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Abstract

Background—Cue reactivity, a core characteristic of substance used disorders, commonly 

recruits brain regions that are key nodes in neurocognitive networks including the default mode 

network (DMN) and salience network (SN). Whether resting-state temporal dynamic properties of 

these networks relate to subsequent cue reactivity and cue-induced craving is unknown.

Methods—The resting-state data of 46 nicotine-dependent participants were assessed to define 

temporal dynamic properties of DMN and SN states. Temporal dynamics focused on the total time 

across the scan session that brain activity resides in these specific states. Using regression models, 

we examined how the total time in each state related to neural reactivity to smoking cues within 

key DMN (posterior cingulate cortex, medial prefrontal cortex) or SN nodes (anterior insula [AI], 

dorsal anterior cingulate cortex [dACC]). Mediation analyses were subsequently conducted to 

study how neural cue reactivity mediates the relationship between total time in state at rest and 

subjective cue-induced craving.

Results—Increased time spent in the DMN state and decreased time spent in the SN state 

predicted subsequent cue-induced increases in the AI and dACC, respectively. Cue-induced AI and 

dACC activity significantly mediated the relationship between time spent in DMN/SN and cue-

induced subjective craving.

Conclusions—Our findings showed a significant relationship between resting-state dynamics of 

the DMN/SN and task-activated SN nodes that together predicted cue-induced craving changes in 

nicotine-dependent individuals. These findings propose a neurobiological pathway for cue-induced 

craving that begins with resting-state temporal dynamics, suggesting that brain responding to 

external stimuli is driven by resting temporal dynamics.
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Introduction

Heightened reactivity towards drug-related cues is a core feature of substance use disorders 

(SUDs; 1, 2) that often predicts future relapse (3–6). Evidence from functional magnetic 

resonance imaging (fMRI) studies have clarified the neurobiological underpinnings of cue 

reactivity by showing that brain regions such as the anterior insula (AI), dorsal anterior 

cingulate cortex (dACC), medial prefrontal cortex (mPFC), and posterior cingulate cortex 

(PCC) commonly react to drug-related cues (7). Cue-induced activation of these brain 

regions has been linked to subjective and behavioral aspects of addiction, such as a rise in 

subjective craving (8) and heightened relapse vulnerability (4, 9, 10). Beyond addiction, 

these regions are primary nodes of two neurocognitive networks, the default mode network 

(DMN; mPFC and PCC) and the salience network (SN; insula and dACC), which play 

fundamental roles in internally-directed cognition and salience processing respectively (11–

13). It is plausible that drug cues not only lead to the activation of the DMN and SN, but that 

the inherent function of these networks, even without cue exposure, impacts one’s 

vulnerability to be cue reactive. As such, there might be a neural pathway linking how the 

brain functions at rest with its subsequent reactivity during cue exposure that collectively 

drives cue-induced changes in subjective craving.

Within the field of addiction, the DMN and SN have typically been assessed during task-free 

resting-state scans using static connectivity measures (for review see 14) that quantify 

correlated brain activity over extended time periods (15). Variance in DMN and SN static 

connectivity relate to both the susceptibility and maintenance of addictive behavior (16). For 

instance, in drug-naive rats, enhanced resting static connectivity between the insula and 

striatum predicts increased likelihood of developing physiological withdrawal, which 

contributes to nicotine dependence (17). Moreover, heightened functional connectivity 

between the DMN and SN is related to greater abstinence-induced subjective craving (18). 

However, static connectivity does not consider the time-varying or dynamic patterns of these 

networks (19). Few studies have investigated the temporal dynamics of resting-state 

networks in SUDs but one showed that dynamic resting-state connectivity between the 

DMN/SN and insular subregions was reduced during nicotine abstinence compared to 

satiety (20). As such, evaluating temporal dynamics promises to bolster our understanding of 

how resting-state network function influences core elements of addiction including cue 

reactivity, and will substantiate the applicability of using resting-state networks as 

biomarkers to predict cue-induced subjective craving, which drives relapse vulnerability.

To address this gap, we evaluated nicotine-dependent participants using fMRI and collected 

data first at rest and then during a smoking cue-reactivity task. For the resting-state data, we 

applied a novel co-activation pattern analysis, which we used previously in a sample of 

healthy individuals (N = 462) to parcellate the brain into distinct networks-of-interest 
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including the DMN and SN (21). We applied these previously-identified states to calculate 

the total time spent in the DMN and SN across the entire resting timeseries. We then used a 

staged analysis approach to test the overarching hypothesis that DMN/SN resting-state 

dynamics impact cue reactivity. We first studied whether DMN/SN resting-state dynamics 

predicted DMN/SN nodal cue reactivity and informed by the results, we subsequently 

conducted a mediation analysis to study how cue reactivity influenced the link between 

resting-state dynamics and cue induced craving. Collectively, this work aimed to show that 

resting temporal dynamics is part of the neurobiological pathway preceding cue reactivity 

and craving.

Methods and Materials

Participants

Forty-six (19 females) nicotine-dependent participants (Table 1) were recruited as part of a 

larger study. This current sample partially overlapped with a previously published 

manuscript that did not evaluate temporal dynamics (22). At time of screening, participants 

had a Fagerstrom Test for Nicotine Dependence (23) score ≥ 4 (mean score: 5.59 +/− 1.59), 

an expired carbon monoxide concentration ≥ 5 ppm (mean: 22.24 +/− 12.44), tested negative 

for pregnancy via urinalysis, and had no report of serious medical illness. Participants were 

administered the structured clinical interview for DSM-IV-TR (24) to screen them for drug 

or alcohol dependence (except nicotine), major depressive disorder within the past three 

months, and lifetime history or current diagnosis of any of the following psychiatric 

illnesses: schizophrenia, schizoaffective disorder, delusional disorder, psychotic disorders 

not otherwise specified, bipolar disorder, and mood congruent or incongruent psychotic 

features. Abstinence from drug and alcohol use was confirmed by urine and breath samples, 

respectively (QuickTox11 Panel Drug Test Card; Branan Medical Corporation, Irvine, CA; 

Alco-Sensor IV; Intoximeters, St. Louis, MO). Participants provided written informed 

consent in accordance with the experimental protocol approved by the Partners HealthCare 

Institutional Review Board upon receiving a complete description of the experiment.

Experimental setup

As in our prior work (1, 22), participants were asked to maintain their typical smoking habits 

prior to the study visit. To normalize all procedures relative to the last cigarette smoked, 

participants smoked one of their own cigarettes in the laboratory approximately one hour 

before entering the fMRI scanner. Fifteen minutes before scanning, participants completed 

the Questionnaire of Smoking Urges (QSU; 25) as a subjective evaluation of their pre-cue 

exposure craving. In the scanner, participants first completed a 6-minute resting-state scan 

where they were presented with a blank black screen and given the instruction to keep their 

eyes open and think of nothing in particular. Participants subsequently performed the 

smoking cue-reactivity task. Upon exiting the scanner, participants again completed the 

QSU to assess their post-cue exposure craving. The total QSU score was used to separately 

calculate pre- and post-cue exposure craving measures. The total post minus total pre score 

was then computed to determine cue-induced changes in subjective craving.
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Neuroimaging data collection and preprocessing

Images were collected using a Siemens Prisma 3T scanner (Siemens, Erlangen, Germany) 

with a 64-channel head coil. Slices for all functional images (resting state and cue-reactivity 

task) were acquired with the following parameters (repetition time (TR) = 720 ms; echo time 

(TE) = 30 ms; slices = 66; phase encode direction posterior to anterior; flip angle = 66°; 

voxel size = 2.5 × 2.5 × 2 × 5 mm; generalized autocalibrating partially parallel acquisitions 

(GRAPPA) factor of 2; and a multiband acceleration factor = 6). Following functional 

images, multiecho multi-planar rapidly acquired gradient echo-structural images 

(MPRAGE) were acquired with the following parameters (TR = 2530 ms; TE= 3.3, 6.98, 

8.79, and 10.65 ms; flip angle = 7°; resolution = 1.33 × 1 × 1 mm).

Images were processed using fMRI of the Brain (FMRIB) Software Library (FSL; 

www.fmri-b.ox.ac.uk/fsl). All functional images were preprocessed with the same pipeline: 

brain extraction via BET, motion correction using MCFLIRT, coregistration and 

normalization to Montreal Neurological Institute (MNI) space, slice-time correction, spatial 

smoothing at full-width half-maximum of 6mm, and high-pass filtering at 0.01 Hz. To 

further address motion, prior to pre-processing we used Spikefix (https://github.com/

bbfrederick/spikefix) to identify timepoints representing motion and intensity artifacts. For 

task data, these data spikes were removed and single point regressors representing the spike 

time points were added to the general linear model (GLM) as confound regressors.

Resting-state data were denoised using independent component analysis with the FSL tool 

for multivariate exploratory linear optimized decomposition into independent components 

(MELODIC). We ran MELODIC for each participant and visually inspected the spatial and 

temporal readout for each independent component to identify and remove noise-related 

components. This approach generated a denoised resting-state fMRI time series (26, 27).

Resting-state coactivation pattern analysis

The analysis is described in more details in a published manuscript (21) and further 

descriptions are provided in the supplementary material of this study. Briefly, we applied the 

maps of the DMN and SN coactivation patterns (CAPs) or “states” derived from a sample of 

462 individuals from the Human Connectome Project (HCP) in (21). The DMN state 

(Supplementary Fig. 1), which includes the mPFC, PCC, and precuneous, overlaps with the 

canonical DMN (28). Likewise, the SN state (Supplementary Fig. 1), which includes the 

insula and dACC, overlaps with the canonical SN (29). By applying the DMN and SN states 

defined in the HCP sample, we were able to examine the dynamic properties of these 

networks in our current sample. These states were used to compute state-specific dynamic 

measure including the total time spent (in seconds) in each state. The total time in state can 

be further divided into two additional state metrics 1) frequency of transitions into each state 

and 2) “persistence” (i.e., average time spent in a state during each entry), both of which 

were evaluated and presented in the supplementary materials for completeness.

Smoking cue-reactivity task

The task was similar to that reported in our previous work (1, 22). Participants were shown 

10 smoking, 10 non-smoking and 2 target images in a pseudo-random order during each of 
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the five runs. Smoking images contained cigarette-related content (e.g. people smoking 

cigarettes). Non-smoking images were matched in content with the smoking images and 

contained people, hands, or objects. Target images showcased animals and were included to 

verify attention via a button press. Images were presented for 4 seconds, followed by a 

jittered intertrial interval (6-14 seconds; mean: 10 seconds).

Run-level GLMs included regressors for each image type convolved with the standard 

gamma hemodynamic response function, confound regressors for motion timecourses (x, y, 

and z translation and rotation) and the artifacts defined by Spikefix. Participant-level GLMs 

were modeled by averaging each participant’s five runs in a fixed-effects model. Regions-of-

interest (ROI)-specific parameter estimates for smoking – non-smoking contrast were 

extracted for each participant.

We defined two sets of a priori ROIs based on: 1) their roles in either the DMN or SN, and 

2) meta-analytic results showing that these regions commonly respond to smoking cues (7). 

Using ROIs from prior work, we defined three DMN nodes (11): the posterior cingulate 

cortex (PCC; 30) and medial prefrontal areas including the ventromedial prefrontal cortex 

(vmPFC; 31) and rostral anterior cingulate cortex (rACC; 32) and two nodes of the SN: the 

dorsal anterior cingulate cortex (dACC; 1) and bilateral anterior insula (AI; 33). In a follow-

up analysis, the bilateral AI was parcellated into four anatomically-defined subregions: 1) 

anterior short gyrus, 2) middle short gyrus, 3) posterior short gyrus and 4) the anterior pole 

(33). All ROIs are presented in supplementary figure 2.

Data Analysis

We conducted staged analyses to determine links between resting-state dynamics and cue 

reactivity. First, we used multivariate multiple regression models to evaluate whether DMN 

and SN resting dynamics together predicted cue reactivity in either DMN (PCC, vmPFC, 

and rACC) or SN (AI and dACC) ROIs. We applied Bonferroni correction on the two 

regression models with the adjusted α threshold of 0.05/2 = 0.025. Informed by these 

findings, we determined whether cue-induced activation mediated the relationship between 

resting-state dynamics and cue-induced rise in subjective craving. Finally, on an exploratory 

level, we parcellated the AI into its anatomic subregions to further refine the pathway 

leading to cue-induced craving. This staged analysis did not require a correction for multiple 

comparisons across levels as these complementary analyses collectively tested the 

overarching hypothesis that resting-state dynamics drive cue reactivity and cue-induced 

craving. These analyses together permitted us to define a neurobiological path originating 

from resting dynamics to changes in cue-induced subjective craving. All mediation analyses 

were carried out using PROCESS (v. 3.3; 34) in SPSS 24. 10000 samples were run for the 

bootstrapped 95% confidence intervals.
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Results

Total time spent in the DMN and SN at rest predicted smoking cue reactivity in SN nodes

In two multivariate multiple regression models, we defined DMN (PCC, vmPFC, rACC) or 

SN (AI and dACC) ROIs as the respective dependent variables. Both models included the 

total time spent in the DMN or SN state as independent predictors.

In the regression examining DMN nodes, we found that total time spent in both the DMN 

and SN states did not predict DMN nodal reactivity to smoking cues (F(6, 82) = 0.89, 

pcorrected = 1.00, r2 = 0.12). In contrast, total time spent in the DMN and SN together 

significantly predicted SN nodal reactivity to smoking cues (F(4, 84) = 2.96, pcorrected = 

0.048, r2 = 0.23, f2 = 0.30). Specifically, time spent in the DMN (Fig. 1A; ß = 0.20, t = 2.09, 

p = 0.043, CI95th = [0.0071, 0.40]) but not the SN (ß = −0.16, t = −1.22, p = 0.23, CI95th = 

[−0.42, 0.10]) positively predicted AI reactivity to smoking cues. In comparison, time spent 

in the SN (Fig. 1B; ß = −0.44, t = −2.13, p = 0.039, CI95th = [−0.85 −0.024) but not the 

DMN (ß = 0.068, t = 0.44, p = 0.66, CI95th = [−0.24, 0.38]) negatively predicted dACC 

reactivity to smoking cues.

SN reactivity to smoking cues mediated the relationship between DMN/SN temporal 
dynamics and changes in subjective craving

Given the regression findings, we explored whether AI and dACC together mediated the 

relationship between total time spent in either DMN or SN states at rest and changes in 

craving. Participants’ post-cue exposure craving scores were significantly greater than their 

pre-cue exposure scores (t(45) = 2.65, p = 0.011). In two mediation models, we respectively 

defined the DMN or SN resting dynamics as the independent variable. Both models included 

both AI and dACC as the mediators and changes in craving as the dependent variable.

We found that total time spent in the DMN positively predicted AI reactivity to smoking 

cues (ß = 0.25, t = 2.74, p = 0.0088, bootstrapped mean = 0.24, bootstrapped SE = 0.085, 

CI95thbootstrapped = [0.074, 0.41]), AI positively predicted dACC reactivity to smoking cues 

(ß = 1.02, t = 5.13, p < 0.0001, bootstrapped mean = 1.02, bootstrapped SE = 0.20, 

CI95thbootstrapped = [0.62, 1.42]), and dACC reactivity to smoking cues positively predicted 

change in cravings (ß = 0.14, t = 2.20, p = 0.033, bootstrapped mean = 0.14, bootstrapped 

SE = 0.061, CI95thbootstrapped = [0.030, 0.27]). The overall model of total time in the DMN at 

rest and AI and dACC reactivity to smoking cues together significantly predicted a cue-

induced rise in subjective craving (F(3, 42) = 3.07, p = 0.038, r2 = 0.18). The only 

significant indirect effect was yielded by the path from total time in DMN at rest to AI cue 

reactivity to dACC cue reactivity to changes in craving (Fig. 2A; ß = 0.035, bootstrapped SE 

= 0.021, CI95thbootstrapped = [0.0040, 0.085]), suggesting that AI and dACC together 

positively mediated the relationship between time spent in the DMN and changes in cue-

induced craving.

We additionally found that total time spent in SN negatively predicted AI reactivity to 

smoking cues (ß = −0.26, t = −2.10, p = 0.042, bootstrapped mean = −0.26, bootstrapped SE 

= 0.11, CIg5thbootstrapped = [−0.46, −0.045]), AI positively predicted dACC reactivity to 

smoking cues (ß = 0.90, t = 4.78, p < 0.0001, bootstrapped mean = 0.90, bootstrapped SE = 
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0.20, CI95thbootstrapped = [0.53, 1.28]), and dACC reactivity to smoking cues positively 

predicted change in cravings (ß = 0.14, t = 2.15, p = 0.037, bootstrapped mean = 0.15, 

bootstrapped SE = 0.069, CI95thbootstrapped = [0.022, 0.29]). While the overall model was not 

significant (F(3, 42) = 1.87, p = 0.15, r2 = 0.12), there was notably a significant indirect 

effect for the path from time spent in SN state at rest to AI cue reactivity to dACC cue 

reactivity to changes in craving (Fig. 2B; ß = −0.033, bootstrapped SE = 0.023, 

CI95thbootstrapped = [−0.090, −0.0009]), thereby suggesting that AI and dACC together 

negatively mediated the relationship between time spent in the SN and changes in cue-

induced craving (35, 36).

Total time spent in the DMN marginally predicted AI subregional reactivity to smoking cues

From aforementioned findings showing that AI cue reactivity was predicted by time spent in 

the DMN, we conducted a post-hoc analysis to study whether this relationship was specific 

to different AI subregions (37, 38). We ran a multivariate simple regression model with total 

time in DMN as the independent variable and the four AI subregions as the dependent 

variables. This model was marginally significant (F(4, 41) = 2.38, p = 0.067, r2 = 0.19). 

Specifically, we found that increased time spent in DMN significantly predicted increases in 

posterior short gyrus (ß = 0.35, t = 3.02, p = 0.004, CI95th = [0.12, 0.58]), anterior short 

gyrus (ß = 0.23, t = 2.22, p = 0.032, CI95th = [0.021, 0.44]) and anterior pole (ß = 0.21, t = 

2.01, p = 0.050, CI95th = [−0.0003, 0.42]) but not middle short gyrus (ß = 0.18, t = 1.57, p = 

0.12, CI95th = [−0.050, 0.40]).

AI subregions and dACC reactivity to smoking cues mediated the relationship between 
DMN resting dynamics and changes in subjective craving

Given our prior significant mediation findings, we conducted post-hoc mediation analysis 

with four AI subregions and dACC as the mediators, total time spent in DMN or SN as the 

respective independent variable and changes in subjective craving as the dependent variable.

Although no significant negative mediation effect was observed for AI subregions on SN 

dynamics, for DMN dynamics, there was a significant mediation effect observed for 

posterior short gyrus, middle short gyrus, anterior pole, and dACC. This mediation model 

(Fig. 3) showed that time spent in the DMN positively predicted posterior short gyrus 

reactivity to smoking cues (ß = 0.35, t = 3.02, p = 0.0041, bootstrapped mean = 0.35, 

bootstrapped SE = 0.12, CI95thbootstrapped = [0.11, 0.57]), posterior short gyrus positively 

predicted middle short gyrus reactivity to smoking cues (ß = 0.59, t = 4.97, p < 0.0001, 

bootstrapped mean = 0.59, bootstrapped SE = 0.10, CI95thbootstrapped = [0.38, 0.79]), middle 

short gyrus positively predicted anterior pole reactivity to smoking cues (ß = 0.35, t = 2.33, p 
= 0.025, bootstrapped mean = 0.35, bootstrapped SE = 0.13, CI95thbootstrapped = [0.093, 

0.64]), anterior pole positively predicted dACC reactivity to smoking cues (ß = 0.75, t = 

3.85, p = 0.0004, bootstrapped mean = 0.76, bootstrapped SE = 0.16, CI95thbootstrapped = 

[0.43, 1.07]), and dACC marginally predicted increases in subjective cravings (ß = 0.13, t = 

1.90, p = 0.065, bootstrapped mean = 0.13, bootstrapped SE = 0.067, CI95thbootstrapped = 

[0.010, 0.27]). The overall model was marginally significant (F(5, 40) = 2.33, p = 0.060, r2 = 

0.23) but importantly, there was a significant indirect effect yielded by the path from time 

spent in DMN at rest to posterior short gyrus to middle short gyrus to anterior pole to dACC 
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to changes in craving (ß = 0.0069, bootstrapped SE = 0.0054, CI95thbootstrapped = [0.0001, 

0.020]), suggesting that AI subregions and dACC together positively mediated time spent in 

the DMN and changes in cue-induced craving (35, 36).

Discussion

We observed that time spent in the DMN and SN states at rest produced opposite predictions 

on SN reactivity to smoking cues in nicotine-dependent individuals, which fits with the 

opposing roles of these networks (39). Specifically, more time spent in DMN at rest 

predicted greater AI cue reactivity while less time spent in SN at rest predicted greater 

dACC cue reactivity. Prior work has shown that SUD individuals have hypoconnectivity 

between DMN nodes at rest (for review see 14) and greater DMN activity during abstinence 

(18, 40, 41), neural changes that are thought to engender impaired emotion regulation and 

increased subjective craving (42–44). For SUD individuals, enhanced SN cue reactivity 

appears to reflect heightened motivated attention towards salient stimuli, triggering greater 

emotional arousal (45, 46) and cue-induced craving (47, 48). Our findings bridged these two 

observations by showcasing a predictive relationship between time spent in DMN/SN states 

at rest and SN cue reactivity, where nicotine-dependent individuals who spent more time in 

the DMN and less time in the SN were also those who engaged SN neural nodes more 

strongly when exposed to drug cues. Notably, enhanced AI and dACC cue reactivity have 

both been linked to relapse vulnerability (4, 9, 10, 49) and thus we infer that resting 

dynamics of DMN/SN characterize individuals who are more prone to cue reactivity and at 

greater risk for relapse. As such, resting-state temporal dynamic features such as time spent 

in state are valuable in serving as a potential biomarker to help predict a core feature of 

SUD.

The predictive relationship between increased time spent in DMN at rest and cue-induced 

SN activity is related to the degree in which smoking cues engender increases in subjective 

craving. Greater DMN static functional connectivity at rest (50, 51) and greater SN neural 

nodal activity during task (52, 53) have both been connected to heightened cue-induced 

craving, an observation that is true for nicotine-dependent individuals and those dependent 

on other substances (40, 54, 55). We built upon this by showing that stronger SN activation 

to smoking cues mediated the positive predictive relationship between time spent in the 

DMN at rest and cue-induced increases in subjective craving. This mediation effect followed 

a selective intra-SN pathway from the AI to the dACC, a path which aligns with these 

regions’ respective roles in processing environmentally-salient information (56). According 

to some models, the AI first assesses the emotional value of the incoming stimuli (57) before 

transmitting the information to the dACC to plan and initiate future goal-directed actions 

(58). This AI-dACC path also mediated the relationship between SN resting dynamics and 

craving changes, albeit in the opposite direction as observed for the DMN, which fits with 

the opposing roles of the DMN and SN (39). The anatomical heterogeneity of the AI (37, 

38) allowed us to further refine this pathway to show that mediation effect followed a 

posterior-to-anterior trajectory through the AI subregions. This selective pathway 

recapitulates the functional and anatomical connectivity patterns exhibited by AI subregions, 

which display an established posterior-to-anterior gradient of information processing (57), 

and indicates that the more anterior subregions are more connected with frontal cortical 
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regions including the dACC (59, 60). These findings provide empirical evidence for a 

specific neurobiological pathway leading to cue-induced subjective craving from resting-

state network dynamics.

While our findings have implications for using resting-state networks, particularly that of the 

DMN, to identify individuals with SUD who are more susceptible to heightened cue 

reactivity and cue-induced craving, we note that our findings are currently only applicable to 

nicotine-dependent individuals. We cannot preclude the possibility that chronic nicotine use 

induces changes that are different from other substances of abuse, potentially narrowing the 

applicability of the current findings. Future studies are needed to replicate our findings in 

those with other SUDs. However, given the common neural changes observed in dependent 

individuals following chronic substance use (61, 62), it seems likely that our findings would 

be pertinent to other SUD populations. We also did not examine sex, which should be 

evaluated in future studies. Another potential caveat of the present study is that we applied 

DMN and SN states from the HCP dataset rather than using data-driven means to establish 

them in the recruited sample of nicotine-dependent individuals. Although the DMN and SN 

are well-defined in terms of their anatomical maps, it would be useful for future studies to 

consider applying the CAPs analysis in a comparatively large sample of nicotine-dependent 

individuals to clarify the impact of chronic substance use on resting network dynamics. It is 

also important to include the assessment of other networks such as the executive control 

network whose involvement in substance dependence is evident (40). However, for this 

initial analysis relating resting-state dynamics with cue reactivity, a focused analysis of the 

DMN and SN is supported by the cue-induced activation of these network nodes (7).

In conclusion, our current findings showcased a significant relationship between time spent 

in the DMN/SN at rest and task-activated nodes of SN that explained the cue-induced rise in 

subjective craving. Given that increased cue-induced activation of SN nodes predicts relapse 

vulnerability to tobacco smoking (4, 9, 10, 49), our findings provide insight into the 

neurobiological processes leading to cue reactivity. Specifically, brain function at rest, prior 

to cue-exposure, rendered individuals more likely to respond to smoking cues, suggesting 

that network dynamics influence how the brain responds to externally-salient stimuli. 

Clinically, this suggests that therapies targeting these network dynamics may mitigate cue 

reactivity. Present findings also suggest that network dynamics at rest may be a useful 

biomarker to identify individuals with SUDs who are more susceptible to cue-provoked 

relapse.
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Fig. 1. Network dynamics predict smoking cue reactivity in SN nodes.
(A). Increased total time spent (in seconds) in the DMN at rest significantly predicted 

increased AI reactivity (labeled as PE = parameter estimate with arbitrary units [a.u.] in 

figure) to smoking cues during task. (B). Decreased total time spent in the SN at rest 

significantly predicted increased dACC reactivity to smoking cues during task.
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Fig. 2. Mediation model of DMN/SN dynamics at rest and changes in cue-induced subjective 
craving.
We applied mediation models where neural cue reactivities were the mediators for the 

relationship between either DMN or SN resting dynamics and changes in craving. A. In the 

model examining DMN dynamics, the path from total time spent in DMN at rest to AI 

(green in center brain template) cue reactivity to dACC (red in center brain template) cue 

reactivity to changes in craving yielded a significant indirect mediation effect, suggesting 

that AI and dACC together positively mediated the relationship between DMN resting 

dynamics and cue-induced craving. B. In the model examining SN dynamics, the path from 

total time spent in SN at rest to AI (green in center brain template) cue reactivity to dACC 

(red in center brain template) cue reactivity to changes in craving produced a significant 

indirect mediation effect, suggesting that AI and dACC significantly negatively mediated the 

relationship between SN resting dynamics and subjective cue-induced craving.
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Fig. 3. Mediation model using AI subregions as mediators.
We applied a model where neural cue reactivity of AI subregions and dACC were the 

mediators and found that posterior short gyrus (green in center brain template), middle short 

gyrus (blue in center brain template), anterior pole (yellow in center brain template) and 

dACC (red in center brain template) together significantly positively mediated the 

relationship between time spent in the DMN state at rest and cue-induced subjective craving. 

Specifically, the path, beginning with total time in the DMN state to posterior short gyrus 

cue reactivity, to middle short gyrus cue reactivity, to anterior pole cue reactivity, to dACC 

cue reactivity, and ultimately to changes in cravings yielded a significant indirect effect.
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Table 1.

Participants’ characteristics.

Characteristics Means (SD)

Age, Years 29.48 (6.48)

Education, Years 15.11 (1.76)

Fagerström Test for Nicotine Dependence Score 5.59 (1.59)

Average Number of Cigarettes per Day 13.67 (5.52)

Pack-years 8.61 (1.76)

Age Started Smoking, Years 17.58 (3.98)

QSU Pre-cue exposure 18.72 (1.13)

QSU Post-cue exposure 21.26 (1.39)
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