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Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their
pharmacological effects. As main pharmacological components, saponins have different distribution
patterns in the root tissues of Panax plants.

iché[:[iezg 122; May 2019 Methods: In this study, the representative ginsenosides were detected and quantified by desorption
Available online 29 May 2019 electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to
demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin
Keywords: metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues.
Metabolome Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin
Panax plants distribution by gene profiles.
Root tissues Results: There was saponin distribution in the root tissues differed between P. quinquefolius and
Saponi‘? distribution P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a
Transcriptome total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the

saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively.
Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re,
Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89,
CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Abbreviations: UGTs, UDP-glycosyltransferases; MEP, 2-C-methyl-D-erythritol-4-phosphate; MVA, Mevalonate acid; FPS, Farnesyl pyrophosphate synthase; SS, Squalene
synthase; SE, Squalene epoxidase; DS, Dammarenediol-II synthase; UPLC-MS, Ultrahigh-performance liquid chromatography quadrupole time of flight-mass spectrometry;
MALDI-MS, Matrix-assisted laser desorption/ionization—mass spectrometry; HPLC-UV, High-performance liquid chromatography-ultraviolet detection; IPP, Isoprenyl
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coexpression network analysis.
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Conclusions: These results provided the visual and quantitative profiles of and confirmed the pivotal
transcripts of CYPs and UGTs regulating the saponin distribution in the root tissues of P. quinquefolius and

P. notoginseng.

© 2019 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Panax species mainly include Panax ginseng, Panax notoginseng,
Panax quinquefolius, Panax japonicus, Panax japonicus var. major,
Panax pseudoginseng, Panax vietnamensis var. fuscidicus, and Panax
zingiberensis [1,2]. P. ginseng (Asian or Korean ginseng),
P. notoginseng (Chinese ginseng or sanchi ginseng), and
P. quinquefolius (American ginseng) have been widely used as
medicines, functional food, health-care products, and food addi-
tives [3,4]. The therapeutic effects of Panax plants are mainly
attributed to their saponin components [5,6]. Saponins can be used
to treat central nervous system diseases, cardiovascular diseases,
cancer, and diabetes [7—10]. Saponins have potent therapeutic ef-
fects against cardiovascular diseases (R1) [11] and induce neuro-
protection activity (Rb1) [12], antiinflammatory effect (Rb2 and Rc)
[13,14], antiangiogenic activity (Rd) [15], antioxidant activity (Re)
[16], and hepatoprotective effect (Rg1) [17]. The types and quanti-
ties of saponins in Panax plants change with age [18], growth
environment [19], and tissue type [20]. The compositions and
contents of the ginsenosides Rg1, Rc, and Rd in P. ginseng vary with
cultivation age and region [18]. The ginsenoside contents of
mountain-cultivated P. ginseng increase with age [19]. High-per-
formance liquid chromatography (HPLC) analysis has indicated that
the varieties and contents of saponins differ among the aerial parts
(flower, stem, and leaf) and underground parts (root and fibril) of
P. notoginseng [21]. A quantitative comparison of ginsenosides
revealed that the ratio of Rgl/Rd, (Rgl + Re)/Rd, and proto-
panaxatriol-type saponins/protopanaxadiol (PPD)-type
saponins presented a substantially large difference between culti-
vated and wild P. quinquefolius [22]. Interestingly, the amounts of
ginsenosides in the cork are higher than those in the cortex and
phloem of P. ginseng as indicated by analysis using matrix-assisted
laser desorption/ionization (MALDI)—mass spectrometry (MS) and
ultra-high-performance liquid chromatography (UPLC)—quadru-
pole/time-of-flight (QTOF)—MS [23]. These results suggest that the
distribution of saponin varieties and contents vary among the root
tissues of Panax plants. However, visual and quantitative evidence
supporting the saponin distribution in the root tissues (periderm,
phloem, and xylem) of P. quinquefolius and P. notoginseng is limited.

More than 150 naturally occurring saponins, including
dammarane-type and oleanane-type saponins, have been isolated
from Panax species [24], and metabolomics can be applied to
analyze the panorama profiles of saponins in different parts of
medicinal plants [21]. The distribution of saponin contents and
varieties differ among the rhizome, main root, branch root, and
fibrous root of P. notoginseng, and 32 saponins are selected as po-
tential biomarkers [25]. Nevertheless, the saponin profiles of the
root tissues of P. quinquefolius and P. notoginseng have been rarely
reported. As such, the saponin distribution in root tissues should be
determined for the targeted breeding of Panax plants.

Saponin distribution is related to a set of putative transcripts
involved in the saponin synthesis of Panax plants [26]. Triterpene
saponins are synthesized by multiple synthesis transcripts in the
mevalonic acid pathway, which is the main route, and the methyl-
erythritol phosphate pathway [21,27]. Isoprenyl diphosphate and
dimethylallyl pyrophosphate, which are produced in these two
pathways, are catalyzed by a series of geranyl diphosphatesynthase

(GDPS), farnesyl diphosphatesynthase [28], squalene synthase [29],
squalene epoxidase, and dammarenediol-II synthase (DS) [30] to
form dammarenediol-Il and subsequently undergo cytochrome
P450 (CYP) hydroxylation and UDP-glycosyltransferase (UGT) action
[31]. The analysis of these pivotal transcripts provides useful infor-
mation for the genetic improvement of Panax plants. Many tran-
scripts related to saponin synthesis and distribution have been
selected via transcriptome analysis [26—31]. In ginseng, certain
transcripts, such as 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGR), acetoacetyl-CoA acyltransferase (AACT), dammarendiol
synthases (DS), and squalene epoxidase (SE), which are involved in
saponin synthesis, have been identified and found to be highly
expressed in the periderm; their expression patterns are consistent
with saponin distribution [32,33]. The contents of PPD- and
protopanaxatriol-type saponins in P. notoginseng are also signifi-
cantly correlated with the expression levels of CYP716A47 and
CYP716A53v2, respectively [27]. Thus, we hypothesized that the
expression patterns of transcripts participating in saponin synthesis
regulated the saponin distribution in root tissues of Panax plants.

In this study, we investigated the visualization of saponin locali-
zation and characteristic chemical markers in the root tissues of
P. quinquefolius and P. notoginseng through desorption electrospray
ionozation mass spectrometry (DESI-MS) and UPLC—QTOF—MS.
Furthermore, the candidate transcripts related to saponin distribution
were screened and verified in accordance with the transcriptome of
root tissues. Our study systematically analyzed the metabolomes and
transcriptomes of the root tissues of P. quinquefolius and P. notoginseng
and offered relevant information for the enhanced understanding of
the saponin distribution in terms of chemical and biological aspects.
Results contribute to the present data for the genetic improvement
and target breeding of Panax species.

2. Materials and methods
2.1. Plant materials

Three-year-old roots of P. quinquefolius and P. notoginseng were,
respectively, collected from Jingyu in Liaoning Province and Wen-
shan in Yunnan Province at their flowering stage. The samples were
divided into two parts: one part was used for DESI-MS imaging
analysis, and the other part was used for metabolomic and tran-
scriptome analyses. Each batch (15 plants) of roots was carefully
washed, separated into three different parts (periderm, phloem,
and xylem), and stored for chemical and molecular analyses.

2.2. DESI-MS imaging analysis

Fresh roots were cut into 1-cm cross-sections by using a blade.
The sections were immediately frozen in liquid nitrogen and cut
into 20-um sections at —20°C for DESI-MS imaging. Ginsenoside
distribution was detected using a DESI mass spectrometer (Xevo
G2-XS; Waters Corporation Shanghai Science & Technology Co Ltd).
Images were obtained through high-definition imaging (Waters
Corporation). The spray solvent was composed of 90% MeOH, 10%
H,0, 0.1 mM NH4CI, and 0.1 mM leucine enkephalin. The parame-
ters were set as follows: spray solvent speed, 1.5 uL/min; X and Y
pixel sizes, 100 pm; and raster speed, 400 pm/s. The parameters of
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MS at negative polarity were as follows: capillary voltage, 4.5 kV;
cone voltage, 80 V; and mass range, m/z 100—1200.

2.3. Metabolite analysis

All the samples were dried and crushed, and 0.1 g of the
powdered sample was weighed and mixed with 1.0 mL of pure
methanol containing 0.1% formic acid under vortex for 10 s. The
mixture was ultrasonicated for 10 min, frozen at —20 °C for 1 h, and
centrifuged at 10,000 rpm for 10 min. The upper layer was
collected, filtered through a 0.22-pm filter, and transferred to a
sample vial. The vial was injected into a column for UPLC—QTOF—
MS analysis.

UPLC—MS analysis was performed using an UPLC system (Wa-
ters) coupled to an electrospray ionization—QTOF/MS apparatus
(Waters). A Cyg reversed-phase column (50 mm x 2.1 mm, 1.7 pm
inner diameter, Acquity UPLC BEH; Waters, UK) was used for UPLC
separation, and the sample injection volume was 10 pL. The column
temperature was kept at 35°C, and the flow rate was maintained at
0.4 mL/min. The gradient was composed of water containing 0.1%
formic acid (A) and acetonitrile containing 0.1% formic acid (B). The
linear gradient was set as follows: 0—2 min for 99%—80% A, 2—3
min for 80%—50% A, 3—7 min for 50%—20% A, 7—7.5 min for 20%—1%
A, 7.5—-9 min for 1% A, 9—9.1 min for 1%—99% A, and 9.1—10 min for
99% A. Multivariate data analysis was achieved using Metab-
oAnalyst 4.0 software (Genome, Canada) (http://www.
metaboanalyst.ca/). Potential biomarkers were selected using the
following threshold values: false discovery rate (FDR) < 0.05 for all
chemical components and FDR < 1 for saponin components.

2.4. HPLC—UV analysis

The standards of notoginsenoside R1 and ginsenosides Rb1, Rg1,
Re, Rb2, Rd, and Rc were purchased from Shanghai Tauto Biotech
Company (Shanghai, China). These standards have more than 98.0%
purity, and the batch numbers of notoginsenoside R1 and ginse-
nosides Rb1, Rgl, Re, Rb2, Rd, and Rc were 160923, 160930,
16042724, 160907, 16060121, 160924, and 16081931, respectively.

The extracts of the samples were also used for saponin quanti-
tative analysis. An Agilent HPLC 1260 series system (Agilent Tech-
nologies, USA) equipped with a quaternary pump, automatic
sampler, column compartment, and ultraviolet detector (VWD) was
used. A Cig reversed-phase column (4.6 mm x 250 mm, inner
diameter of 5 um, Eclipse XDB; Agilent) was used for separation,
and the sample injection volume was set as 10 pL. The conditions
for P. quinquefolius were set as follows: column temperature, 30°C;
flow rate, 1.0 mL/min; and wavelength, 203 nm. The gradient was
composed of acetonitrile (A) and water (B), and the linear gradient
was set as follows: 0—25 min, 19% A to 20% A; 25—60 min, 20% A to
40% A; 60—90 min, 40% A to 55% A; and 90—100 min, 55% A to 60%
A. The conditions for P. notoginseng were set as follows: column
temperature, 25°C; flow rate, 1.0 mL/min; and wavelength, 203 nm.
The gradient was composed of acetonitrile (A) and water (B), and
the linear gradient was set as follows: 0—12 min for 19% A and 12—
60 min for 19% A to 36% A.

2.5. RNA extraction and illumina sequencing

Total RNA was isolated from different tissues in accordance with
the instructions in a plant RNA isolation kit (BioTeke, Beijing,
China). The quality of RNA was evaluated on 1% agarose gel, and
RNA concentrations were determined with a NanoDrop 2000
spectrophotometer (Thermo Technologies). cDNA library

construction and sequencing were performed in accordance with
the standards of progress. First, mRNA was enriched from the total
RNA by oligo (dT) magnetic beads and broken into short fragments.
A random hexamer and RNA fragments were then used to prime
cDNA synthesis. After purification and connection with adapters, a
cDNA library was constructed through polymerase chain reaction
amplification. The length of an insert sequence was verified using
an Agilent 2100 bioanalyzer, and the library was quantified using an
ABI StepOnePlus Real-Time PCR System (Applied Biosystems).
Finally, the qualified cDNA library was sequenced with an Illumina
HiSeqTM 2000 system (Illumina Technologies). All the tran-
scriptome sequences were submitted to the NCBI (Accession
Number: SRR7764541-SRR7764549 and SRR7764553-
SRR7764561).

2.6. Transcriptome analysis

Low-quality reads (more than 20% of bases with quality < 10)
and reads with adapters or containing more than 5% of unknown
nucleotides were filtered to generate clean reads. De novo assembly
and redundant sequence removal were performed in Trinity and
Tgicl, respectively.

The resultant transcripts were searched against the NCBI
nonredundant nucleotide (Nt) database, NCBI nonredundant pro-
tein (Nr), and SwissProt protein for functional annotation by using
the BLAST algorithm with an E-value cutoff of 1e~>. The functional
categories of these unique sequences were further analyzed using
the Clusters of Orthologous Groups of Proteins (COG) database,
Gene Ontology (GO) database, and Kyoto Encyclopedia of Genes
and Genomes (KEGG) database in BLAST and Blast2GO programs.

The clean reads were mapped to the reference by using Bowtie
(v2.2.6) to estimate the expression profiles of transcripts. The
expression levels were calculated with the fragments per kilobase
of exon per million fragments (FPKM) by using RNA-Seq by
expectation maximization (RSEM) analysis. The candidate tran-
scripts involved in saponin biosynthesis were selected in accor-
dance with previous reports and databases with FPKM values of the
transcripts converted to logyo values (FPKM > 5). They were visu-
alized in a heatmap to identify the different expression profiles
among the three tissues.

2.7. Coexpression analysis

Weighted gene coexpression network analysis (WGCNA) was
used to analyze the relationships between different transcripts and
saponin contents with R package [34]. Before network interring, the
expressing transcripts were normalized by square root trans-
formation. All differentially expressing transcripts were clustered
based on their FPKM values with the k-means method. The network
construction and module detection method with default settings
were used, including an unsigned type of topological overlap ma-
trix [34]. All parameters were set as defined: “soft_power=15,
deep_split=3, min_module size=30, merge Cut Height=0.2". The P-
values of 0.05 and R of 0.6 were set as the threshold for significantly
high correlation. The significant and positive modules (R>0.6,
P<0.05) were selected from the analysis of all transcripts with
saponin contents, and then candidate transcripts involved in
saponin biosynthesis were further selected in accordance with
annotation information to analyze the relationship of transcripts
expression profiles and saponin contents. The heatmap was con-
structed with R package to identify pivotal transcripts related to
saponins contents.
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Fig. 1. Saponin distribution in P. quinquefolius and P. notoginseng root cross sections on the basis of the DESI-MS. (A) P. quinquefolius. (B) P. notoginseng. Scale bar = 2 mm. MS, mass

spectrometry.

3. Results

3.1. Distribution and contents of saponin in the root tissues of
P. quinquefolius and P. notoginseng

Saponin distribution in the root tissues of P. quinquefolius and
P. notoginseng was visualized through DESI-MS imaging (Fig. 1).
The ion images showed that the saponins had distinct localization
and different relative abundances in three tissues. In
P. quinquefolius, ginsenosides Rd/Re (m/z 945.5416 [M-H]) were
found at high concentrations in the periderm and xylem of the root,
whereas malonyl Rc and Rs1/Rs2 (m/z 1119.5966 [M-H]) were
highly distributed in the periderm (Fig. 1A). In P. notoginseng, the
ginsenosides Rd/Re (m/z 945.5409 [M-H]) were highly distributed
in the periderm and xylem, and Rb1 (m/z 1107.5953 [M-H]) was
highly concentrated in the xylem. Rg1/Rf (m/z 799.4832 [M-H]) and
notoginsenoside R1 (m/z 931.5250 [M-H]) were widely distributed
throughout the root sections (Fig. 1B). Thus, the saponin distribu-
tion in the root tissues differed between P. quinquefolius and
P. notoginseng depending on the saponin types.

The root tissues were peeled to obtain the three tissues (peri-
derm, phloem, and xylem) in P. quinquefolius and P. notoginseng
(Fig. 2A and B). The contents of the representative saponins (R1,
Rb1, Rgl, Re, Rb2, Rc, and Rd) were quantified in the root tissues of
P. quinquefolius and P. notoginseng through HPLC (Fig. 2C—F). In
P. quinquefolius, the highest contents of Rg1, Re, Rb1, Rc, Rb2, and Rd
were detected in the periderm (0.83, 7.85, 3.46, 1.11, 0.33, and 0.86
mg/g, respectively). Their contents were significantly higher than
those in the phloem (0.14, 3.29, 2.93, 0.05, 0, and 0.3 mg/g,
respectively) and xylem (0.05, 3.02, 1.02, 0, 0, and 0.28 mg/g,
respectively; Fig. 2D). In P. notoginseng, the contents of saponins
(R1, Rb1, Re, Rb1, and Rd) were higher in the xylem (2.27, 30.69,
1.03, 8.41, and 2.30 mg/g, respectively) than in the periderm (1.93,
24.64,0.75, 6.94, and 1.48 mg/g, respectively) and the phloem (1.91,
25.44, 0.66, 6.90, and 1.79 mg/g, respectively), but their differences
were insignificant in the root tissues (Fig. 2F). These results indi-
cated that the saponin distributions differed (P < 0.05) in the root
tissues of P. quinquefolius, and the differences in the representative
saponin contents were insignificant (P < 0.05) in the root tissues of
P. notoginseng.
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Fig. 2. Main root tissue and saponin content analysis in P. quinquefolius and P. notoginseng. (A) Main root tissues in P. quinquefolius. Pq means the root cross section of
P. quinquefolius; Pq-Pe means the periderm of P. quinquefolius; Pq-Ph means the periderm of P. quinquefolius; and Pq-Xy means the xylem of P. quinquefolius. (B) Main root tissues in
P. notoginseng. Pn means the root cross section of P. notoginseng; Pn-Pe means the periderm of P. notoginseng; Pn-Ph means the periderm of P. notoginseng; and Pn-Xy means the
xylem of P. notoginseng. (C) HPLC chromatogram profiles of P. quinquefolius plants: 1, ginsenoside Rg1; 2, ginsenoside Re; 3, ginsenoside Rb1; 4, ginsenoside Rc; 5, ginsenoside Rb2;
6, ginsenoside Rd. (D) Contents of six saponins in the roots of P. quinquefolius. (E) HPLC chromatogram profiles of P. notoginseng plants: 1, notoginsenoside R1; 2, ginsenoside Rg1; 3,
ginsenoside Re; 4, ginsenoside Rb1; 5, ginsenoside Rd. (F) Contents of five saponins in the roots of P. notoginseng. HPLC, high-performance liquid chromatography.

3.2. Saponin components in the root tissues of P. quinquefolius and
P. notoginseng

Orthogonal partial least squares-discriminant analysis (OPLS—
DA) revealed the differences in the chemical components of the
root tissues of P. quinquefolius and P. notoginseng (Fig. S1). In
P. quinquefolius, supervised OPLS—DA results showed the clear
separation of three root tissues (Fig. S1A). A total of 535 potential
biomarkers were found through one-way analysis of variance
(ANOVA) (FDR < 0.05; Fig. S1B and Table S1). In P. notoginseng,
OPLS—DA results showed that three root tissues were clearly
separated (Fig. S1C). One-way ANOVA test results indicated that
only one potential biomarker was found (FDR < 0.05; Fig. S1D and
Table S1). These data suggested that the distribution of the chem-
ical components of the root tissues differed between
P. quinquefolius and P. notoginseng, and the number of potential
biomarkers was higher in the root tissues of P. quinquefolius than in
those of P. notoginseng.

The saponin contents and types differed in the root tissues of
P. quinquefolius and P. notoginseng (Fig. 3). OPLS—DA analysis
revealed that the periderm, phloem, and xylem of P. quinquefolius
clearly separated into different metabolic profiles (Fig. 3A). One-
way ANOVA indicated the presence of 88 potential biomarkers in
the root tissues of P. quinquefolius (FDR < 1; Fig. 3B and Table S2).
Furthermore, three root tissues of P. notoginseng displayed dispa-
rate metabolic profiles, and 24 potential biomarkers were detected
(FDR < 1; Fig. 3C and D and Table S2). These metabolite data
showed that the distribution of saponins differed among the three
root tissues of P. quinquefolius and P. notoginseng.

3.3. Transcriptome analysis of the root tissues of P. quinquefolius
and P. notoginseng

[llumina Hiseq paired-end sequencing technology was used to
analyze the transcriptome of root tissue samples (periderm,
phloem, and xylem) of P. quinquefolius and P. notoginseng. After the
low-quality reads were filtered, the averages of 6.07 G and 6.13 G
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Fig. 3. Metabolomic analysis of saponin difference among the root tissues in P. quinquefolius and P. notoginseng. (A) OPLS—DA score plots of P. quinquefolius. (B) One-way ANOVA of
P. quinquefolius. (C) OPLS—DA score plots of P. notoginseng. (D) One-way ANOVA of P. notoginseng. ANOVA, analysis of variance; OPLS—DA, orthogonal partial least squares-

discriminant analysis.

clean reads were obtained from P. quinquefolius and P. notoginseng
samples, respectively. After de novo assembly was conducted, the
clean reads of P. quinquefolius and P. notoginseng were assembled

Table 1
Summary of the transcripts and assembly results for P. quinquefolius and
P. notoginseng

Item P. quinquefolius P. notoginseng

Average number of raw data (G) 6.07 6.13
Number of unigenes 84,408 80,472
Length of unigene (bp) 10,11,04,546 10,38,55,332
Average contig size (bp) 1,197 1,290

N50 contig size (bp) 1,720 1,839

GC (%) 41.68 41.25

into 84,408 and 80,472 transcripts, respectively. In P. quinquefolius,
the percentage of GC was 41.68% with an average contig size of
1,197 bp and an N 50 contig size of 1,720 bp. In P. notoginseng, the
percentage of GC was 41.25% with an average contig size of 1,290 bp
and an N 50 contig size of 1,839 bp (Table 1).

To investigate the function of assembled transcripts, we per-
formed annotation via a sequence similarity search with a cutoff E-
value of 10> against public databases, including GO, COG, KEGG,
Nr, and Swiss-Prot (Table S3). In P. quinquefolius, 69,951 transcripts
(82.87%) were annotated from the databases. A total of 68,720
(81.41%) transcripts showed significant matches in the Nr database,
and 52,118 (61.75%), 52,176 (61.81%), 28,431 (33.68%), and 42,535
(50.39%) transcripts had significant matches with the Swiss-Prot,
KEGG, COG, and GO databases, respectively. In P. notoginseng,
66,871 transcripts (83.10%) were annotated in the databases. A total
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of 65,889 (81.88%) transcripts exhibited significant matches in the
Nr database, whereas 51,217 (63.65%), 51,130 (63.54%), 28,982
(36.02%), and 42,490 (52.80%) transcripts had significant matches
with the Swiss-Prot, KEGG, COG, and GO databases, respectively.
GO terms were used to assign the unigene sets and classify the
gene functions. In P. quinquefolius, 230,542 transcripts were clas-
sified into three groups in GO terms, namely, biological process
(95,505), cellular component (87,790), and molecular function
(47,247). These terms were further categorized into 56 sub-
categories. Cellular process, metabolic process, and single-
organism process were the most abundant terms in the biological
process category. The most dominant subcategories in the cellular
component were cell, cell part, and membrane. Catalytic activity
and binding were the most represented terms in molecular func-
tion. In P. notoginseng, a low number of sequences were mapped to
GO terms. A total of 23,016 transcripts were classified into three
groups in GO terms, namely, biological process (9,799), cellular
component (8,375), and molecular function (4,842). These terms
were further categorized into 50 subcategories. Similar to the cat-
egories in P. quinquefolius, cellular process, metabolic process, and
single-organism process were the most abundant terms in the
biological process category. The most dominant subcategories in
the cellular component were cell, cell part, and membrane.

Catalytic activity and binding were the most represented terms in
molecular function (Fig. S2).

The annotated sequences were also mapped to the KEGG
pathways. In P. quinquefolius, 50,945 transcripts were assigned to 21
KEGG pathways. The metabolic pathway achieved the most rep-
resented sequences (29,659), including global and overview maps
(11,384), carbohydrate metabolism (4,210), and lipid metabolism
(2,563). Notably, 1,136 sequences were annotated to the meta-
bolism of terpenoids and polyketides. In P. notoginseng, 5,323
transcripts were assigned to 20 KEGG pathways. Similarly, the
metabolic pathway achieved the most represented sequences
(3,293), including global and overview maps (1,166), carbohydrate
metabolism (428), and lipid metabolism (264). Moreover, 107 se-
quences were annotated to the metabolism of terpenoids and
polyketides. These annotation results provided valuable informa-
tion for analyzing metabolic pathways in P. quinquefolius and
P. notoginseng (Fig. S3).

3.4. Analysis of differential gene expression in the root tissues of
P. quinquefolius and P. notoginseng

Cluster dendrograms and Venn profiles were constructed to
investigate the transcription distinction among the root tissues of
P. quinquefolius and P. notoginseng on the basis of the FPKM value
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(Fig. 4). Cluster dendrogram results showed that the periderm and
xylem were finely assembled into each group in P. quinquefolius,
and three root tissues of P. notoginseng were not clearly separated
into independent branches. The Venn results revealed that 78,115
transcripts were obtained in P. quinquefolius, and 65,753 of these
transcripts were shared among the three root tissues. Furthermore,
2,320, 1,863, and 2,505 transcripts were specifically expressed in
the periderm, phloem, and xylem, respectively (Fig. 4A).

P. notoginseng, 72,094 transcripts were obtained, and 60,678 of
these transcripts were shared among the three root tissues.
Moreover, 1,759, 1,608, and 2,604 transcripts were specifically
expressed in the periderm, phloem, and xylem, respectively
(Fig. 4B). These results showed that the transcripts of the three root
tissues of P. quinquefolius and P. notoginseng were differentially
expressed.

3.5. Coexpression analysis of all transcripts and saponin contents

The hierarchical cluster tree was constructed with transcript
expression and saponin contents through WGCNA. In
P. quinquefolius, all transcripts were grouped into 35 unique mod-
ules, of which 44,067 transcripts were positively associated with
saponin contents. Among these transcripts, four modules were
positively correlated with saponin contents, namely, MElightcyan,
MEgreen, MEred, and MEdarkmagenta (R>0.6, P<0.05; Fig. 5A).
Further results showed that 73 transcripts in the MElightcyan
module were positively correlated with the content of ginsenoside
Rb1 (R=0.84, P<0.05). A total of 604 transcripts in the MEgreen
module were positively associated with the content of ginsenoside
Rg1 (R=0.69, P<0.05). By contrast, 449, 427, 179, 443, 404, and 412

transcripts

A

in the MEred module were strongly positively
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correlated with the contents of ginsenosides Rg1 (R=0.98, P<0.05),

e (R=0.91, P<0.05), Rb1(R=0.72, P<0.05), Rc (R=0.98, P<0.05),
Rb2 (R=0.91, P<0.05), and Rd (R=0.91, P<0.05). Thirteen transcripts
in the MEdarkmagenta module were positively correlated with the
content of ginsenoside Re (R=0.76, P<0.05; Fig. 5B).

In P. notoginseng, 25 unique modules were identified, of which
59,503 transcripts were positively associated with saponin con-
tents, and four coexpression modules, namely, MEgreenyellow,
MEblue, MEbrown, and MEdarkgrey, were highly positively corre-
lated with saponin contents (R>0.6, P<0.05; Fig. 5C). For example,
115 transcripts in the MEgreenyellow module were positively
correlated with the content of ginsenoside Rg1 (R=0.72, P<0.05). A
total of 660 transcripts in the MEblue module were positively
associated with the content of notoginsenoside R1 (R=0.75,
P<0.05). Approximately 331 transcripts in the MEbrown module
were positively correlated with the content of ginsenoside Rd
(R=0.74, P<0.05). One transcript in the MEdarkgrey module was
positively correlated with the content of ginsenoside Re (R=0.69,
P<0.05; Fig. 5D). These results suggested the involvement of
complex mechanisms of saponin synthesis in P. quinquefolius and
P. notoginseng.

3.6. Analysis of transcripts involved in saponin synthesis in the root
tissues of P. quinquefolius and P. notoginseng

The annotation results showed that 19 (406 transcripts) and 18
genes (1174 transcripts) encoding the enzymes involved in saponin
biosynthesis in the mevalonic acid and methylerythritol phosphate
pathways were identified in P. quinquefolius and P. notoginseng,
respectively. Multiple copies of the key transcripts and enzymes
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resulted in a widened variety of regulatory controllers in saponin
biosynthesis.

A total of 158 and 426 transcripts were obtained in the root
tissues of P. quinquefolius and P. notoginseng (FPKM > 5), respec-
tively, and the expression of most transcripts significantly differed
(Table S4). In the upstream pathway of P. quinquefolius, 45 tran-
scripts were selected to analyze expression profiles, and 21
(46.7%), 5 (11.1%), and 19 (42.2%) transcripts were expressed at the
highest levels in the periderm, phloem, and xylem, respectively
(Table S4 and Fig. 6A). For example, four 1-Deoxy-D-xylulose-5-
phosphate reductoisomerase (DXR) transcripts (CL2437. Contig
1_All, Contig 2_All, Contig 3_All, and Contig 4_All), two AACT
transcripts (CL13285. Contig2_All and CL2675. Contig1_All), three
Isopentenyl diphosphate isomerase (IDI) transcripts (CL5256.
Contig1_All, Contig2_All, and Contig3_All), one AS transcript
(CL3486. Contig6_All), one isopentenyl pyrophosphate isomerase
transcript (CL5807. Contigl11_All), and one GDPS transcript
(CL11084. Contig1_All) showed the highest expression levels in the
periderm. Five AACT transcripts (Unigenel7567_All, Unig-
ene765_All, CL13347. Contig2_All, CL557. Contig2_All, and Unig-
ene18092_All) and three mevalonate kinase transcripts (CL12073.
Contig1_All, Contig2_All, and Contig3_All) exhibited the highest
expression levels in the xylem. In the upstream pathway of
P. notoginseng, 38 transcripts with FPKM > 5 were selected to
analyze expression profiles, and 11 (28.9%), 15 (39.5%), and 12
(31.6%) transcripts yielded the highest expression levels in the
periderm, phloem, and xylem, respectively (Table S4 and Fig. 6B).
The expression levels of three 1-Deoxy-D-xylulose-5-phosphate
synthase (DXS) (CL4759. Contigl_All, Contig2_All, and Con-
tig3_All), one AACT (CL6060. Contigl_All), two HMGR (CL3711.
Contig1_All and Contig2_All), one IDI (Unigene13679_All), and two
squalene epoxidase (CL1544. Contig2_All and Contig4_All) tran-
scripts were high in the periderm. The most predominant
expression levels of two DXR (CL5233. Contig4_All and Con-
tig5_All) transcripts, one mevalonate kinase (Unigene6280_All)
transcript, and one DS (Unigene795_All) transcript were observed
in the xylem.

CYP families had different expression profiles in the root
tissues of P. quinquefolius and P. notoginseng. A total of 94 CYP
transcripts were identified in P. quinquefolius; 54, 15, and 25 of
these CYP transcripts (57.4%, 16.0%, and 26.6%) showed the
highest expression levels in the periderm, phloem, and xylem,
respectively (Table S4 and Fig. S4). A total of 112 CYP transcripts
were identified in P. notoginseng. Of these CYP transcripts, 75
(67.0%) and 17 (15.2%) were upregulated in the periderm and
phloem, respectively, and 20 (17.8%) were upregulated in the
xylem (Table S4 and Fig. S5). These results indicated that the
CYP transcripts were more highly expressed in the periderm
than in the other root tissues of P. quinquefolius and
P. notoginseng.

The UGT families also had different expression profiles in the
root tissues of P. quinquefolius and P. notoginseng. A total of 19 UGT
transcripts were identified in P. quinquefolius. Among these UGT
transcripts, 8 (42.1%) had the highest expression in the periderm
and 10 (52.6%) had the highest expression in the xylem (Table S4
and Fig. S6). In P. notoginseng, 276 UGT transcripts were identi-
fied; the expression levels of 152 (55.1%), 42 (15.2%), and 82 UGT
transcripts (29.7%) were the highest in the periderm, phloem, and
xylem, respectively (Table S4 and Fig. S7). These results indicated
that the UGT transcripts were highly expressed in the periderm and
xylem of P. quinquefolius and P. notoginseng.

3.7. Coexpression analysis of saponin contents and transcripts
involved in saponin synthesis

Transcripts involving unique modules that were positively
associated with saponin contents were selected from the WGCNA
(Fig. S8). Transcripts involving saponin synthesis were further
selected according to annotation information to analyze the rela-
tionship of transcript expression profiles and saponin contents. A
total of 340 transcripts were positively associated with saponin
contents, and MEbrown and MEgrey were highly positively corre-
lated with saponin contents (R>0.6, P<0.05; Fig. S8A). A total of 32,
25, 4, 3, 30, and 25 transcripts in the MEbrown module were
significantly positively correlated with the contents of ginsenosides
Rg1, Re, Rb1, Rc, Rb2, and Rd, respectively. Unigene17491_All in the
MEgrey module was markedly positively associated with the gin-
senoside Rgl content (Fig. S8B). Highly expressed transcripts
(FPKM > 5) were selected and annotated as GDPS (1 transcript),
CYP (15 transcripts), and UGT (2 transcripts), among which GDPS1
(CL11084.Contig1_All), CYP51 (CL1573.Contigd_All), CYP64
(CL1743.Contig4_All), and UGT11 (Unigene307_All) had signifi-
cantly high positive correlations with Rg1, Re, Rc, Rb2, and Rd
(R>0.8, P<0.05; Fig. 7A).

Eight unique modules were identified in P. notoginseng, of which
122 transcripts were positively correlated with saponin contents,
and modules of MEblue and MEturquoise were highly positively
correlated with saponin contents (R>0.6, P<0.05; Fig. S8C). Inves-
tigating the MEblue module and saponin correlation revealed that
23 transcripts were slightly positively correlated with the content
of notoginsenoside R1 (R=0.67, P<0.05). A total of 76 transcripts in
the MEturquoise module were highly positively correlated with the
content of ginsenoside Rd (R=0.77, P<0.05; Fig. S8D). The selected
highly expressed transcripts (FPKM > 5) were annotated as CAS (1
transcript), CYP (10 transcripts), and UGT (18 transcripts). Among
these transcripts, the relative abundance of UGT255
(CL10194.Contig2_All) had significantly high correlation with R1
(R=0.88, P<0.05) and CYP74 (CL9527.Contig4_All), whereas the
relative abundance of CYP89 (CL341.Contigl_All), CYP100
(CL341.Contig5_All), CYP103  (CL341.Contigd_All), CYP109
(CL6260.Contig2_All), and UGT190 (Unigene644_All) had signifi-
cantly strong positive correlation with Rd (R>0.8, P<0.05; Fig. 7B).

4. Discussion

In this study, the saponin distribution was dependent on the
types of saponins and demonstrated tissue specificity in
P. quinquefolius and P. notoginseng roots. Transcript expression
profiles were tissue specific in the roots of P. quinquefolius and
P. notoginseng. In addition, WGCNA further confirmed that the
pivotal CYP and UGT transcripts regulated the saponin distribution
in the root tissues. This study could offer useful information for
investigating the genetic and biochemical mechanisms of saponin
synthesis.

Visual and quantitative analyses revealed that the saponin
content (Rd, Re, and Rc) was significantly higher in the periderm of
P. quinquefolius than those in the phloem and xylem. By contrast,
the saponin (R1, Rg1, Re, Rb1, and Rd) distribution was not signif-
icantly different (P < 0.05) throughout the root sections of
P. notoginseng. Laser microdissection analysis demonstrated that
the ginsenosides were more highly accumulated in the periderm
than in the medulla of P. ginseng [23]. Researchers also found that
ginsenosides are highly located in the outer core and poorly located
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in the central parts of P. ginseng [33]. In the present study, ginse-
nosides (e.g., Rd, Re, malonyl Rc, and Rs1/Rs2) were highly
concentrated in the periderm than in the phloem and xylem of
P. quinquefolius. These highly accumulating ginsenosides in the
periderm of P. quinquefolius and P. ginseng can provide protection
against animal and insect attacks [35]. The saponins (R1 and Rg1/
Rf) in P. notoginseng were widely distributed throughout the root
sections and with a higher concentration in the xylem than in other
plant parts. Rd/Re had a higher distribution in the periderm and
xylem than in other plant parts, and these findings were similar to
those of previous results [36], suggesting that the saponins
exhibited similar distribution profiles in the root tissues of
P. ginseng and P. quinquefolius but differed from those of
P. notoginseng. HPLC results showed that the contents of saponins
(Rg1, Re, Rb1, Rc, Rb2, and Rd) were abundantly distributed in the
periderm but scarcely distributed in the xylem of P. quinquefolius;
these findings were consistent with those of previous studies [37].
The contents of saponins (R1, Rg1, Re, Rb1, and Rd) of P. notoginseng
were widely abundant throughout the root sections and slightly
higher in the xylem, but they did not significantly vary; these
findings were also consistent with those of previous studies [38].
The distribution of saponins depending on types demonstrated
tissue specificity in P. quinquefolius and P. notoginseng roots.
Although Panax plants are morphologically similar, their saponin
types and contents in root tissues differ among species. These dif-
ferences in saponin distribution and accumulation among Panax
plants are reflected by genetic diversity and influenced by their
growth environments [26]. P. ginseng and P. quinquefolius grow in
north China, whereas P. notoginseng thrives in south China. The
large environmental difference between the north and south re-
gions could contribute to the variation in saponin distribution.

Metabolite profiles revealed that the saponin components
showed tissue specificity in the root tissues of P. quinquefolius and
P. notoginseng. A total of 88 and 24 biomarkers were detected in the
root tissues of P. quinquefolius and P. notoginseng, respectively. The
saponins differed in the aerial parts (flower, stem, and leaf) and
underground parts (root and fibril) of three-year-old P. notoginseng,
and 21 potential markers were found [21]. Furthermore, five
different parts (root, leaf, flower bud, berry, and seed) of P. ginseng
showed chemical differentiation, and 11 robust biomarkers were
discovered [39]. These studies confirmed that the saponin com-
ponents in different organs varied substantially, and our work
evidentially reported the profiles of saponin components in the
root tissues of Panax plants.

The transcript expression in P. quinquefolius and P. notoginseng
was tissue specific, and 158 and 426 transcripts (FPKM > 5) were
identified in saponin synthesis in P. quinquefolius and P. notoginseng,
respectively. Numerous transcripts involved in saponin synthesis
were identified, and they show distinct expression profiles in
different parts or tissues of P. ginseng [32,33,40]. HMGR, DXS, IDI,
and DS transcripts are more highly expressed in the periderm than
in the phloem and xylem of P. ginseng [32]. In our study, transcripts
encoding DXR (4), AACT (2), IDI (3), AS (1), isopentenyl pyrophos-
phate isomerase (1), GDPS (1), CYP (54), and UGT (8) from
P. quinquefolius were more highly expressed in the periderm than in
the phloem and xylem; this trend was similar to the results in
P. ginseng [32]. In addition, CYPs (57.4%) and UGTs (42.1%) were
highly expressed in the periderm of P. quinquefolius, and CYPs and
UGTs were 67.0% and 55.1% in the periderm of P. notoginseng,
respectively. WGCNA further showed that 340 and 122 transcripts
related to saponin biosynthesis were positively correlated with the
saponin contents (R>0.6, P<0.05) in root tissues of P. quinquefolius
and P. notoginseng, respectively. In P. quinquefolius, the abundance

of GDPS1, CYP51, CYP64, and UGT11 was significantly correlated
with the contents of Rg1, Re, Rc, Rb2, and Rd (R>0.8, P<0.05). In
P. notoginseng, the abundance of CYP74, CYP89, CYP100, CYP103,
CYP109, and UGT190 was correlated with the Rd content (R>0.8,
P<0.05). Meanwhile, coexpression data of P. ginseng tissue showed
that relative transcripts were positively correlated with the con-
tents of ginsenosides Rgl, Re, and Rb1 [32]. Previous studies
showed that UGTPg45 selectively transferred a glucose moiety to
the C3 hydroxyl of PPD to form ginsenoside Rh2; UGTPg29 selec-
tively transferred a glucose moiety to the C3 hydroxyl Rh2 to form
ginsenoside Rg3 [41]. CYP716A94 was B-amyrin 28-oxidase
involved in oleanolic acid production from f-amyrin, and
CYP72A397 was oleanolic acid 23-hydroxylase involved in heder-
agenin production from oleanolic acid [42]. UGRAGT from
P. notoginseng and UGRh2GT from P. ginseng were shown to be
responsible for the synthesis of ginsenoside Rb1 from Rd and Rg3
from Rh2, respectively [43,44]. Jung et al. [45] have characterized
that PgUGT74AE2 catalyzed the transfer of a glucose moiety from
UDP-glucose to the C3 hydroxyl groups of PPD and compound K,
yielding Rh2 and F2, respectively; PgUGT94Q2 could transfer a
glucose moiety from UDP-glucose to Rh2 and F2 to generate Rg3
and Rd, respectively. These studies revealed that CYP and UGT
transcripts involved in saponin synthesis. CYP and UGT transcripts
correlated with the contents of saponins in our study could regulate
the saponin distribution in the root tissues of Panax plants. These
results offered molecular evidence for analysis of saponin distri-
bution and targeted transcripts for genetic improvement. In addi-
tion, integrated analysis of metabolomes and transcriptomes could
reveal the correlated genes regulating the accumulation of active
compounds and provide useful information for understanding the
molecular mechanism of biosynthesis [46,47]. Our study could offer
useful data for investigating the molecular and chemical informa-
tion of saponin distribution in Panax plants.

5. Conclusion

In summary, the distribution and contents of saponins demon-
strated tissue specificity in P. quinquefolius and P. notoginseng roots.
Gene expression profiles showed tissue specificity in the roots of
P. quinquefolius and P. notoginseng. The metabolomes and tran-
scriptomes systematically confirmed the pivotal transcripts of CYPs
and UGTs regulating the saponin distribution in the root tissues of
P. quinquefolius and P. notoginseng. These results served as a basis
for genetically improving and breeding medicinal plants.
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