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Abstract

It is becoming clearer how neurobiological mechanisms generate ‘liking’ and ‘wanting’ 

components of food reward. Mesocorticolimbic mechanisms that enhance ‘liking’ include brain 

hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the 

hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, 

ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger 

mesocorticolimbic circuitry generates ‘wanting’ or incentive motivation to obtain and consume 

food rewards. Hedonic and motivational circuitry interact together and with hypothalamic 

homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 

‘liking’ and ‘wanting’ for food rewards. In some conditions such as drug addiction, ‘wanting’ is 

known to dramatically detach from ‘liking’ for the same reward, and this may also occur in over-

eating disorders. Via incentive sensitization, ‘wanting’ selectively becomes higher, especially 

when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging 

evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-

sensitization brain signature of cue hyper-reactivity, causing excessive ‘wanting’ to eat. Future 

findings on the neurobiological bases of ‘liking’ and ‘wanting’ can continue to improve 

understanding of both normal food reward and causes of clinical eating disorders.
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1. Introduction

Several decades of neuroscience studies have advanced understanding of how the brain 

generates behavior related to food reward, motivation, and hunger. A fundamental question 

that remains is how mesocorticolimbic and hypothalamic circuitry interact to produce 

reward and the motivation to eat [1–7].
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Work in our lab has focused on understanding how mesocorticolimbic systems generate 

‘wanting’ and ‘liking’ for food rewards, which have turned out to be somewhat separable. 

Here we describe how various brain mechanisms produce those two components of food 

reward. ‘Wanting’ and ‘liking’ usually cohere together, but also can dissociate in particular 

brain conditions to come apart. Findings have revealed a distributed network of brain 

hedonic ‘hotspots’ that can amplify hedonic impact or ‘liking’ for food rewards. These 

‘liking’ mechanisms differ from larger mesocorticolimbic circuitry that generates incentive 

salience or ‘wanting’ as motivation to eat. We focus on mechanisms for ‘liking’ and for 

‘wanting’, and how these interact with homeostatic hypothalamic circuitry in controlling 

eating and food reward.

1.1. ‘Liking’ and ‘wanting’ as separate psychological processes

The words liking and wanting are often used interchangeably in ordinary life when talking 

about rewards. For example, people may want a palatable piece of chocolate because they 

like the flavor and other sensations of consuming it. In ordinary use, liking means conscious 

pleasure and wanting means conscious desire, which typically involve cognitive appraisals 

and declarative goals mediated by cortically-weighted circuitry. But here we use quotations 

for ‘wanting’ and ‘liking in order to distinguish specific psychological processes from 

ordinary use [8]. ‘Wanting’ here refers to the particular psychological process of incentive 

salience, which can occur either consciously or unconsciously, generated by brain 

mesolimbic circuitry in the form of cue-triggered motivation. When rewards such as 

palatable foods and their predictive cues are imbued with incentive salience by 

mesocorticolimbic circuitry, those cues and foods become attractive, and in conscious form 

able to elicit subjective cravings. Whether conscious or not, incentive salience triggered by 

cues can also generate behavioral urges to seek and consume their associated rewards [9,10]. 

In the laboratory, ‘wanting’ is typically measured in humans by subjective craving ratings, 

and in animals by how much food is pursued, consumed, or preferred over an alternative. 

‘Liking’ refers to the hedonic impact of pleasant rewards, which when surfaced into 

consciousness can result subjective pleasure ratings in adult humans, but which in animals 

and infant humans can be assessed via objective measures of hedonic orofacial expressions 

elicited to taste in the affective taste reactivity test [11–15]. ‘Liking’ and ‘wanting’ can 

become separated in some conditions, as discussed below.

1.2. Measuring hedonic ‘liking’ with the taste reactivity test

The hedonic taste reactivity task measures affective orofacial reactions to tastes of sucrose, 

quinine, water, etc., and the reactions to any given taste can also be shifted by a variety of 

relevant physiological, learning, and brain manipulation factors that alter its palatability. 

Originally pioneered by Steiner for use in human infants [11], the test was adapted for 

rodents by Grill and Norgren [13]. Orofacial responses to taste are grouped into positive, 

neutral, and aversive categories. Positive hedonic or ‘liking’ evaluations (Fig. 1a) are 

reflected in tongue protrusions, paw licks, and lateral tongue protrusions, typically elicited 

by tastes such as sucrose. By comparison, negative aversive or ‘disgust’ evaluations are 

reflected by gapes, forelimb, flails, headshakes, paw treading and face washes, and typically 

elicited by bitter quinine. Many of these orofacial expressions to taste are homologous, or 

evolutionarily conserved, across mammalian species ranging from human infants to non-
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human primates, rodents, and horses [14–16]. In our laboratory, rodents are implanted with 

bilateral oral cannula, which allow taste solutions to be directly infused into their mouths 

without them having to engage in any appetitive activity to obtain them, and allowing 

experimenter control of stimulus intensity and duration. Independence from appetitive or 

instrumental decisions to consume is important in allowing taste reactivity to provide a 

relatively pure measure of taste-elicited ‘liking’, without being altered by changes in 

‘wanting’ that can influence most other behavioral measures of food reward [15,17].

Tastants with very different sensory properties like sucrose, saccharin, salt, and fats can all 

evoke similar positive ‘liking’ responses, indicating that hedonic reactions are palatability-

specific rather than sensory-specific [14,18–21]. Accordingly, taste reactivity behaviors are 

not simple inflexible reflexes to a particular sensation, but rather reflect a hedonic evaluation 

that also depends on the internal state of the organism, including physiological appetite and 

satiety states, neurobiological states, as well as learned associations carried from previous 

experiences with the taste. Physiological states like hunger and satiety can shift subjective 

ratings of palatability for a particular taste in humans, in a phenomenon known as 

alliesthesia [22–24]. In rodents too, caloric hunger magnifies hedonic ‘liking’ reactions to 

palatable sweet taste, whereas satiety conversely reduces ‘liking’ [25,26]. Similarly, salt 

appetite modulates the hedonic impact of the intense saltiness taste of concentrated NaCl. 

For example, hypertonic concentrations of salt are normally aversive, in the sense that rats 

mostly display ‘disgust’ reactions when a seawater concentration of NaCl is placed into their 

mouths. However, when a hormonal state of sodium deficiency or salt depletion is induced, 

orofacial reactivity to the same intensely salty taste shifts to mostly positive ‘liking’ [20,27–

31]. Conversely, modulation by learned associations can be induced by pairing a novel 

‘liked’ sweet taste of saccharin as a Pavlovian conditioned stimulus (CS+) with an injection 

of lithium chloride, which induces malaise, as an unconditioned stimulus (UCS), to produce 

a conditioned taste aversion (CTA) so that subsequent exposures to saccharin taste instead 

elicit negative gapes and related ‘disgust’ reactions [32–37].

1.3. Hedonic hotspots: brain mechanisms of ‘liking’

Our laboratory has studied brain generators of taste ‘liking’ by combining central neural 

manipulations of hedonic circuitry with the taste reactivity measure of ‘liking’ versus 

‘disgust’. In brief, pharmacological microinjections, excitotoxin lesions, optogenetic brain 

stimulation or inhibitions, etc. are used to systematically turn on or turn off particular neural 

systems in various brain locations during the taste reactivity test. This is coupled with an 

analysis of local Fos protein expression that allows us to more directly determine the spread 

of neuronal changes induced by a manipulation that alters ‘liking’, to identify localization of 

function, and map subregional localization of hedonic mechanisms within a brain structure. 

These studies have revealed a distributed network of limbic hotspots or small sites within 

subregions of cortical and subcortical structures in the rat that are capable of amplifying the 

hedonic impact (Fig. 1b) of sucrose taste [19,38–40]. Brain hedonic hotspots appear to be 

restricted to particular subregions of limbic structures such as rostrodorsal quadrant of 

medial shell of nucleus accumbens (NAc), caudolateral half of ventral pallidum (VP), a 

rostromedial portion orbitofrontal cortex (OFC), a far posterior zone of insula cortex (IC), 

and the parabrachial nucleus of the brainstem pons (PBN). Brain hedonic hotspots that 
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generate ‘liking’ are embedded within larger mesocorticolimbic circuitry (spanning several 

entire structures) that is capable of generating incentive salience ‘wanting’, underlying the 

close interconnection between ‘liking’ and ‘wanting’ functions in reward [38,41–48]. In the 

following sections we discuss roles of these hedonic hotspots and mesocorticolimbic 

motivation circuitry in food reward, describe recent findings, and consider their potential 

roles in normal appetite and in clinical eating disorders and obesity.

2. Hindbrain structures compute early hedonic evaluations

Rudimentary hedonic processing of tastes begins to occur in the brainstem early in pathway 

of ascending gustatory signals [11,49–52]. For example, brainstem (4th-ventricle) 

microinjections of a benzodiazepine drug that promotes GABA signaling enhanced positive 

‘liking’ reactions to sweet taste, as did microinjections limited to the parabrachial nucleus of 

the pons, revealing that site as a brainstem hedonic hotspot [53,54]. Brainstem capacity for 

early hedonic-related processing was also revealed by classic studies of taste reactions in 

decerebrate rats and in anencephalic infants, both of which lack a functioning forebrain, yet 

are able to adequately respond to sucrose taste with positive affective reactions, and to 

quinine with aversive reactions [11,50]. Similarly, decerebrate rats show increases in positive 

‘liking’ reactions to intra-oral sucrose after systemic administration of a benzodiazepine 

drug [55]. For humans and other primates, the causal role of PBN in food hedonics has 

sometimes been questioned [56,57] on the basis that in primates, gustatory neuroanatomical 

projections may ascend directly from the hindbrain nucleus of the solitary tract to forebrain 

thalamus and limbic structures, rather than making an obligatory intermediary relay in PBN 

as in rodents [58,59]. However, very little data actually exists yet on PBN roles in food 

reward functions in primates, including humans.

A crucial need for forebrain hierarchical contributions to normal ‘liking’ exists even in rats, 

evident from observations that many features of normal physiological and associative 

modulation of ‘liking’ reactions that occur in normal rats are missing in decerebrate rats. For 

example, decerebrate rats that are transected above the midbrain cannot learn or retain 

behavioral conditioned taste aversions to a nausea-paired sweet flavor that normally would 

switch ‘liking’ to ‘disgust’ reactions, suggesting that higher order affective processing 

involving experience and learning requires forebrain control and cannot be fully mediated by 

the brainstem on its own [32,35,37,50]. Caloric hunger similarly is reported to fail to 

enhance positive hedonic reactions to sweet tastes in decerebrate rats [60] unlike in normal 

rats [25,61], and inducing a hormonal salt appetite state fails to not enhance positive 

orofacial reactions to the taste of salt [62] again unlike in normal rats [20,27–31]. Those 

decerebrate failures suggest that the brainstem by itself cannot integrate physiological state 

or learned associations with tastes to modulate alliesthesia changes in hedonic orofacial 

reactions, even though some rudimentary processing of such modulating inputs has been 

reported in brainstem based on electrophysiological measures of neural activity [63–67].
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3. The nucleus accumbens medial shell- hotspot for hedonic 

enhancement

Several decades of research have implicated the nucleus accumbens (NAc) as especially 

important in food motivation, and the NAc also plays important roles in controlling ‘liking’ 

reactions. Relevant to ‘wanting’, opioid, dopamine, and GABA/glutamate drug 

microinjections in the nucleus accumbens, especially in medial shell, can robustly enhance 

motivation to pursue and eat palatable foods [19,68–82]. Importantly however, the nucleus 

accumbens is a heterogenous structure with multiple anatomical subregions [83–89] that 

differentially mediate ‘liking’ and ‘wanting’, at least in response to particular manipulations 

[19,70,71,75,88]. Beyond the anatomical components of core and shell, there also are 

important subregional hedonic specializations within the shell, such as the hedonic hotspot 

within the rostrodorsal quadrant of medial shell. The rostrodorsal quadrant of NAc medial 

shell was first identified as an important hedonic hotspot (Fig. 1b) for ‘liking’ enhancement 

by Peciña and Berridge [19]. That hedonic mapping study used microinjections of the mu-

opioid receptor agonist (DAMGO) to show that, only in the 1 mm3 rostrodorsal subregion of 

medial shell did mu opioid stimulation enhance ‘liking’ reactions to sucrose taste, even 

though opioid stimulation anywhere throughout the entire NAc shell generated robust 

‘wanting’ to eat reflected in increased food intake. Opioid stimulations at NAc shell sites 

other than the rostrodorsal hotspot completely failed to enhance sweetness ‘liking’ reactions 

at all, even decreasing sucrose ‘liking’ at a hedonic ‘coldspot’ site in caudal shell, despite 

still increasing ‘wanting’ to eat [19]. That and subsequent mapping studies revealed a clear 

NAc subregional dissociation between amplification of ‘liking’, which is limited to the 

rostral medial shell hotspot, versus of ‘wanting’, which can be generated by opioid and some 

other neurochemical manipulations throughout the entire medial shell as well as NAc core 

[19,68]. Further illustrating the unique hedonic features of this NAc hotspot, delta opioid 

and even kappa opioid agonists can enhance sucrose ‘liking’ similarly to mu opioid 

stimulations when microinjected within the 1 mm3 hotspot in rostrodorsal shell, although 

kappa opioid stimulation is known to produce negative aversive effects at many other brain 

sites [70].

Beyond opioid stimulation, orexin and endocannabinoid microinjections within the NAc 

rostrodorsal shell hotspot also can enhance sucrose ‘liking’ reactions (endocannabinoid 

enhancements might possibly also extend to caudodorsal shell) [90,91]. Endocannabinoids 

bind to presynaptic receptors on axonal terminals of NAc neurons, and influence the release 

of other postsynaptic neurotransmitters [92]. The ability for endocannabinoids in the NAc 

hotspot to enhance sucrose ‘liking’ appears to require local endogenous opioid mediation 

[93]. For example, if opioid-blocking naloxone is mixed in the same microinjection into 

NAc hotspot that contains the endocannabinoid anandamide, the simultaneous opioid 

blockade prevents the endocannabinoid stimulation from enhancing ‘liking’ reactions to 

sucrose at all. These findings seem in accordance with research showing that opioid and 

cannabinoid receptors often co-localize on the same neurons to form heterodimers, and that 

the two neurochemical signals can functionally interact together to influence motivation for 

food and drug rewards [94–96].
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While opioid, endocannabinoid, orexin, and a few other neurotransmitters act in the NAc 

hotspot to enhance ‘liking’[38,75,91,93,97–99], mesolimbic dopamine is notably missing 

from the list of hedonic neurochemical signals. Even in the NAc hotspot of rostrodorsal 

shell, synaptic dopamine stimulations, such as by amphetamine microinjection or genetic 

knockdown of the dopamine transporter that boosts dopamine levels in NAc synapses, 

completely fail to enhance ‘liking’ at all (although potently stimulating cue-triggered 

‘wanting’ for sweet reward)[100,101]. Conversely, removing NAc dopamine signals via 

permanent 6-OHDA lesions or through pharmacological blockade can suppress ‘wanting’ 

during consuming and instrumental responding tasks [102–113], but fails to impair ‘liking’ 

reactions [107,114,115].

3.1. Desire versus dread from the nucleus accumbens shell

Another reflection of rostrocaudal differentiation of affective valence functions within the 

medial shell of NAc is an anatomical gradient of oppositely-valanced appetitive ‘desire’ vs 

fearful ‘dread’ motivations, revealed by localized microinjections that alter amino acid 

signaling in inhibitory ways along the anterior to posterior anatomical axis of NAc (Fig. 2a) 

[88]. For example, these opposite motivations can be produced by microinjections of either 

the glutamate AMPA antagonist DNQX, which block excitatory glutamate signals, or the 

GABAa agonist muscimol, which inhibit neuronal activity by opening Cl- ion gates. 

Microinjections of either drug at sites in rostral shell generate appetitive increases in food 

intake and can establish conditioned place preference [71,80,116–118]. By comparison, at 

sites in caudal shell the same pharmacological microinjections can promote active forms of 

negatively-valenced fearful behaviors such as distress vocalizations or escape attempts and 

bites when touched, or induce conditioned place avoidance, and elicit spontaneous defensive 

treading-burying (an antipredator reaction), while often simultaneously reducing appetitive 

food intake [75,88,119–121]. Intermediate sites between rostral and caudal poles of the NAc 

shell can produce a mixture of appetitive behavior and fearful behaviors (Fig. 2).

Importantly, the valence tuning of rostral vs caudal sites of medial shell is not static, or 

determined by anatomical position alone, but instead also can be altered to some extent by 

shifting the emotional ambience of the testing environment [116,119,120]. For example, rats 

that receive DNQX microinjections in a calm dark and quiet environment resembling their 

home cage, which rats prefer over standard laboratory conditions, show enhanced appetitive 

generation at more widespread sites that extend throughout most of the NAc shell, including 

caudal portions that otherwise generated fear. Conversely, DNQX microinjections in a more 

stressfully loud and bright environment shift many NAc shell sites from generating 

appetitive behavior into instead generating predominantly fearful behaviors [119,121].

Precisely how do DNQX and muscimol actions in NAc shell elicit such intense motivations? 

A prominent hypothesis of NAc function has been that neuronal inhibitions in NAc medium 

spiny neurons generate reward motivation [122–131]. By this hypothesis, local NAc 

neuronal inhibitions suppress axonal release of GABA by output projections of NAc 

medium spiny neurons onto downstream structures including ventral tegmental area (VTA), 

lateral hypothalamus (LH), and VP, which consequently disinhibits those target structures 

into relative excitation [89,132–137]. This NAc inhibition hypothesis is supported by 
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electrophysiological reports that NAc neurons often are phasically inhibited by presentations 

of reward stimuli, including drugs or palatable foods [124,127,128,138], (although c.f. 

[41,139–144]). Conversely, aversive bitter tastes and their cues have been reported by some 

investigators to typically evoke excitatory increases in NAc neuronal firing [128,138]. 

Similarly, learning a new aversive motivational value for a previously positive reward may 

shift the electrophysiological response of NAc neurons to tastes from inhibition to 

excitation. For example, inducing a learned Pavlovian taste aversion to a normally ‘liked’ 

saccharin solution, by pairing it with nausea, was reported to shift subsequent NAc neuronal 

responses to that taste from original inhibitions when still rewarding to predominately 

excitations when ‘disgusting’ [145]. Conversely, appetite states can induce alliesthesia to 

raise the incentive value of relevant tastes. For example, physiological sodium depletion that 

shifts affective reactions of intensely hypertonic NaCl tastes from ‘disgust’ to positive 

‘liking’, was reported to simultaneously switch the NAc neuronal response to saltiness from 

excitation to inhibition [146].

By comparison, NAc output targets such as VP or VTA typically encode reward stimuli with 

electrophysiological excitations, so that as a taste becomes more positively ‘liked’, the 

greater the neuronal excitation in the posterior VP hotspot [29,147].Therefore, one 

hypothesis to explain how microinjections of DNQX or muscimol in NAc shell generate 

intense motivations is that they inhibit the activity of local NAc neurons, shutting off axonal 

GABA release, and so disinhibit or activate downstream VP, LH and VTA targets [126]. 

DNQX would merely reduce NAc activity relative to normal levels by blocking excitatory 

glutamate inputs onto local neurons, whereas muscimol would act on GABA-A receptors to 

directly open Cl- gates to more powerfully inhibit NAc neurons.

The neural difference in degree of NAc inhibition can create some categorical psychological 

consequences. Accordingly, DNQX microinjection in rostral shell increases food intake as a 

form of ‘wanting’ to eat, but does not enhance ‘liking’, whereas muscimol in the rostral shell 

hotspot increases both ‘wanting’ and ‘liking’ together [99]. Similarly, DNQX in caudal shell 

only increases motivated ‘fear’ behaviors, whereas muscimol in caudal shell both increases 

‘fear’ motivation and induces excessive ‘disgust’ affective reactions to sucrose. Consistent 

with the idea that NAc inhibition releases projection targets into activation, such NAc drug 

microinjections increase neuronal activity reflected in Fos expression in downstream 

structures, including LH, VTA, VP, and paraventricular thalamus (PVT) [116,148,149].

To test whether local neuronal inhibition is actually necessary for DNQX microinjections in 

NAc shell to cause intense motivations, Hannah Baumgartner, Shannon Cole, and Jeffrey 

Olney in our laboratory recently tested whether opposing DNQX-induced inhibitions in NAc 

with optogenetic channelrhodopsin (ChR2) stimulation at the same site would reverse the 

desire or dread motivations otherwise produced by the DNQX microinjection [116]. They 

found that the answer was yes: exciting NAc neurons at the same local site as a DNQX 

microinjection reversed the ability of the microinjected DNQX drug to induce increases in 

appetitive eating behavior and food intake at rostral shell sites, and similarly reversed the 

elicitation of defensive or fearful behavior at caudal sites [116]. Further, in support of the 

hypothesis that NAc neuronal inhibition may be sufficient by itself to generate an intense 

motivation, Shannon Cole and Jeffrey Olney have also found preliminary evidence that acute 
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inhibition of local neurons in NAc shell, such as by optogenetic inhibitory opsins, may 

directly elicit increases in motivated behavior [150,151]. For example, rats who received 

inhibitory viruses targeted at rostral NAc shell sites showed laser-bound increases in eating 

behavior. These pilot observations support the hypothesis that neuronal inhibitions in NAc 

shell can be a sufficient cause of increased motivation, as well as being a necessary part of 

the mechanism by which NAc DNQX microinjections elicit desire or dread [116].

3.2. Neurobiological mechanisms of hedonic hotspots

What neurobiological features of the hedonic hotspots may explain their unique capacities 

for hedonic enhancement? For example, in rats the NAc hedonic hotspot is a 1 mm3 

quadrant of rostrodorsal medial shell, and is the only NAc shell or core site where opioid, 

endocannabinoid, and orexin stimulations amplify ‘liking reactions to sweet taste 

[70,75,97,99,152]. Neurobiological evidence suggests that the rostrodorsal subregion of NAc 

medial shell that contains the hotspot may also have unique neuroanatomical features that 

differ from other subregions of medial shell [85,86]. For example, one anatomical 

connectivity tracing study reported that the rostrodorsal subregion of NAc medial shell 

receives inputs from a distinct subregion of infralimbic cortex in rats, corresponding to Area 

25 of the anterior cingulate cortex in humans; those infralimbic inputs to the rostrodorsal 

hotspot differ from the cortical inputs to other subregions of medial shell [85]. Similarly, the 

NAc hotspot in rostrodorsal shell sends outputs to distinct subregions of LH and VP that are 

different from the LH/VP output targets of other NAc shell subregions [85]. Finally, the VP 

target in turn sends its projections to a particular anterior thalamus subregion that finally 

projects back to the original infralimbic/A25 cortical subregion, forming a closed-circuit 

loop that runs through the NAc hotspot. In other words, the NAc hedonic hotspot appears to 

belong to a distinct cortical-striatal-pallidal-hypothalamic-thalamic-cortical circuit loop that 

is segregated from other loops running through different subregions of medial shell [85]. 

Another neuroanatomical study reported that the rostrodorsal hotspot of NAc medial shell 

has additional distinct features, such as dense projections to subregions of lateral 

hypothalamus that other NAc subregions may not project to [86]. The rostral hotspot of NAc 

medial shell also has distinct neurochemical features, such as a higher incidence of 

parvalbumin neurons than in the caudal coldspot of medial shell [153], and distinct 

neurochemical responsiveness to mu opioid stimulation [154]. By contrast, the caudal 

subregion of medial shell, which contains the hedonic coldspot where mu opioid stimulation 

by DAMGO microinjection (as well as delta or kappa opioid stimulations) oppositely 

suppresses ‘liking’ (although still increasing ‘wanting’ to eat, at least for mu stimulation), 

instead has transitional features shared with extended amygdala structures [86]. Which, if 

any, of these neurobiological features underlie the hotspot’s special ability to enhance 

‘liking’ reactions, or rostrocaudal gradients in affective functions of medial shell? The 

answer to that question is not yet known, but such evidence at least shows that it has a 

number of unique neuroanatomical and neurochemical features which could eventually be 

part of that explanation.
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4. Ventral pallidum hedonic hotspot

The ventral pallidum receives the densest output projections from nucleus accumbens 

[132,133,155,156], and ventral pallidum is important in both reward and aversion 

[29,38,157–174]. The posterior half of the ventral pallidum of rats contains another 0.8 mm3 

hedonic hotspot where microinjections of the mu-opioid agonist DAMGO more than 

doubles hedonic ‘liking’ reactions to sucrose [38,98]. Similar to NAc, though reversed in 

front to back valence polarity, the VP appears organized along a bivalent anatomical gradient 

[38]. For example, local opioid stimulation by DAMGO microinjection in the posterior (the 

same subregion is also lateral and dorsal in VP) half of VP enhanced sucrose ‘liking’ 

reactions (and increased food intake), whereas the same opioid stimulation in anterior 

(which is also medial and ventral) VP oppositely suppressed positive ‘liking’ reactions (and 

suppressed food intake), revealing a rostral VP hedonic coldspot. It may be related that a 

human neuroimaging study found similar rostrocaudal bivalence, in that anterior VP was 

reported to activate in response to disgusting images, whereas posterior VP activated to 

images of palatable foods [170,175]. However, anterior VP still can participate in generating 

incentive motivation or ‘wanting’ for rewards. A different manipulation of anterior VP, 

namely local GABA blockade induced via bicuculine antagonist microinjections to 

disinhibit or excite anterior VP neurons, caused increases in food intake [38]. Similarly, 

anterior VP has also been shown by others to be important in motivation to pursue drug and 

foods rewards [166,169].

Within the hedonic hotspot of posterior VP, orexin microinjections also have been found to 

enhance ‘liking’ reactions to sucrose, just as opioid microinjections do [90]. Furthermore, 

recent pilot studies using optogenetic stimulation suggest that directly exciting VP neurons 

via channelrhodopsin in the posterior hotspot similarly enhances positive ‘liking’ 

expressions, as well as increasing ‘wanting’ to eat [176–178]. By comparison, optogenetic 

stimulation of LH neurons adjacent to VP, increased only food intake but not hedonic 

reactions to sucrose, indicating it is possible to increase ‘wanting’ without increasing 

‘liking’ [176–179]. Similarly implicating these subregional differences for VP in reward, 

others have reported that frequency thresholds for electrical self-stimulation in VP are lower 

in posterior subregions of VP than anterior subregions supporting a special role for caudal 

ventral pallidum in some reward-related functions [180]. However, as mentioned, anterior 

VP neurons also contribute to motivation to seek reward, at least in some neurobiological 

modes and in some situations [38,98,166,169,172]. The functional flexibility and multiple 

roles of VP subregions is a topic that deserves further investigation.

4.1. Hotspots recruit each other to unanimously enhance ‘liking’ as an integrated 
hedonic circuit

Some evidence suggests that stimulating one hedonic hotspot (e.g., in either VP, NAc, OFC, 

or insula) recruits neural activation of other hotspots in different structures, activating the 

entire array of distributed hotspots as a unitary hedonic circuit to enhance ‘liking’ reactions 

[1,17,39,98,176,178]. For example, opioid stimulation of the NAc hotspot via NAc DAMGO 

microinjection recruits distant Fos activation in the VP hotspot when enhancing ‘liking’ 

reactions to sucrose taste [98], and similarly amplifies electrophysiological firing patterns of 
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neurons in the VP hotspot that encode hedonic ‘liking’ for sucrose [147]. Conversely, local 

opioid stimulation in the VP hotspot reciprocally recruits Fos activation in the NAc hotspot 

when enhancing sucrose ‘liking’ [98]. Similarly, in the cortical hedonic hotspots in OFC or 

insula, DAMGO or orexin microinjections that enhance ‘liking recruit distant Fos increases 

in subcortical VP and NAc hotspots [39]. Furthermore, evidence suggests that mutual 

recruitment among hotspots may be causally necessary for any hotspot stimulation to 

enhance ‘liking’ reactions. Blocking opioid receptors with a naloxone microinjection in one 

hotspot (either NAc or VP) while simultaneously stimulating the other hotspot, prevents any 

hedonic enhancement that otherwise would be generated by the DAMGO microinjection in 

the other hotspot [98]. All in all, these studies suggest that the hedonic hotspots act together 

as a unified functional circuit for hedonic enhancement, and that disruption of that full 

circuit recruitment can prevent opioid hotspot stimulation from enhancing affective 

responses to palatable tastes.

However, while hedonic hotspots recruit each other into action, the exact neuroanatomical 

connections by which they do so remains as yet unknown. Anatomical tracing evidence 

suggests that the hotspots do not directly project to each other [85,86]. For example, 

although NAc and VP as whole structures are heavily interconnected, the NAc subregion of 

rostrodorsal medial shell that contains the hedonic hotspot primarily projects to the anterior 

VP that contains the hedonic coldspot and not to the posterior VP hotspot [85,86]. 

Conversely, the posterior VP hotspot sends reciprocal efferents primarily to the lateral core 

of the NAc, not to the rostral medial shell that contains the NAc hotspot [85,86,136,155]. In 

addition, while NAc projects to PBN, which may be a brainstem hedonic hotspot [40], NAc-

PBN projections primarily arise from the ventral quadrant of the medial shell, not the 

rostrodorsal shell quadrant that contains the NAc hedonic hotspot [136]. Similarly, the 

subregion of prefrontal cortex that projects directly to the NAc shell hotspot is the 

infralimbic region of ACC (equivalent to Area 25 in humans), and not the anteromedial OFC 

that contains its cortical hedonic hotspot [85]. A lack of point to point projections among 

hedonic hotspots indicates that intermediary anatomical relay sites must exist to functionally 

connect hedonic hotspots together, but the precise identity of these relay sites and 

connections is not yet known.

4.2. Ventral pallidum hotspot: crucial to normal ‘liking’

Although all hedonic hotspots can produce gains in hedonic ‘liking’ reactions when 

appropriately stimulated, damage to most hotspots does not produce loss of normal ‘liking’ 

reactions. The posterior VP hotspot is the only known brain region where excitotoxic or 

electrolytic neurondestroying lesions can result in loss of normal ‘liking’ reactions and 

replacement by excessive ‘disgust’ reactions even to sweet taste (Fig. 3). These effects can 

persist for weeks, underlining the special importance of VP hotspot to normal hedonic 

function [168,181]. For example, after VP lesions, normally ‘liked’ sucrose taste instead 

elicits ‘disgust’ reactions such as gapes, headshakes, paw treading, etc., as though the sweet 

taste had become bitter or otherwise strongly unpalatable [168,181].

Classic studies in the 1960s using large electrolytic lesions originally attributed lesion-

induced ‘disgust’ to damage to the LH [182,183]. However, subsequent more precise 
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mapping using smaller excitotoxin lesions indicated that the crucial ‘disgust-induction’ 

lesion site was not in LH, but was actually the hedonic hotspot of posterior VP [168]. The 

large electrolytic lesions to LH of earlier studies typically also damaged posterior VP in 

addition to the LH, which may account for the negative affective reactions reported by early 

LH studies [1]. In other words, only damage to the VP hotspot produces dramatic loss of 

hedonic function. Both LH lesions and VP lesions can cause loss of ‘wanting’ to eat or 

drink, producing severe adipsia and aphagia, so that lesioned rats require intragastric feeding 

and hydration to be kept alive. But if they receive that intense nursing for days to weeks, rats 

slowly begin to independently feed again on soft palatable food, eventually progressing to 

normal eating and then drinking behavior, although some subtle ingestive functions still 

remain impaired [183–186].

Beyond ‘disgust’ induction by posterior VP lesions, pharmacological inhibition of posterior 

VP hotspot neurons, such as by microinjections of GABA agonists, also can induce 

temporary excessive ‘disgust’ to sweetness that lasts at least for hours [181,187]. Excessive 

‘disgust’ induced by pharmacological muscimol/baclofen microinjections in the VP hotspot, 

as well as by posterior VP lesions, has been interpreted as a ‘release phenomenon’ 

[181,187], a century-old concept from the early neurologist Hughlings-Jackson for 

explaining how a neuronal dysfunction produces an active behavioral disorder [188]. That is, 

the excessive disgust probably results from negative-affect generating circuitry in other brain 

structures outside the VP, which is released or disinhibited by damage to the positively-

valenced hedonic hotspot of posterior VP [181,187].

Our lab is currently testing whether direct optogenetic inhibition of VP neurons can 

similarly cause loss of hedonic function. Our recent pilot results, using the modified 

inhibitory channelrhodopsin (SwiChR ++) opsin, which opens negative Cl- ion gates in the 

neuronal membrane, allowing influx of Cl- ions to make the neuron more negative and less 

able to fire (similar to an IPSP) [189], suggest that optogenetic inhibition of neurons in the 

posterior VP hotspot may suppress positive ‘liking’ reactions elicited by sucrose taste, and 

possibly also increase negative ‘disgust’ reactions to an already aversive quinine solution 

(Morales & Berridge, 2019 and personal observations). Optogenetic induction of neuronal 

inhibition may be less intense than that induced by pharmacological GABAergic 

microinjections, producing weaker behavioral consequences, but results so far suggest that 

optogenetic inhibition may be enough to suppress positive hedonic valence or increase 

negative valence under some conditions.

4.3. Potential neurobiological basis of hedonic differences between posterior VP vs 
anterior VP: ‘liking’ hotspot vs coldspot

What accounts for differences in reward functions between anterior and posterior subregions 

of VP? One answer may lie in distinct neurobiological features of their neurons, as the 

ventral pallidum contains multiple types of neurons which can differ in their 

electrophysiological signatures [191,192], and in their neurochemical identities across 

anterior-posterior subregions [173,193–196]. For example, electro-physiologically, VP is 

thought to contain either Type I or Type II cells. The anterior VP contains a mixture of Type 

I and Type II cells, whereas posterior VP hotspot contains predominantly Type II cells [192]. 
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Type I cells are easily excitable, tonically active, and larger than Type II cells. Type II 

neurons by contrast exhibit low basal firing rates, require higher thresholds for stimulation, 

and share some morphological features with NAc MSNs.

Neurochemically, approximately ~74% of VP neurons are GABAergic, ~11% are 

cholinergic, and ~15% are glutamatergic, in mostly separate and non-overlapping 

populations [173,195,197]. VP glutamate neurons are concentrated in anterior VP [173,197], 

near the site of the hedonic coldspot [38], whereas posterior VP is more heavily GABAergic. 

A number of studies have suggested that VP GABAergic neurons contribute primarily to 

reward-related motivation, whereas VP glutamatergic neurons contribute to aversive 

motivation, by oppositely modulating the activity of their overlapping downstream targets 

such as LH, VTA, and lateral habenula (LHb) [162,171,173,197–201].

Are VP GABAergic neurons important in amplifying ‘liking’ and ‘wanting’ for food 

rewards? To better answer this question, pilot studies in our lab have recently begun to 

explore this issue via selective optogenetic stimulation of GABA neurons in VP using a Cre-

dependent promoter to express ChR2 in the ventral pallidum of GAD-Cre rats [202]. Our 

preliminary experiments indicate that optogenetic stimulation of VP GABA neurons 

generates robust feeding, biases and narrows preference for a laser-paired sucrose reward, 

and promotes self-stimulation [178,190]. Most interestingly, optogenetic stimulation of 

posterior VP GABA neurons additionally appears to enhance ‘liking’ reactions to sucrose 

taste, as well as ‘wanting’ to eat [190]. By contrast, inhibiting the same posterior VP GABA 

neurons with a Cl- ion channel opsin (iC++) may suppress ‘liking’ reactions [190]. Thus, 

our preliminary results so far support the hypothesis that it is GABAergic neurons in the 

posterior VP hotspot that are responsible for both gain of function and loss of function 

changes in hedonic ‘liking’ reactions. Additionally, GABA neurons throughout the entire VP 

may more generally participate in motivation ‘wanting’ for rewards [38,171,173,181].

5. Cortical hedonic hotspots – insula and orbitofrontal cortex

Beyond subcortical hedonic hotspots, two hotspots in cortex were recently discovered by our 

lab: one in the anteromedial orbitofrontal cortex, and another in the far-posterior insula 

cortex of rats. Both of these cortical hedonic hotspots similarly caused hedonic gains of 

function in sucrose ‘liking’ reactions in response to drug microinjections that deliver mu 

opioid stimulation or orexin stimulation to local neurons [39]. By contrast, the same opioid/

orexin microinjections in other limbic cortex sites outside these hotspots, even in other 

regions of OFC or insula, fail to enhance sucrose ‘liking’ (and some sites suppress ‘liking’), 

even if they stimulate ‘wanting’ to eat [39].

The finding that hedonic hotspots exist in the cortex was surprising in one sense, because 

lesions in cortical areas do not reliably reduce hedonic reactions in either rats or humans 

[203–208]. That is, damage to the orbitofrontal cortex or insula does not necessarily cause 

loss of ‘liking’ reactions to foods or other pleasant events. However, gain of hedonic 

function is different from loss of hedonic function, and in a neural hierarchy a superior 

structure such as cortex might plausibly cause hedonic gains by activating subcortical 

hedonic circuitry, without causing hedonic losses when damaged, if the subcortical circuitry 
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is capable on its own of generating basic hedonic reactions. In any case, human 

neuroimaging data and animal electrophysiological studies have also reported that 

orbitofrontal cortex and insula at least encode hedonic values of food and other rewards 

[3,209–215].

In keeping with the hierarchical triggering and cross-hotspot recruitment notions, DAMGO 

or orexin into the OFC or insula hotspot that enhanced ‘liking’ caused distant increases in 

neural activation measured by Fos expression in the hedonic hotspots in NAc and VP. This 

supports the hypothesis that ‘liking’ enhancements caused by neurochemical stimulation of a 

particular hotspot are mediated by recruiting the entire hedonic circuitry across the brain to 

activate all hotspots together [1,39,98,147]. The two cortical hedonic hotspots were also 

shown to bookend a long ‘hedonic coldspot’ strip between them where orexin and DAMGO 

microinjections oppositely suppressed sucrose hedonic reactions (i.e., stretching from lateral 

orbitofrontal cortex through insula). Orexin or opioid microinjections in the coldspot strip 

produced a pattern of Fos changes across the brain quite different from cortical hotspot 

microinjections, suggesting activation of a separate anti-’liking’ neural circuitry that 

dampens positive hedonic reactions [39]. It is interesting that an overlapping subregion of 

posterior insula (posterior to gustatory sensory cortex) also appears crucial to taste aversion 

learning [216]. Increases in motivational ‘wanting’ to eat, measured as increased 

consumption of chocolate M&M candies were also produced by all OFC hotspot 

microinjections and some insula hotspot microinjections, and were also produced by a 

number of nonhedonic sites in infralimbic cortex, prelimbic cortex, or anterior cingulate 

cortex (ACC), and even by some sites in the intervening hedonic coldspot strip of posterior-

lateral OFC and anterior insula [39].

Current pilot studies in our lab are investigating whether optogenetic ChR2 excitation of 

neurons in these cortical OFC and insula hedonic hotspots can drive ‘liking’ enhancements, 

similarly to opioid or orexin neurochemical stimulations of those same OFC or insula 

subregions. Our preliminary data suggest that optogenetic excitation of neurons in either the 

anteromedial OFC hotspot or in the far-posterior insula hotspot may indeed double ‘liking’ 

reactions to sucrose taste [190,217]. However, more mapping may be needed given that a 

recent report suggested that optogenetic stimulation in anterior insula of mice promotes 

positive affective reactions whereas posterior insula stimulation evoked ‘disgust’ reactions 

[218,219]. We also note that some others have reported optogenetic laser self-stimulation of 

glutamate neurons in insula regions, or of insula-to-amygdala projections [218,220], 

although others report avoidance of laser-stimulation at some insula sites [218,220,221], 

suggesting the insula picture in particular may need further clarification.

6. Distributed brain mechanisms of ‘wanting’: nucleus accumbens core, 

neostriatum, amygdala, lateral hypothalamus and beyond

The mesocorticolimbic brain system that generates incentive salience or ‘wanting’ is 

anatomically larger than the hedonic hotspot network, including entire structures of NAc, 

central nucleus of amygdala and parts of neostriatum, etc. Neurochemically it includes 

dopamine and glutamate, as well as opioid orexin, and endocannabinoid transmitters so that 
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its functionally more robust than the ‘liking’ network (Fig. 1b). [222–231]. This robust 

network can generate intense incentive motivation and appetite, even without enhancing 

hedonic ‘liking’.

6.1. Nucleus accumbens core

Incentive motivation to eat can be amplified by manipulations such as opioid-stimulating 

microinjections throughout the entire nucleus accumbens, including both core and shell. 

Regarding simple (unconditioned) food intake, some studies have reported that various 

manipulations in the core as well as shell can enhance free-feeding in rodents, albeit many 

report less robust effects from the core compared to shell [73,80,81,152,232–236]. However, 

both core and shell have been shown to potently alter learned instrumental responding for 

palatable rewards in rats [237–239], which may be due specifically to enhanced cue-

triggered ‘wanting’ or incentive salience as shown in an elevated Pavlovian-instrumental 

transfer (PIT) paradigm after DAMGO or amphetamine microinjections in NAc [239]. 

Interestingly, lesions to the core, but not shell prevent reallocation of food-related responses 

in a decision-making task where rats are given the option to lever press for a preferred 

palatable sucrose reward vs. eating normal laboratory chow that is freely available within the 

chamber [240].

Overall, the NAc medial shell is especially important for its role in generating intense 

incentive motivation, whereas the core has been reported to be preferentially activated by 

reward-predictive cues [1,70,97,146,241–246]. For example, previously drug-associated 

cues can trigger drug-seeking [247]. Conditioned instrumental responding may be associated 

with Fos expression in D1 and D2 core medium spiny neurons [143], and specific forms of 

PIT, which depend upon association of cues with the learned identities of specific foods, are 

especially reliant on NAc core [248]. Conversely, decreasing dopamine signaling in the core 

can suppress sign-tracking behavior in rats [249,250].

6.2. The dorsal neostriatum

Parts of the neostriatum, sometimes called dorsal striatum, also participates in generating 

incentive motivation. Human imaging studies have long shown that food-related cravings are 

associated with activation of the dorsal striatum [251,252]. This human striatal response to 

food has been reported to become blunted in those who frequently eat a specific type of 

food. For example, people who frequently eat ice cream may show suppressed dorsal striatal 

activation to a milkshake [253]. Similarly, rodent studies have shown that prolonged 

exposure to a high sugar and fat diet resembling a western diet can alter glutamate, opioid, 

and dopamine transmission in the dorsal striatum [254]. Lack of dopamine in the dorsal 

striatum is associated with severe aphagia that ultimately results in death, further implicating 

neostriatum role in feeding and appetite [255–257].

The dorsomedial part of the neostriatum (DMS) is known for a role in goal-directed learning 

and motivation [258–265], but it may also play a role in directly generating appetite. For 

example, microinjection of mu-opioid stimulating DAMGO directly into the dorsomedial 

neostriatum causes rats to increase food intake [43]. Similarly, levels of the endogenous 

opioid neurotransmitter enkephalin within dorsomedial neostriatum surge spontaneously 
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when rats begin to eat a palatable food, consistent with an appetite-promoting mechanism 

[43]. Dorsmedial participation in generating motivation to eat is consistent with evidence 

that opioid-stimulating microinjections throughout much of the neostriatum can cause 

increases in food intake [43,68,73,77,266]. However, DAMGO microinjection in the 

dorsomedial neostriatum that enhances ‘wanting’ to eat sweet food is not accompanied by 

any enhancement orofacial ‘liking’ reactions to sweetness, suggesting a specific incentive 

motivation but not hedonic contribution [43]. Finally, selective inhibition in dorsomedial 

neostriatum of the dopamine D2 ‘stop’ pathway, while preserving the D1 ‘go’ pathway, 

invigorates motivation to work for a palatable reward during a progressive ratio task [267]. 

Overall, these results suggest that opioid and dopamine signals in the dorsomedial 

neostriatum play an important role in modulating incentive motivation to eat.

By comparison, the dorsolateral part of the neostriatum (DLS) has traditionally been 

described for roles in habit formation [262,268–272], model-free stimulus-response 

associations [273–277], motor sequences and direct movement control [278–283]. However, 

DLS also plays a role in motivation for reward. For example, optogenetic stimulation of the 

direct-path (D1 dopamine receptor expression) and indirect (D2 receptor expressing) 

neostriatal neurons can promote place-based self-stimulation and avoidance, respectively 

[284].

The DLS also helps generate incentive salience for learned food cues, visible in an 

autoshaping or sign-tracking paradigm [42]. Microinjections of DAMGO or of amphetamine 

into the DLS can enhance attraction to sucrose-related cues. In this situation, rats learn that 

the insertion of a metal lever into the chamber (Pavlovian CS+) predicts a free sucrose pellet 

(UCS) [42]. Typically, one group of rats, known as sign-trackers (STs), attribute high 

incentive salience directly to the predictive lever, and approach and nibble the CS+ lever 

[285–287]. Another group of rats, known as goal-trackers (GTs), instead are attracted to the 

sucrose-pellet dish or goal, approaching and nibbling the metal dish. When mu-opioid or 

dopamine signaling was enhanced in the dorsolateral neostriatum by microinjection of 

DAMGO or amphetamine, ‘pure’ ST rats that always go to the lever CS+ became even more 

attracted towards their CS+ lever than before, suggesting intensified incentive salience that is 

even more narrowly-focused on the CS+ [42]. Similarly, GTs became selectively even more 

attracted toward their dish, again suggesting intensified and motivation focused on their 

preferred stimulus. In Pavlovian parlance, the dish is also a type of Pavlovian CS+, but one 

that is contiguous to sucrose UCS in space and time, whereas the lever is a predictive CS+ 

whose presentation is correlated with UCS delivery; both CS+ types are traditionally 

recognized by Pavlovian learning theory.

Further evidence from the same study supported the conclusion that these enhancements of 

conditioned responding were due to increased motivational attraction to the respective CS+s, 

rather than to intensified habits. For example, DLS microinjections of DAMGO also 

increased sign-trackers willingness to learn and work on a new instrumental nosepoke task 

in order to earn presentations of their lever CS+ (i.e., increased instrumental conditioned 

reinforcement of an entirely new behavioral response, showing magnified ‘wanting’ for the 

CS+ as a feature of incentive salience) [42]. Similarly, sign-trackers flexibly followed their 
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lever to a new location in the chamber if it moved after DAMGO microinjections in DLS, 

rather than repeating the same habitual response of going to the old location.

Amphetamine microinjections that promoted dopamine release in dorsolateral neostriatum 

made ‘mixed sign-trackers’, which previously mostly went to lever CS+ but sometimes 

made a ‘goal-tracking’ defection toward the dish CS+, actually switch to become instead 

purer goal-trackers, again replacing the more habitual response with a different one. That is, 

DLS dopamine stimulation appeared to enhance motivated attraction to the UCS-proximal 

dish CS+ at the expense of the predictive lever CS+’s attractiveness for those individuals 

[42]. Thus, the dorsolateral neostriatum may have important roles in both amplifying 

incentive motivation and in selecting which competing cues for food reward become most 

attractive.

A different view of the dorsal neostriatum’s role in eating was recently suggested by Ivan de 

Araujo, Mark Schatzker, and Dana Small [288], but may possibly be reconciled with our 

own view expressed above. De Araujo et al. argue that less reliant are the hedonic properties 

of foods like flavor, taste, and aroma in their ability to generate excessive overeating [288]. 

They note that vagal sensory projections from the viscera to the hindbrain sensory nucleus of 

the solitary tract carry signals about caloric content arising from food digestion, and show 

vagal signals may trigger dopamine release from substantia nigra axons in the dorsal 

neostriatum [288]. Strikingly, direct optogenetic stimulation of vagal-to-medulla projections 

supports laser self-stimulation, which they suggest reveals a response-reinforcing signal 

[289]. Nutrient conditioning of flavor preferences similarly relies on intact dopamine 

signaling in the dorsal striatum [290,291]. The vagal-neostriatal dopamine reinforcement 

signal, De Araujo et al. suggest, does not enhance food hedonic palatability but rather 

strengthens behavior more directly, similar to traditional stimulus-response (S-R) habit 

stamping-in theories. As de Araujo et al. put it “In other words, reinforcement and habit 

acquisition can occur seamlessly in the absence of any consciousness-borne flavor 

appreciation.” (p. 153, [288]).

The hypothesis of de Araujo et al. that vagal nutrient signals act in neostriatum without any 

“consciousness-borne flavor appreciation” is consistent with our view that neostriatal 

dopamine fails to enhance ‘liking’. The hypothesis that vagal signals promote learned 

attraction to foods is also consistent, as de Araujo et al. point out, with many earlier 

demonstrations by Anthony Sclafani, Kevin Myers and colleagues that intra-gastric calories 

are able to act as a UCS to establish a conditioned preference for a paired CS flavor in rats, 

increasing ‘wanting’ to eat that food whether or not it also increases ‘liking’ for the more 

‘wanted’ CS flavor [290,292–295]. For example, nutrient conditioning can enhance 

‘wanting’ without enhancing ‘liking’ reactions for a bitter/sour CS+ flavor [295], although it 

can enhance both ‘wanting’ and ‘liking’ together if the CS+ flavor was initially sweet or 

palatable [294]. Thus, enhanced ‘liking’ is a possible accompaniment but not an obligatory 

component of nutrient conditioned taste preferences.

Based on all this, we would suggest a possible alternative interpretation to S-R habit 

reinforcement for the role of vagal-evoked dopamine in neostriatum. That is, given that 

dopamine in dorsal neostriatum can enhance the incentive salience of specific food cues, as 
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described above [42], vagal-evoked dopamine release in dorsal neostriatum might similarly 

promote ‘wanting’ to eat evoked by particular food cues associated with vagal stimulation. 

This would be an incentive motivation mechanism, probably maximally triggered by 

particular foods that are both caloric and palatable, rather than a behaviorist response 

stamping-in mechanism, and would not be confined to habits but could promote eating even 

if food seeking required novel responses or if the food cues moved to new settings.

6.3. The amygdala

The focus of ‘wanting’ onto particular targets is a function in which amygdala also plays an 

important role. The amygdala is composed of multiple nuclei, including the basolateral 

nucleus of amygdala (BLA), the medial nucleus of the amygdala (MeA), and the central 

nucleus of amygdala (CeA) [296–303], and of these, the CeA is particularly important to 

generating intense incentive salience. The CeA has ‘striatallevel’ status within a cortico-

striatal-pallidal macrosystem organization of forebrain structures (in which the BLA has 

cortical status, and the bed nucleus of stria terminalis (BNST) holds ‘pallidal status’ within 

the extended amygdala complex [297]). The striatal-level status of the CeA may be relevant 

to its ability to amplify appetitive motivation. For example, the CeA contains many 

GABAergic neurons that receive BLA glutamate inputs and mesolimbic dopamine inputs 

(glutamate-dopamine convergence similar to NAc and neostriatum), and project primarily to 

BNST as a pallidal-type target [304].

Eating palatable food causes increases in Fos expression in the central amygdala [305,306] 

and direct manipulations that alter opioid, glutamate, GABA, and several peptides within 

CeA can potentiate unconditioned food intake [45,307–320]. Conversely, GABAergic 

inactivation of the CeA or dopamine blockade in CeA suppresses food intake [321,322]. 

Some recent optogenetic studies have similarly reported that ChR2 activation of various 

CeA neuronal types amplifies food intake and drinking of palatable sweet solutions [323–

326].

The CeA may also play a special role in targeting enhanced ‘wanting’ on to particular 

learned cues for food rewards. For example, in a sign-tracking/goal-tracking situation, CeA 

mu-opioid stimulation by DAMGO microinjection selectively enhances the incentive 

salience of the sucrose-predicting lever CS+ in sign-trackers, but selectively enhances the 

incentive salience of the sucrose-contiguous dish CS+ in goal-trackers. In both cases it 

enhances approach towards, and consummatory bites and nibbles to the individual’s 

preferred metal lever or dish cue [44,45,307]. That suggests the CeA can amplify incentive 

motivation and focus ‘wanting’ specifically on an already preferred CS + stimulus [44]. 

Similarly, in a Pavlovian-to-instrumental transfer situation (PIT), CeA opioid stimulation 

specifically enhances cue-triggered ‘wanting’ by increasing bouts of instrumental lever 

pressing for sucrose reward when the CS+ is presented, and not in its absence [307]. In 

addition to its role in food motivation and appetite, CeA signaling has also been shown to be 

important for cue-induced motivation for drug rewards [327–332]. Conversely, lesion studies 

suggest that loss of CeA function impairs cue-induced ‘wanting’, suppressing PIT, and other 

forms of motivation [333–336].
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Recently, optogenetic CeA stimulations have been used to amplify and control the direction 

of ‘wanting’ for a particular target, such as sucrose, cocaine, or even a noxious shock-rod 

stimulus that delivers electric shocks if touched [46,47,337]. The CeA role is powerful 

enough to make a rat ‘want what hurts it’ when laser stimulation is paired with voluntary 

encounters of the noxious shock rod, so that rats paradoxically become compulsively 

attracted to the shock-rod and subject themselves to shocks again and again [337]. This 

CeA-driven attraction is mediated in part via recruiting activation of distributed 

mesocorticolimbic circuitry for incentive motivation [337].

Regarding food in particular, studies by Mike Robinson and Shelley Warlow in our lab 

showed that pairing such CeA optogenetic stimulation with a sucrose target could make the 

rat exclusively pursue that laser-paired sucrose target while ignoring an equally good sucrose 

alternative. CeA stimulation also amplified breakpoint incentive motivation to obtain sucrose 

in a progressive ratio task [47]. Another study by Robinson and colleagues showed that rats 

will withstand a painful foot shock in order to gain access to the laser-paired sucrose, and 

pursue it even when the alternative non-laser paired sucrose reward is 10 times larger [338]. 

However, Robinson and Warlow found that CeA ChR2 stimulation did not appear to 

enhance orofacial ‘liking’ reactions for sucrose, despite making rats ‘want’ sucrose more 

[47]. Pilot results in our lab suggest that pairing optogenetic CeA ChR2 stimulation 

specifically of CRF neurons in CeA with a particular sucrose target can similarly make that 

target exclusively preferred over an alternative sucrose option, and so mimic at least some of 

the CeA ChR2 effects described above [339–341].

Overall, CeA and its control over other mesocorticolimbic circuitry may be involved in 

sharpening the focus of amplified ‘wanting’ onto cues for a particular incentive target, like a 

high-caloric palatable food, which could contribute to intense urges to indulge in those 

foods, leading to overeating.

6.4. Lateral hypothalamus homeostatic interactions with mesocorticolimbic circuitry for 
‘liking’ and ‘wanting’

Understanding how ‘liking’, ‘wanting’, and hypothalamic circuitry interact to promote 

appetite and motivation is an enduring quest. Lateral hypothalamus (LH) may modulate the 

activity of mesocorticolimbic circuitry, including hedonic hotspots, by integrating 

homeostatic signals so that relevant hunger/satiety states can enhance or suppress motivated 

and hedonic behaviors to food rewards at appropriate times [342]. But how might LH help 

regulate these processes? One obvious potential mechanism is orexin (Fig. 4a), given that it 

is both a hunger-related hypothalamic signal and an effective enhancer of ‘liking’ reactions 

in limbic hedonic hotspots [1,39,90,97,148,343,344]. Orexin/hypocretin is a neuropeptide 

exclusively synthesized in perifornical, lateral, and dorsomedial nuclei of the hypothalamus 

[345,346], and while implicated generally in arousal throughout the hypothalamus, a subset 

of orexin neurons in a subregion of lateral hypothalamus are also implicated in reward-

related motivation [179,347–352]. LH orexin neurons project widely throughout the brain, 

including to nucleus accumbens, ventral pallidum, ventral tegmentum, and limbic cortex 

regions where the hedonic hotspots are located [83,155,349,353–358]. LH orexin is 

therefore an ideal candidate to help mediate alliesthesia [342,359], the phenomenon in 
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which physiological appetite states enhance hedonic ‘liking’ and palatability ratings of the 

tastes of relevant foods [23,25,213,360]. Consistent with that hypothesis, direct 

microinjections of orexin-A into hedonic hotspots in VP, NAc, OFC, and insula amplify 

‘liking’ reactions to sucrose as effectively as microinjections of mu opioid DAMGO into 

those sites [39,90,97].

Additional mechanisms for hypothalamic-limbic interactions include AgRP/NPY and 

POMC neurons in the arcuate nucleus (ARC) and LH [361–364]. ARCAgRP and ARCPOMC 

neurons send robust projections to LH and their release of AgRP and POMC peptides 

modulate activity of LH neurons [363,364]. For most of the past 20 years, AgRP neurons 

have been viewed as simple homeostatic ‘hunger’ neurons, and POMC neurons viewed as 

‘satiety’ neurons [365]. However, recent studies indicate that AgRP activity rapidly 

decreases as soon as palatable food is merely presented, or even when a cue predicting food 

is encountered, before any actual food has been ingested. Conversely, POMC neuronal 

activity can rapidly rise when triggered by these encounters or cues, in advance of any 

physiological satiety [366–368]. One interpretation of these rapid anticipatory changes is 

that AgRP and POMC neuronal activity reflects an interaction between incentive and 

hedonic information about available food, implying bidirectional or looping circuitry 

interactions between mesocorticolimbic-reward and hypothalamic-homeostatic systems 

[369]. That would be compatible with the increasing recognition that, rather than serving as 

parallel systems that promote appetite and feeding independently, hedonic and homeostatic 

systems may be understood as heavily interconnected, which functionally interact to control 

appetite and eating behavior.

7. Clinical implications of ‘liking’ versus ‘wanting’ dissociation: incentive-

sensitization and obesity

The above discussion of brain mechanisms for food ‘wanting’ versus ‘liking’ may carry 

potential implications for human obesity and eating disorders. In the past decade, a number 

of obesity investigators have applied the brain-based ‘wanting/liking’ distinction to suggest 

that in some vulnerable individuals, ‘wanting’ for foods might dissociate and exceed ‘liking’ 

to cause excessive cue-trigged ‘wants’ to overeat [2,4,5,370–374]. The idea that some cases 

of extreme over-eating or binge-eating disorders can reflect excessive ‘wanting’, without 

excessive ‘liking’ invokes the incentive-sensitization theory of addiction, which was 

originally proposed for drug addiction but recently has been extended to behavioral 

addictions and to over-eating [375–377]. Incentive-sensitization applied to eating disorders 

suggests that some individuals may be especially vulnerable to developing neural 

sensitization of dopamine-related mesocorticolimbic systems of ‘wanting’, and consequently 

assign the exaggerated incentive salience that results specifically to palatable foods and the 

act of eating them. The result would be excessive ‘wanting’ to eat (Fig. 4b), typically 

triggered by palatable food cues or by vivid imagery about such foods, which could become 

especially exacerbated in moments of stress or emotional arousal that heighten mesolimbic 

reactivity. Evidence supporting this incentive-sensitization interpretation of overeating 

comes particularly from neuroimaging studies of obese or binge-eating individuals that have 
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reported a sensitization-type brain activation signature to food cues that is remarkably 

similar to the signature of people who suffer from drug addiction to drug cues [2,4,370,373].

A potential incentive-sensitization brain explanation for eating disorders is also relevant to 

debates about the concept of food addiction [370,372,373,378–389]. That is, a legitimate 

‘food addiction’ might exist to the degree that some over-eaters truly show incentive-

sensitization signatures of brain activation to foods, in the sense that those food-sensitized 

individuals may experience more intense cue-triggered food cravings than other people do. 

The ideal brain signature for an eating addiction in the sense of incentive-sensitization would 

be mesocorticolimbic hyper-reactivity in nucleus accumbens or striatum, ventral tegmentum, 

amygdala or limbic cortical regions in over-eaters that is triggered by food cues. An 

incentive-sensitization signature would be hyper-reactive in both of two ways: 1) more 

intense brain activations triggered by food cues than by money or other reward cues in the 

same over-eating individual, and 2) more intense brain activations triggered by food cues in 

sensitized over-eaters than triggered by the same food cues in nonsensitized normal eaters.

Extreme incentive salience attributed to foods is in one sense a natural phenomenon that 

nearly anyone could experience – at least, under extreme conditions of prolonged starvation, 

but which most people in the modern world fortunately never experience. For example, 

during World War 2 a controlled Minnesota study of starvation was carried out using 

conscientious objectors as volunteers of starvation to better understand starvation 

consequences and treatments [390]. Gradually the volunteers began to be gripped by intense 

food cravings as they became extremely underweight: “Some of them (volunteers) 

obsessively read cookbooks, staring at pictures of food with almost por-nographic interest” 

[390]. Despite being highly motivated, a number of volunteers could not resist succumbing 

to temptations to eat, and left the study. Thus, anyone can feel strong urges to eat during 

extreme physiological starvation that become nearly compulsive. What may be different in 

sensitized over-eaters is that similarly intense incentive salience is attributed to food cues, 

due to sensitized hyper-reactivity of mesocorticolimbic ‘wanting’ systems in some 

vulnerable individuals, even without ever being starved and despite developing obesity.

Some evidence for incentive sensitization in over-eating has come from reports that obesity 

and binge eating disorder is associated with heightened BOLD signals in ventral striatum, 

prefrontal cortex, and OFC in response to visual cues of palatable foods compared to 

individuals without obesity [391–393]. Similarly, individuals with obesity have been 

reported to have elevated brain responses in striatum, amygdala and orbitofrontal cortex to 

images of high calorie foods compared to foods low in calories or control images [394–401]. 

Using PET, one study reported elevation in striatal dopamine release in binge-eating 

individuals (compared to non-binge eating individuals) when they were given oral 

methylphenidate, which may pharmacologically prime mesolimbic dopamine reactivity, and 

their higher dopamine response was positively correlated with binge eating scores [402]. 

Heightened brain activity to palatable foods also positively correlates with self-reported 

subjective cravings or ‘wanting’ to eat [403], and individuals with binge eating are reported 

to have greater EEG reactivity in response to palatable chocolate pictures and increased 

craving ratings compared to healthy controls [404]. Elevated brain responses to food in 

individuals with obesity may also be associated with poorer outcomes to behavioral weight 
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loss treatments [405]. Evidence suggests that enhanced brain limbic activity is selective to 

food rewards in over-eaters, as some studies have not observed increased brain activity to 

monetary rewards in individuals with binge-eating disorder [403,406]. Overall, these studies 

suggest that individuals with binge-eating disorder or obesity show incentive sensitization-

like features in mesolimbic brain structures to food and food-associated cues, which could 

produce more intense cue-triggered ‘wanting’ to eat, even if not be matched by more intense 

‘liking’ [2,4,5,370–374].

Most telling may be prospective or longitudinal tracking studies that track individuals both 

before and after they develop obesity. For example, one such study reported that young 

women showed altered brain responses to learned food cues in ventral pallidum and 

neostriatum. Women who showed the greatest increase in ventral pallidum BOLD signals 

and greatest decrease in neostriatal signals were at greatest risk for developing excessive 

weight gain later in life [407].

Incentive-Sensitization contrasts to Reward Deficiency.

It is worth noting that the incentive-sensitization hypothesis for over-eating contrasts 

strongly with the reward deficiency hypothesis, which was prominent for several decades in 

both obesity and drug addiction fields. This reward deficiency idea postulated that obese 

individuals find foods less rewarding than other individuals, and therefore eat more foods to 

accumulate rewarding experiences and so make up their reward deficiency. This reward 

deficiency hypothesis was based on reports that striatal dopamine D2 receptors appear to be 

down-regulated in some individuals with obesity, at least in the sense that they have reduced 

labeled-raclopride binding (although reduced binding to vacant receptors may not be able to 

distinguish between fewer receptors versus higher dopamine release and receptor 

occupancy). That reduced D2 binding is similar to potential D2 down-regulation in 

individuals with drug addiction [408–414]; although some studies fail to find D2 binding 

reductions in people with obesity [415].

Early reward deficiency advocates often drew on the once-popular idea that mesolimbic 

dopamine mediated ‘liking’ or food pleasure, inferring that lower D2 binding therefore 

meant a deficiency of pleasure. The reward deficiency hypothesis also assumed that 

individuals respond to reductions in food pleasure by consuming more food to regain a 

preferred pleasure level. That assumption views food pleasure reduction as similar to drug 

dilution, where individuals may consume a greater quantity of a dilute drug (e.g. beer) than 

of a concentrated drug (e.g. whiskey) to obtain the same alcohol dose. However, sensory 

incentives such as food obey very different empirical rules. For food rewards, making a food 

less ‘liked’, typically also makes it less ‘wanted’ less and therefore less consumed [9,416–

418]. For example, many parents might be able to attest that putting their children on a diet 

of unpreferred broccoli, brussels sprouts, or spinach is unlikely to lead to weight gain. 

Proponents of the reward deficiency hypothesis might object to this example on grounds that 

reward deficiency is sometimes posited to develop later in life, and only when eating 

palatable energy-dense foods (e.g., sweet-fatty foods, salty-fatty foods, etc.). However, 

making a palatable rich food less palatable is still unlikely to make an individual eat more of 

it. In our view, there is no evidence for the reward-deficiency assumption that individuals eat 
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more as a food becomes less tasty. Rather, people and animals instead typically eat more 

when the available foods are more ‘liked’ and consequently more ‘wanted’.

Neurobiological problems may also exist for the reward deficiency hypothesis. Evidence 

from animal experiments where brain dopamine levels are manipulated indicates that 

increases in food seeking and consumption are more readily produced by increases of 

dopamine signals in the nucleus accumbens (such as after amphetamine microinjections in 

nucleus accumbens to promote dopamine release) than by suppression of dopamine signals 

[239,419–421]. Conversely, suppressing dopamine signals from the nucleus accumbens or 

neostriatum is most often reported to reduce eating and food seeking in animal studies, 

rather than cause overeating [422–424]. Similarly in people, inducing suppression of 

dopamine signaling in ordinary volunteers may actually cause them to eat less rather than to 

eat more [425]. As a caveat, however, the brain has multiple anatomical dopamine systems, 

and dopamine and norepinephrine signaling in the paraventricular nucleusof medial 

hypothalamus can oppositely suppress food intake [426,427]. Appetite-suppressing action of 

dopamine in the paraventricular nucleus of hypothalamus may explain why 

amphetaminetype drugs can be dieting aids (i.e., by stimulating hypothalamic dopamine and 

norepinephrine systems), and conversely why long-term exposure to neuroleptic/anti-

psychotic dopamine antagonist drugs can sometimes produce weight gain [428–430].

But if reduction of accumbens/striatal dopamine signals does not cause overeating via 

reward deficiency, then why are obese individuals often reported to have reductions in 

striatal D2 receptor binding? An alternative explanation for why D2 dopamine 

downregulation occurs in many cases of obesity could be that D2 receptor downregulation is 

a consequence of eating palatable foods and/or weight gain, rather than being its cause. That 

is, encountering and eating rewarding foods may engage relatively intense 

mesocorticolimbic signals, possibly involving excessive or repeated dopamine release and 

related neurobiological over-stimulations, which eventually cause a partially compensatory 

down-regulation of D2 receptors just as do repeated exposures to addictive drugs.

Further, obesity is a form of extreme satiety that may induce related long-term physiological 

alliesthesia signals (e.g., high leptin, etc.), as negative-feedback signals that also attempt to 

dampen future mesocorticolimbic activation to check excessive ‘wanting’ to eat. All these 

may be viewed as partial compensatory responses tending to oppose the temptation power of 

palatable food incentives and cues that activate mesocorticolimbic dopamine systems, but 

which in many individuals fail to fully compensate because they are only partial and because 

other neuronal components of mesocorticolimbic incentive circuitry remain hyper-reactive to 

food cues. As a result, those individuals may continue to over-eat even in the face of reduced 

dopamine D2 receptors in nucleus accumbens or striatum. Evidence for thinking that D2 

receptor downregulation is a consequence of continually eating palatable foods and of 

obesity, rather than a cause of over-eating, is that D2 receptor downregulation in nucleus 

accumbens and striatum can be induced in normal rats by giving them several weeks of free 

access to an array of palatably sweet and rich junk foods, on which some of them then 

become obese [5]. That is, the rats’ D2 downregulation occurs as a consequence of 

continually eating sweet and fatty junk food and of any consequent obesity that develops 

over that prolonged period of time. Human evidence that D2 downregulation is primarily a 
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consequence of obesity, and not the cause, is that the suppressed level of D2 dopamine 

receptors in severely obese humans sometimes rises after they lose weight following 

bariatric Roux-en-Y surgery, again as a consequence of their change in eating habits and of 

weight loss induced by the surgery [431,432].

In the end, future prospective human neuroimaging studies may provide the best evidence to 

help decide between incentive-sensitization and reward deficiency explanations of over-

eating and obesity. Tracking changes in brain function in the same individuals both before 

they become obese and after obesity develops can provide important evidence regarding 

underlying causal mechanisms. For example, healthy weight adolescents who subsequently 

gain body fat over 2-or-3 years have been reported to show enhanced brain responses to food 

cues even before they gained weight [433]. Similarly, healthy weight adolescents who 

subsequently gain weight have been reported to have higher initial brain responses in taste 

and reward coding cortical regions like insula and OFC when consuming milkshakes, 

suggesting limbic hyper-reactivity may be a pre-existing cause of later obesity. However, 

after they gain weight their brain reactions to the actual taste of milkshakes declines, 

suggesting that that the reduction may a compensatory consequence of their weight-gain 

[434].

Partly as a result of many demonstrations of mesocorticolimbic hyper-reactivity to food cues 

in individuals with obesity, the weight of neuroimaging data may have shifted away from the 

reward deficiency hypothesis and toward the incentive sensitization hypothesis in the past 10 

years [2,4,402,435,436]. For example, a recent meta-analysis of fMRI results concluded that 

“Extant data provide strong support for the incentive sensitization theory of obesity and… 

only minimal support for the reward deficit (deficiency) theory” [2]. Similarly, another meta-

analysis review of brain imaging studies concluded that “we did not find univocal evidence 

in favor of a Reward Deficit Hypothesis nor for a systematic deficit of inhibitory cognitive 

control. We conclude that the available brain activation data (for human obesity)… can be 

best framed within an Incentive Sensitization Theory” [4]. Such conclusions draw on results 

such as observation of fMRI hyper-reactivity to food cues in striatum, orbitofrontal cortex 

and insula cortex in obesity-prone human adolescents even before those individuals went on 

to gain weight several years later [435]. They are also consistent with reports of higher levels 

of dopamine release in neostriatum elicited by palatable foods in obese individuals with 

binge eating disorders than individuals who were not binge eaters, suggesting mesolimbic 

hyper-reactivity persisted in individuals who binge-eat [402]. Similarly, people who are 

heavier have been reported to have higher striatal dopamine release than people who were 

lighter, leading the authors of the study to conclude their results “suggest increase dopamine 

release with increasing body mass… consistent with… increasing behavioral salience of 

food being a risk factor for obesity” [436].

8. Conclusion

Mesocorticolimbic structures including the nucleus accumbens, ventral pallidum, 

orbitofrontal cortex, and insula contain localized hedonic hotspots in specific subregions, 

where opioid and other specific forms of stimulation can enhance ‘liking’ reactions to 

palatable foods. The same structures often also contain separable hedonic coldspots where 
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the same neurobiological stimulations suppress ‘liking’. These hotspots and coldspots are 

nestled within larger mesocorticostriatal ‘wanting’ circuitry where many of the same forms 

of stimulation plus others (e.g. dopamine) robustly generate intense cue-triggered incentive 

salience, amplifying motivation to seek and consume palatable food rewards, whether or not 

‘liking’ is simultaneously enhanced.

The distinguishable identities of brain systems for ‘liking’ versus ‘wanting’ food rewards 

has implications for understanding at least some cases of human obesity, binge-eating, and 

related eating disorders. This particularly appears to apply in the form of incentive-

sensitization signatures of hyper-reactivity of brain ‘wanting’ systems in some individuals 

with obesity or binge eating disorder, which may cause over-eating without necessarily 

being accompanied by enhanced food ‘liking’. Future research in this area will continue to 

extend understanding of how mesocorticolimbic systems interact with hypothalamic 

homeostatic signals to control normal appetite and food reward, and how specific 

dysregulations in motivation systems contribute to eating disorders and obesity.
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Fig. 1. Brain systems of ‘wanting’ and ‘liking’.
A) Positive hedonic expressions (‘liking’) elicited in response to palatable sucrose solutions 

(left). Negative aversive orofacial expressions (‘disgust’) in response to bitter quinine 

solutions (right). Orofacial expressions to palatable and aversive solutions are homologous 

across various mammalian species that include human infants, nonhuman primates, rodents, 

and horses. B) Palatable foods and their predictive cues activate mesocorticolimbic reward 

systems. Sagittal view of a rat brain depicting brain systems of ‘wanting’ and ‘liking’. 

‘Wanting’ is generated by mesolimbic dopamine systems originating from the midbrain that 

project to various limbic structures (pictured in green) to generate incentive salience. 

‘Liking’ is mediated by hedonic hotspots (pictured in red) where opioid, orexin, 

endocannabinoid, and optogenetic manipulations enhance positive orofacial expressions to 

sucrose taste. By comparison, the same manipulations within the hedonic coldspots (pictured 

in blue) oppositely suppress ‘liking’ reactions to sucrose solutions.
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Fig. 2. ‘Liking’, ‘wanting’, desire, and dread in the nucleus accumbens medal shell.
A) Top shows amino acid disruptions (via glutamate AMPA receptor antagonist DNQX or 

GABAA agonist muscimol) in the medial shell of the nucleus accumbens reveal a rostral to 

caudal organization of intense motivations. Manipulations into anterior sites produce 

voracious feeding (shown in green). The same microinjections at posterior sites generate 

fearful motivations (depicted in red) such as distress calls, bites, escape attempts, and 

defensive treading. DNQX or muscimol in mid NAc medial shell produce a mix of 

appetitive and aversive motivations. B) Bottom-top panel shows dissociations between 

‘liking’ and ‘wanting’ in the nucleus accumbens medial shell following microinjections of 

mu-opioid agonists (DAMGO), delta-opioid agonists (DPDPE), and kappa-opioid agonists 

(U50488H). Similar patterns of hedonic enhancements were found after mu, delta, and 

kappa opioid agonists. While microinjections into anterior dorsal (in red) sites magnified 

‘liking’ expressions to sucrose solutions, posterior manipulations oppositely suppress 
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‘liking’ expressions (in blue). Bottom panels shows the dissociable effects of mu, delta, and 

kappa manipulations in the nucleus accumbens medial shell on free-feeding. Mu-opioid 

agonists generated feeding throughout the entire medial shell. By comparison, delta opioids 

generate feeding within anterior sites overlapping with the hedonic hotspots. Finally, kappa 

opioid stimulation did not reliably generate feeding at any site despite generating intense 

‘liking’ expressions in the rostrodorsal quadrant. Adapted from Castro & Berridge (2014).
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Fig. 3. The posterior ventral pallidum is necessary for normal hedonic function.
Microinjections of mu-opioid and orexin agonists (left) into the pallidum revealed a rostral 

to caudal organization of hedonic function. Stimulation of the posterior ventral pallidum 

‘hotspot’ causally amplifies sucrose orofacial expressions (‘liking’) while the same 

manipulations in the caudal hedonic ‘coldspot’ suppress them. Temporary inactivation of 

posterior VP via GABA agonists generates a reversal of hedonic function so that normally 

‘liked’ sucrose solutions elicit aversive ‘disgust’ reactions. Adapted from Smith & Berridge 

(2005) and Ho & Berridge (2014).
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Fig. 4. Brain Systems for Appetite and Motivation.
A) Top panel shows a sagittal view of a rat brain with a summary map of connections 

between hindbrain, hypothalamic, and mesocorticolimbic sites that mediate ‘liking’, 

‘wanting’, sensory signals, and appetite. Brain hedonic hotspots (shown in orange) and 

coldspots (shown in light blue) in parabrachial nucleus, ventral pallidum, nucleus 

accumbens, orbitofrontal cortex, and insula do not share direct projections. Orexin signals 

from the lateral hypothalamic modulate mesocorticolimbic activity by integrating circulating 

signals about hunger/satiety in order to enhance or suppress ‘liking’ and incentive 

motivation during various physiological states. Additional hypothalamic systems in the 

arcuate nucleus of the hypothalamus may interact with mesolimbic circuitry so that their 
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activity reflects the incentive value of food and food-related cues in the environment. Colors 

of arrows denote projection types. Data is based from studies described in text. B) Bottom 

panel is a sagittal view of mesocorticolimbic systems that mediate ‘liking’ and ‘wanting’ in 

humans. Individuals with eating disorders may have hyper-reactive mesolimbic dopamine 

systems that respond to information about food and their related cues in the environment. 

This enhanced dopamine release may assign excessive incentive salience that results in 

overconsumption of palatable foods that is independent of how much those foods are 

actually ‘liked’.
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