Skip to main content
. 2019 Aug 7;64(15):15TR01. doi: 10.1088/1361-6560/ab2ba8

Table 2.

Properties of the marker segmentation algorithms discussed in section 2.2.1.

Method Marker shape Site (patient number) Image type Template generation Manual input needed Automatic error detection
Fledelius et al (2014) Cylindrical Liver (13) CBCT, kV, MV Automatic No Yes—rejected segmentation
Mao et al (2008) Spherical, Cylindrical Prostate (5) kV, MV Automatic No Noa
Tang et al (2007) Cylindrical Liver (2) kV Automatic (from library) Yes (initialization) Yes—terminates segmentation
Marchant et al (2012) Cylindrical Pancreas (2), prostate (1) CBCT Gaussian kernels Yes (initialization) Noa
Regmi et al (2014) Arbitrary (Visicoil), Cylindrical Pancreas (4), Gastrointestinal junction (6), lungs (1) CBCT From breath-hold CT Yes (template generation pre-treatment) No
Bertholet et al (2017) Arbitrary (Visicoil), Cylindrical Thorax (12), Abdomen (28) CBCT Automatic No Yes—rejected segmentation
Campbell et al (2017b)b Cylindrical marker group Pancreas (15) CBCT Automatic No Noa
Lin et al (2013) Cylindrical Prostate (2) MV No Yes (manual selection of training sample at fraction 1) No
Wan et al (2016)b Arbitrary (visicoil, embolization coil), cylindrical (gold, Calypso) Abdomen (34), Lung (5) CBCT No No No
a

Methods designed to have a 100% detection rate.

b

Not fully demonstrated in real-time.