Cell Signaling (Danvers, MA, USA). Goat anti-rabbit IgG (Spicier reactivity Goat, Host/Iso-

type Rabbit/IgG; Cat #31460, RRID:AB_228341) and Alexa-Fluor 488 anti-mouse ThermoFisher (Wal-

tham, MA, USA Cat #A11008, RRID:AB_143165 ). a-Bugarotoxin Alexa flour 594 was from

ThermoFisher, Waltham, MA, USA Cat:# B12423.

PCR genotyping of MFN2 mutations in CMT2A patient fibroblasts
DNA was extracted from 5 � 106 primary human fibroblasts using the DNeasy blood and tissue kit

(Qiagen, Cat#: 69506) according to manufacturer’s protocol. PCR used Taq Plus Master Mix 2X

(Cat#: BETAQR-L, Bulls eye). 50 ng of genomic DNA template, and the following primers:

(MFN2 T105M) - 5’- TTGCACTGAATAGGGCTTTG- 3’
5’- CATTCACCTCCACAGGGTG- 3’
(MFN2 R274W) - 5’- CGTGGTAGGTGTCTACAAGAAGC- 3’
5’- CTGGTGAGGGCTGATGAAAT- 3’
(MFN2 H361Y, R364W) - 5’-CCTGGCAGTGAAAACCAGAG- 3’
5’- AAGGCGTGTCCTAACTGCC- 3’.

PCR products were purified using PureLink Quick Gel Extraction Kit (Cat#: K21000-12, Invitro-

gen). Sanger sequencing of PCR products was performed at GENEWIZ.

Cultured cells
Direct reprogramming of human motor neurons from patient fibroblasts used the procedure as

described (Abernathy et al., 2017). Reprogramming cocktail consisted of 1 ml concentrated lentivi-

rus containing the reverse tetracycline-controlled transactivator (rtTA; Addgene, Cat# 66810), 1 ml

virus containing pT-BclXL-9/9*�124, 125 ml virus containing motor neuron transcription factor ISL1,

and 125 ml virus containing motor neuron transcription factor LHX3 with polybrene (8 mg/ml; Sigma-

Aldrich, Cat# H9268). Human skin fibroblasts of low passage number (P4-P7) were spinfected at 37˚

C for 30 min at 1,000 � G. Doxycycline (Dox, 1 mg/ml; Sigma Aldrich, Cat# D9891) and antibiotics

for respective vectors (Puromycin, 3 mg/ml; Invitrogen, Cat# A11138-03; Geneticin, 400 mg/ml; Invi-

trogen, Cat# 10131–035) were added to culture medium for 4 days after viral transduction. On day 5

cells were re-plated on poly-ornithine/laminin/fibronectin (Sigma, Cat# P4957, # L2020, # F4759)

coated 18 mm glass coverslips and on the following day changed to neuronal medium supple-

mented with Dox (1 mg/ml added every other day), valproic acid (1 mM; Sigma, Cat# 676380), dibu-

tyryl cAMP (200 mM; Sigma, Cat# D0627), BDNF, NT-3, CNTF, GDNF (all 10 ng/ml, Peprotech, Cat#

450–02, #450–03, #450–13, #450–10), retinoic Acid (1 mM; Sigma, Cat# R2625) and antibiotics. Neu-

ronal medium was refreshed by replacing half every 4 days. Antibiotics were discontinued on day 14;

Dox was discontinued on day 30. Cells underwent studies beginning on day 35. Motor neurons were

identified after formalin fixation by labeling with mouse anti-MNX1 (1:10; DSHB, Cat# 81.5C10) and

mouse anti-TUBB3B (1:2000; Biolegend, Cat#PRB-435P-100). Fibroblasts were identified by labeling

with rabbit anti FSP-1 (1:200; Sigma, Cat: # 07–2274).

Adult mouse dorsal root ganglion (DRG) neurons were prepared from ~8-week-old HB9Cre-

MFN2 Thr105Met flox-stop transgenic mice as previously described (Rocha et al., 2018). To com-

prehensively induce MFN2 T105M transgene expression, the DRGs were infected with Adeno-Cre

(M.O.I. of 50) 48 hr prior to study. DRG neurons were distinguished from non-neuronal cells by stain-

ing with anti-b-III tubulin.

Mouse cortical neurons were isolated from individual embryonic day E.18.5 MFN2 Thr105Met

flox-stop transgenic mice by papain digestion and mechanical dispersion using a published proce-

dure (Sobieski et al., 2015). Briefly, mouse brain cortices were isolated under a dissecting micro-

scope and sliced into 0.5–1 mm thick sections in Leibovitz’s L-15 Medium (Gibco Cat:#11415–064)

containing BSA (0.23 mg/ml, Sigma Cat:#A7030). Papain (1 mg/ml, Sigma Cat #P4762) was added

and the tissue digested for 20 min at 37˚C. The papain solution was replaced and micropipettes
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used to triturate the solution until no more tissue was visible. Cortical neurons were plated in micro-

fluidic neuron XonaChip chambers as described below.

Imaging
Static confocal imaging of cultured neurons used triple-stained with MitoTracker Green (200 nM;

Invitrogen, Thermo Fisher Scientific Cat:# M7514) to visualize mitochondria, tetramethylrhodamine

ethyl ester (TMRE, 200 nM, Invitrogen Thermo Fisher Scientific Cat:# T-669) that labels mitochondria

with normal polarization of the mitochondrial inner membrane, and Hoechst (10 mg/ml; Invitrogen,

Thermo Fisher Scientific Cat:# H3570) that stains nuclei blue as described (Franco et al., 2016).

Static live cell images were acquired on a Nikon Ti Confocal microscope using either a 60 � 1.3 NA

oil-immersion objective or 10 � 0.3 NA dry objective, in Krebs-Henseleit buffer (138 NaCl, 3.7 nM

KCL, 1.2 n M KH2PO4, 15 nM glucose, 20 nM HEPES pH: 7.2–7.5, and 1 mM CaCl2): laser excitation

was 488 nm with emission at 510 nm for MitoTracker Green and Ad-Mito GFP, 549 nm with emission

at 590 nm for TMRE, and 306 nm with emission 405 nm for Hoecsht and DAPI.

Axon branching analysis of CMT2A mouse DRGs was performed at various times after isolation

and plating, as indicated. In some studies neurons were infected with Ad-mito-RFP to label mito-

chondria red. Cells were fixed and labeled with anti-b-tubulin III (1:200 in 10% goat serum in PBS) to

identify neurons. Images were acquired using the 10x objective and excitation at 488 nm/emission

510 nm for Alexa-Flour 488 and 579 excitation/599 emission for mito-RFP. Sholl analysis of axonal

branching used ImageJ (Schneider et al., 2012) and an open source plugin (https://imagej.net/

Sholl_Analysis). Briefly, a starting radius was set to encompass the soma of b-tubulin III-positive DRG

neurons and concentric circles established at 10 micron increments, to 40 microns. Numbers of axon

and radii intersections were totaled for all circles to derive intersection number, which is a measure

of axonal branching. Special attention was given to ensure that there was uniform staining along all

parts of the DRG soma and axons so that the plugin was able to accurately assess the number of

intersections accurately.

Video confocal studies of mitochondrial motility studies in neurons and sciatic nerves used time-

lapse imaging (1 frame every 5 s) for 121 frames (10 min, sciatic nerve) or 180 frames (15 min, cul-

tured neurons) at 37˚C on a Nikon A1Rsi Confocal Microscope using a 40x oil objective as described

(Rocha et al., 2018). Cultured neuron mitochondria were labeled with Adeno-mitoDsRed2 or Mito-

Tracker Orange (200 nM, Invitrogen Thermo Fisher Scientific Cat:# M7510) excited at 561 nm, emis-

sion 585 nm. Sciatic nerve axon mitochondria were labeled with TMRE. Kymographs and

quantitative data were generated using an Image-J plug-in.

In vitro microfluidic studies of axon growth used primary cortical neurons isolated from embryonic

day 18.5 MFN2 T105M flox-stop mice. 50,000–90,000 suspended cells in 20 ml of Earle’s Minimal

Essential Medium (MEM; #11090–081; Gibco) supplemented with 5% FBS (Gibco #16140–063), 5%

horse serum (HS) (Gibco #26050–070), 400 mM L-glutamine (Gibco #25030–149), 50 units/ml each

penicillin/streptomycin (Gibco #15070–063) and 0.3% glucose (Sigma G 5767) (5–5 media) was

added to the left chambers of XonaChips with 450 mm microgroove barriers (#XC450; Xona Micro-

fluidics, Temecula, CA, USA) coated with 0.5 mg/ml poly(D)lysine (Sigma #P7280). Ten minutes

thereafter, 150 ml of 5–5 medium supplemented with 0.5 ml insulin-transferrin-sodium selenite (Sigma

I 1884) was added to each well and neurons cultured under standard conditions. After 24 hr the

medium was changed to neurobasal medium (#21103–049; Gibco, Carlsbad, CA, USA), 1x B27 sup-

plement (#17504–044, Gibco, Carlsbad, CA, USA), 50 units/ml each penicillin/streptomycin (#15070–

063; Gibco, Carlsbad, CA, USA) and 400 mM L-glutamine (#25030–149; Gibco, Carlsbad, CA, USA)

with feeding every 2 to 3 days until axotomy (DIV 12), and infected with adeno-Cre for 48 hr to

induce MFN2 Thr105Met expression. Vacuum aspiration axotomy and post-axotomy regrowth analy-

ses were performed as described (Zhou et al., 2016). Aspiration axotomy was followed by applica-

tion of fresh neuron feeding medium containing MIM111 (100 nM) or its vehicle (Me2SO, 1:1,000).

Cells were fixed in situ; axonal outgrowth and post-axotomy regrowth were analyzed by confocal

analysis of b-III tubulin positive cells. The area of bIII-tubulin signals above the same threshold within

a 1024 � 1024 image that covers all axon segments extending from microgrooves was measured

using ImageJ (NIH) and reported as pixels density of axon segments extending from an average of

all microgrooves.

Immunoblot analysis was performed on mouse sciatic nerve proteins size-separated on 10% SDS-

PAGE gels (Biorad Cat# 456–1036) and transferred to 0.45 mM Polyvinylidene fluoride (PVDF)
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membranes (GE- Amersham, Freiburg, Germany Cat# 10600023). Membranes were blocked with 5%

non-fat milk for 30 min and incubated with primary antibody overnight at 4˚C. Peroxidase-conju-

gated secondary antibodies and Chemiluminescence Substrate (Thermo Scientific #32132) were

used for signal detection. Quantification of immunoreactive proteins was performed on a LI-COR

Odyssey infrared detection system (Lincoln, NE, USA, version 1.0.17).

Flow cytometric analysis of mitochondrial electrochemical potential
Cultured neurons were stained in situ with TMRE (200 nM, Invitrogen Thermo Fisher Scientific Cat:#

T-669) for 30 min at 37˚C in 5% CO2–95% air, washed twice in PBS, and released from culture sub-

strates with 0.05% Trypsin-EDTA (Gibco, cat:# 1995647). After centrifugation, the DRG pellets were

re-suspended in 200 ml of FACS buffer (PBS 1X, BSA 1X, 2 Mm EDTA). Flow cytometry of TMRE fluo-

rescence was performed on a Gallios instrument (Beckman Coulter) and analyzed using FlowJo10

software. ~3500 events were acquired for each sample. Data are presented as Mean Fluorescence

Intensity per experiment. In some studies, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

(FCCP, 10 mM for 1 hr) (Sigma, Cat #C2759) was added as a positive control for mitochondrial

depolarization.

Evaluation of neuromuscular phenotypes in CMT2A mice
Rotarod studies were performed on mice initially acclimated to the RotaRod (Ugo Basile, Gemonio,

VA, Italy;# 47650) at a speed of 5 r.p.m. CMT2A mice underwent RotaRod evaluations weekly from

10 to 50 weeks for disease development, and 4 and 8 weeks after mitofusin activator therapy. The

acceleration protocol increased from 5 to 40 r.p.m over 120 s and then maintained 40 r.p.m. indefi-

nitely. Each mouse underwent five separate trials per testing event with 5 min rest between trials.

Latency (time to falling off) was averaged for all trials.

Neuroelectrophysiologic recordings of tibialis/gastrocnemius compound muscle action potentials

(CMAP) were performed with a Viasys Healthcare Nicolet Biomedical instrument (Middleton, WI,

USA Cat:# OL060954) running Viking Quest version 11.2 software by an operator (A.F.) blinded to

genotype and treatment group. Mice were anesthetized with isofluorane (4–5% induction, 1.5%

maintenance), shaved, and the proximal sciatic nerves stimulated using a needle electrode (Natus,

Mundelein, IL, USA Cat:# F-E2-48) with 3.9 mV pulses of 0.002 ms duration. Ring electrodes (Natus,

Mundelein, IL, USA Cat:# 291965) were positioned at the mid forelimb at the belly of the tibialis

anterior and gastrocnemius muscles to record CMAP. Optimal stimulating electrode position was

determined as that giving the greatest CMAP amplitude; 3–4 independent events were recorded

and averaged.

Evaluation of CMT2A mouse responses to MiM111
Twelve 50-week-old CMT2A mice (HB9-Cre + MFN2 Thr105Met flox-stop) and six littermate controls

were randomized and blinded to daily intramuscular treatment with MiM111 or vehicle for 8 weeks:

under sterile conditions18.75 mg/ml (64.8 mM) MIM 111 was dissolved in 10% Me2SO/90% (2-

hydroxypropyl)-b-cyclodextrin (HP-BCD; Sigma, Cat: #332607), sterile-filtered (0.22 mm PVDF,

#SLGV033RS, Millipore, Cork, Ireland), and drug- or vehicle-containing syringes were assigned to

individual mice by XD using a randomization table. Daily intramuscular injections (biceps femoris

muscle, alternating left and right every other day) were performed by AF, who was blinded to both

mouse genotype and drug treatment group. Rotarod and neurophysiological testing were per-

formed before, and 4 and 8 weeks after initiation of therapy. Mice were terminated by anesthesia

overdose after 8 weeks for tissue studies. Sciatic and mid tibial nerves were dissected from both

legs of all mice. For histology and immunohistology the left leg nerves or muscles were fixed in PFA

for 2 hr, transferred to 30% sucrose/PBS overnight at 4˚C, and embedded in optimal cutting temper-

ature (OCT, Tissue-TEK Cat: 4583) medium for storage at �80˚C. Immunostaining with anti-Superior

Cervical Ganglion 10 (SCG10) or wheat germ agglutinin labeling (WGA, Cat:#W834, Invitrogen) was

performed on 10 mm cryostat sections briefly (5 min) brought to room temperature and then re-

cooled to �20˚C for 30 min. RGB rightness of the representative images was increased uniformly for

presentation purposes.
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Mitochondrial occupancy in neuromuscular synaptic junctions was assessed in 10 mm cryostat

tibialis muscle sections using anti-COXIV (1:200 in 10% goat serum) to label mitochondria and anti-

acetylcholine receptor with a-Bugarotoxin to label neuronal synapses.

Transmission electron microscopy and toluidine blue staining used standard techniques

(Zhou et al., 2019).

Data presentation and statistical analyses
Data are reported as means ± SD. Two-group comparisons used Student’s t-test; multiple group

comparisons used one-way ANOVA, and time-course by treatment group or genotype by treatment

group comparisons used two-way ANOVA, with Tukey’s post-hoc test for individual statistical com-

parisons. p<0.05 was considered significant.

Mouse treatment was randomized according to a random integer table (even or odd) and per-

formed by investigators blind to both genotype and treatment status. Post terminal analysis of tissue

and cell phenotypes was performed blindly.

Samples size estimation: Using two-sample t-test based on the preliminary data where the coeffi-

cients of variation (CV) at 50 weeks were 10% and 15% for rotarod latency and CMAP amplitude,

respectively, the study was initially designed to have a sample size of 15 mice/group, providing 80%

power at 1-sided a = 0.05. Because the therapeutic response for targeted differences was greater

than anticipated, the study was completed with a reduced sample size of n = 6/group.
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