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Abstract

Memory-based cognition depends on both the ability to remember specific details of individual 

experiences and the ability to combine information across experiences to generalize and derive 

new knowledge. A hippocampal role in rapid encoding of specific events is long established. More 

recent research also demonstrates hippocampal contributions to generalization, but their nature is 

still debated. The current review provides an overview of hippocampal-based generalization in two 

lines of research—episodic inference and categorization—and discusses evidence for four 

candidate mechanisms and representational schemes that may underpin such generalization. We 

highlight evidence showing that the hippocampus contributes specific memories to generalization 

decisions, but also form generalized representations that integrate information across experiences. 

Multiple views are currently plausible of how such generalized representations form and relate to 

specific memories. Future research that uses behavioral and neural indices of both generalization 

and specificity may help resolve between the candidate generalization mechanisms, with the 

possibility that more than one view of hippocampal-based generalization may be valid. 

Importantly, all views share the emphasis on the broader role of the hippocampus in cognition that 

goes beyond remembering the past.
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Memory is fundamental to all aspects of our lives. It stores specific details of individual 

events we encounter so we can differentiate one event from other similar ones. Memory 

specificity has been long known to rely on the episodic memory system, implemented by a 

network of regions centered on the hippocampus (Scoville & Milner, 1957; Squire & Zola, 

1998). Importantly, memory also allows us to accumulate and combine information across 

time, extending beyond direct experience to guide decisions in novel situations. Yet, how we 

generalize from prior experience to make new decisions and how generalization relates to 

memory specificity is still actively debated.
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Beyond the traditional multiple memory systems view

The multiple memory systems view posits that distinct memory representations, formed by 

distinct brain regions, support specificity and generalization (Ashby, Alfonso-Reese, Turken, 

& Waldron, 1998; McClelland, McNaughton, & O’Reilly, 1995; Packard, Hirsh, & White, 

1989; Poldrack & Packard, 2003; Tulving, 1987). A prevalent distinction has been between 

regions with different learning rates, or different neural plasticity. The hippocampus, with its 

unique synaptic plasticity, is well suited for rapid encoding of individual specific events. The 

hippocampus is then contrasted with other memory systems, such as the striatum (Poldrack 

& Foerde, 2008; Poldrack & Packard, 2003) or cortex (McClelland et al., 1995; O’Reilly & 

Norman, 2002) that learn slowly and incrementally to accumulate statistical regularities that 

are generalizable across experiences. Support for such a division of labor comes from a 

number of studies, including animal lesion and neuropsychological studies that show 

impaired specificity but relatively spared performance in generalization tasks following 

hippocampal damage (Bozoki, Grossman, & Smith, 2006; Knowlton, Mangels, & Squire, 

1996; Knowlton & Squire, 1993; O’Connell et al., 2016; Packard et al., 1989).

While the multiple memory systems view has been widely accepted and fruitful, it is 

unlikely to be a complete picture of memory generalization. Notably, several studies from 

the last two decades have blurred this division of labor between the hippocampus and other 

memory systems, indicating that the episodic memory system, including the hippocampus 

itself, may form representations that integrate related experiences in service of 

generalization (e.g., Dusek & Eichenbaum, 1997; Heckers, Zalesak, Weiss, Ditman, & 

Titone, 2004; Preston, Shrager, Dudukovic, & Gabrieli, 2004; Shohamy & Wagner, 2008; 

Zeithamova, Dominick, & Preston, 2012). While each experience is unique, events share 

elements, which provide a means of linking individual experiences into more complex 

knowledge structures that represent derived information not present in any individual event. 

In contrast to slow statistical learning, such memory integration allows for new knowledge 

to be derived rapidly, by combining information across a small number of events 

(Schlichting, Mumford, & Preston, 2015; Shohamy & Wagner, 2008; Zeithamova, 

Dominick, et al., 2012; Zeithamova & Preston, 2010). Some of the most widely-used 

episodic integration tasks that show hippocampal involvement are acquired equivalence, 

associative inference and transitive inference (for a review, see Zeithamova, Schlichting, & 

Preston, 2012). Acquired equivalence refers to the spontaneous tendency to assume that if 

two stimuli share one property, they also share another (Figure 1; e.g., Honey & Hall, 1989; 

Shohamy & Wagner, 2008). Associative inference refers to the ability to derive new 

information by forming links between related associations, such as when a relationship is 

inferred between a man and a woman after they’ve been both associated with the same house 

(Figure 1; e.g., Preston et al., 2004; Zeithamova, Dominick, et al., 2012; Zeithamova & 

Preston, 2010). Transitive inference tasks involve learning a set of relationships (e.g., A > B, 

B > C, C > D, D > E), then testing whether the subjects integrated the pairwise relationships 

into a hierarchy by probing an untrained pair (B ? D; e.g., Heckers et al., 2004; Ryan et al., 

2016; Zalesak & Heckers, 2009). Importantly, many studies have concluded that the 

hippocampal contribution to generalization and inference in these tasks cannot be reduced to 

its role in storing individual learning episodes, as we will discuss below.
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Learning a new category is another situation in which individuals link across related 

experiences to form new, generalizable knowledge. In this case, generalization occurs when 

individuals extract a category structure from experiences with individual category members 

(Figure 2A) and then apply it to new members of the category (Figure 2B). Category 

learning has been traditionally studied in a separate line of research from episodic memory 

and attributed to other memory systems (Ashby et al., 1998; Ashby & Maddox, 2005; 

Poldrack & Foerde, 2008; Poldrack & Packard, 2003). However, several recent studies have 

implicated the hippocampus in category learning (Bowman & Zeithamova, 2018; Davis, 

Love, & Preston, 2012; Mack, Love, & Preston, 2016; Zeithamova, Maddox, & Schnyer, 

2008). Moreover, theoretical models have started to outline how the hippocampus may 

contribute to both episodic memory and the formation of conceptual knowledge (Mack, 

Love, & Preston, 2018; Schapiro, Turk-Browne, Botvinick, & Norman, 2017). Thus, 

episodic inference and concept learning may rely on a similar rapid generalization 

mechanism—memory integration across related experiences—that involve the episodic 

memory system (Bowman & Zeithamova, 2018).

In this review, we focus on this rapid generalization that has become of interest across 

episodic generalization and category generalization tasks, and consider the computations and 

representations that may support it. The review of existing work will point to multiple ways 

in which the brain may represent related memories to support rapid generalization. We will 

argue that current evidence supports several plausible coding schemes, and that none of 

these coding schemes is likely to account for all existing data. Rather than demonstrating the 
mechanism of generalization, individual studies likely demonstrate a mechanism of 

generalization. Highlighting that more than one view of the hippocampal role in 

generalization may be valid, our review aims to facilitate a shift of focus from asking which 
view is correct to mapping out the telltale signs of underlying representations and factors 

that affect them, taking a step towards a more comprehensive account of generalization and 

its relation to memory specificity.

Do we need multiple memory representations?

The existence of multiple memory systems, forming distinct kinds of memory 

representations to serve distinct memory functions, has been the dominant view for some 

time. Nevertheless, some still doubt the need for multiple representations: the single-system 

view posits that multiple memory decisions could be made based on separate representations 

of individual experiences, without the need for generalized representations (Hintzman, 1986; 

Kumaran & McClelland, 2012a; Nosofsky & Johansen, 2000). In the following sections, we 

first expand on some of the models that embody the single-system view and demonstrate 

their strengths. We then transition to the evidence for the existence of generalized 

representations and the multiple ways such generalized representations may relate to specific 

memory representations.

Specific representations alone can support generalization

According to the single-system view, people form separate memories of specific events and 

make generalization decisions on demand, based on those specific memories (Curtis & 

Zeithamova and Bowman Page 3

Neurobiol Learn Mem. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jamieson, 2018; Hintzman & Ludlam, 1980; Kinder & Shanks, 2001; Zaki, Nosofsky, 

Jessup, & Unverzagt, 2003). Such a view provides a parsimonious explanation for the 

hippocampal role in both memory specificity and generalization: the hippocampus encodes 

individual events that can be flexibly accessed to make either type of judgment. 

Computational models of the single-system view have been proposed for both concept 

generalization (Hintzman, 1984; Kruschke, 1992; Nosofsky, 1988) and episodic inference 

tasks (Kumaran & McClelland, 2012a).

Formalizing the single-system view in categorization, exemplar models argue that there is no 

need for “generalized” concept representations to exist. Instead, concepts can be represented 

by specific category examples and generalization to new items can be accomplished by 

consideration of specific exemplars from all relevant categories (Kruschke, 1992; Medin & 

Schaffer, 1978; Nosofsky & Johansen, 2000). This view contrasts with the prototype models 

of categorization that posit that people extract the central tendency, the prototype, across 

category exemplars, which then guides categorization decisions (Posner & Keele, 1968, 

1970; Smith & Minda, 1998). The two models (illustrated in Figure 3) have well-developed 

mathematical formalizations that allow for estimation of an individual’s representational 

strategy from their responses.

Exemplar models provide good fit to behavior (Heit, 1992; Nosofsky, 1987) and two studies 

have argued for the single-system view based on neural evidence (Mack, Preston, & Love, 

2013; Nosofsky, Little, & James, 2012), although neither of the neuroimaging studies found 

any evidence for exemplar-specific representations in the hippocampus itself. Nosofsky and 

colleagues (2012) compared categorization, recognition, and “laxed” recognition (do not 

miss any old items, false alarms are acceptable). Brain activation during laxed recognition 

was similar to categorization, which they interpreted as evidence that a single (exemplar) 

model supports both recognition and categorization. However, as laxed recognition 

instructions did not ask subjects to discriminate old items from highly similar new items, 

one may argue that subjects were making similarity judgments rather than recognition 

judgments. More direct neural evidence for the exemplar model of generalization comes 

from a study by Mack et al. (2013) that used quantitative indices derived from the exemplar 

and prototype models in fMRI data analysis. Brain states during categorization were 

consistent with exemplar and not prototype model predictions. The exemplar network 

included lateral occipital, posterior parietal and lateral prefrontal cortices, which includes 

regions known to support memory specificity (Badre, Poldrack, Paré-Blagoev, Insler, & 

Wagner, 2005; Dennis, Bowman, & Vandekar, 2012; Slotnick & Schacter, 2004; Vilberg & 

Rugg, 2007). Thus, people may rely on memory for specific events even in traditional 

generalization tasks, and we should be careful when making assumptions regarding 

underlying representations and computations based only on whether the task includes 

generalization judgments.

Outside categorization, the REMERGE model was developed as a formal single-system 

model to account for generalization in episodic inference tasks (Banino, Koster, Hassabis, & 

Kumaran, 2016; Kumaran, 2012; Kumaran & McClelland, 2012a). The REMERGE model 

proposes that recurrent associative connections in the hippocampus easily support 

generalization even if individual experiences are encoded separately. For example, after 
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encoding a man-house association and a woman-house association, the network can 

efficiently make the man-woman inference as activation of a node representing the man 

activates a house node, which in turn activates a woman node. The co-activation of the two 

separate memories allows subjects to respond that the man and the woman are associated, 

without the need to form an integrated representation. Thus, this model provides a 

compelling mechanism that can account for the hippocampal role in generalization through 

its well-established role in forming separate representations of individual experiences.

Evidence that the hippocampal role in generalization and inference goes beyond storing 
specific memories

We agree that the hippocampal role in representing specific events can explain its apparent 

involvement in generalization to some degree (Banino et al., 2016; Kumaran, 2012; 

Kumaran & McClelland, 2012a; Nosofsky, Denton, Zaki, Murphy-Knudsen, & Unverzagt, 

2012; Zaki, 2004). A comprehensive account of the hippocampal role in generalization will 

need to take the contribution of specific memories to generalization decisions into 

consideration. However, there are compelling findings from several generalization 

paradigms indicating that the hippocampal role goes beyond storing specific memories to 

include the formation of generalized representations that span experiences (Bowman & 

Zeithamova, 2018; Dusek & Eichenbaum, 1997; Preston et al., 2004; Shohamy & Wagner, 

2008). A seminal study by Shohamy and Wagner (2008) used an acquired equivalence task 

(Figure 1) to argue that the hippocampus supports generalization beyond direct experience 

by integrating related memories into a combined memory representation. As evidence, they 

found that encoding (but not retrieval) activation in the hippocampus and midbrain 

differentiated good and poor generalizers. Furthermore, in good generalizers, reaction times 

on generalization judgments were as fast as retrieval of learned associations, indicating that 

links across events had already been formed at encoding.

Studies on associative inference (Figure 1) have also posited that the hippocampus 

contributes to generalization by integrating information across events. While two related 

events may be stored as separate memories and still support retrieval-based inference on 

demand (Figure 4, blue), overlap between events may lead to their integration in memory 

(Figure 4, red). Mechanistically, the overlap across events can serve as a retrieval cue, 

causing reactivation of related memory. As a result, one may encode an integrated memory 

that combines elements across the current and reactivated events. Several pieces of evidence 

support this account. Repetition suppression in the hippocampus, medial temporal lobe and 

midbrain is reduced when repeating events are related to one another, indicating that overlap 

with existing memories changes the way current events are encoded (Zeithamova, 

Manthuruthil, & Preston, 2016). Brain decoding approaches have demonstrated that prior 

related experiences are reactivated during encoding of overlapping events, with the degree of 

reactivation predicting subsequent novel inference across events (Richter, Chanales, & Kuhl, 

2016; Zeithamova, Dominick, et al., 2012; Zeithamova & Preston, 2017). Similar to findings 

from acquired equivalence (Shohamy and Wagner, 2008), hippocampal encoding activation 

predicts subsequent inference success above and beyond memory for directly experienced 

events (Zeithamova, Dominick, et al., 2012), as also seen in transitive inference paradigms 

(Heckers et al., 2004). Thus, as new events are encoded in the context of prior knowledge, 
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the encoded memories may integrate together elements from current events and past 

memories, forming memory representations that transcend direct experiences.

In the area of categorization, it is also unlikely that neural category representations are only 

exemplar-based, despite the success of exemplar models in accounting for category 

generalization behavior. For example, an exemplar model MINERVA (Hintzman, 1984) can 

account for several prototype-like behaviors even though the underlying representation is 

purely exemplar-based. However, as a prototype representation emerges as an output of this 

exemplar network, it would be available in the brain as an input to downstream regions. 

Depending on regional connectivity, it could also be encoded back into the initially exemplar 

network itself, with the prototype becoming an increasingly robust part of the exemplar 

representation. The idea that reminding reactivates prior memories that are then re-encoded 

as a part of a new memory was promoted by Hintzman himself to account for behavioral 

phenomena, such as recognition confidence and judgments of frequency (Hintzman, 2004). 

At the neural level, recent work has shown that hippocampal outputs may be encoded back 

into the hippocampus via recurrent connections with cortex (Koster et al., 2018), providing a 

potential mechanism for prototype formation within the hippocampus. Thus, we argue that 

in biological networks that contain many layers and recurrent connections, a generalized 

(prototype) representation is likely to emerge from the representation of specific exemplars 

at one point in the hierarchy or another.

Empirical evidence also supports the idea that people do not always rely on memory for 

specific instances and indeed form generalized concept representations. One limitation to 

studies supporting the exemplar view of category generalization is that they often use 

category structures with a low coherence among category examples. When stimuli within a 

category have few things in common or some stimuli from one category are more similar to 

the central tendency of the other category, it can make the formation of a generalized 

category representation across such distinct items difficult (Bowman & Zeithamova, 2020; 

Rouder & Ratcliff, 2004). Thus, some category structures may be represented by specific 

exemplars, but others may not (Minda & Smith, 2001). Using more coherent categories, our 

recent model-based fMRI study showed better fit of the prototype compared to the exemplar 

model in both brain and behavior. Importantly, we found prototype-consistent signals in the 

anterior hippocampus, in addition to ventromedial prefrontal cortex (VMPFC) (Bowman & 

Zeithamova, 2018), and replicated these findings in a separate study (Bowman, Iwashita, & 

Zeithamova, 2020). The evidence of prototype representation in the hippocampus indicates 

that it may store abstract concept representation derived across exemplars.

Notably, the neural mechanisms of rapid generalization implicated in the categorization 

research parallel those implicated in episodic inference. Specifically, several categorization 

studies have shown contributions of both the hippocampus and the VMPFC to concept 

generalization (Bowman et al., 2020; Bowman & Zeithamova, 2018; Zeithamova et al., 

2008), including evidence that these regions functionally interact (Frank, Bowman, & 

Zeithamova, 2019). The same VMPFC-hippocampal interactions have been also implicated 

in studies investigating generalization through episodic inference (Bunsey & Eichenbaum, 

1996; DeVito, Lykken, Kanter, & Eichenbaum, 2010; Schlichting et al., 2015; Spalding et 

al., 2018; Zeithamova, Dominick, et al., 2012). For example, the strength of hippocampal-
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VMPFC connectivity increased in an associative inference task with repeated presentations 

of overlapping information, suggesting that these regions may work together to integrate 

related experiences (Zeithamova, Dominick, et al., 2012). That these regions tend to also 

interact during concept generalization suggests that this integration mechanism contributes 

to multiple memory domains.

What is the relationship between specific and generalized representations?

How we encode experiences so we can both remember specific details and form 

generalizable knowledge is a fundamental question in memory research. The single system 

view aimed to resolve this question by pointing out how a single type of representations – 

separate representations of specific events – can be flexibly used for both specific and 

generalization judgments. The multiple memory systems view aimed to resolve this question 

by pointing out evidence for a division of labor among memory systems, with the rapidly-

learning episodic systems supporting memory specificity and slow-learning systems 

supporting generalization. The studies discussed so far provided evidence that the 

hippocampus may contribute to generalization through its role in storing specific memories, 

but it may also form generalized representations that span experiences. Thus, these findings 

highlight elements from both the single system view and the traditional multiple memory 

systems view, but do not precisely align with either one of them.

The finding of generalized representations in the hippocampus also calls for revisiting the 

question of how memory can support both generalization and specificity. If related events 

become integrated in the hippocampus into representations that combine elements across 

events, can we still retain details of individual events? Or is the loss of specific details an 

inevitable downside of hippocampal-based generalization? We will argue that the jury is still 

out on this question and there may not be a single answer. Below, we discuss three views of 

the relationship between integrated vs. separated representations of related events, with 

distinct consequences for the relationship between memory specificity and generalization. 

Figure 5 provides a schematic depiction of these views, together with the single system view.

Integration and separation may be competing representational strategies for related 
memories

One possibility, often assumed in studies on episodic memory integration, is that related 

events are either encoded as separated memory representations or integrated into a combined 

representation, with dissociable mnemonic processes determining which type of 

representation individuals form during learning (Richter et al., 2016; Zeithamova & Preston, 

2017). Compelling evidence for this view comes from studies on neuronal memory 

allocation in rodents. Rashid et al. (2016) and Cai et al. (2016) showed that neuronal 

engrams for related memories are sometimes overlapping and sometimes distinct, with 

distinct consequences for generalization. When two similar spatial contexts were 

encountered close in time, they became linked and represented through a shared neural 

assembly, resulting in generalization of behavior from one context the other. When they 

were encountered further apart, they were represented by distinct sets of neurons and 

behavior learned in one context did not transfer to the other. Consistent with this work, 
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Zeithamova and Preston (2017) used neuroimaging in humans and showed better and faster 

inferences across overlapping associations encountered on the same day compared to across 

days, accompanied by a greater multivariate integration signature during encoding of events 

that overlapped with same-day memories than prior-day memories. At test, fMRI activation 

patterns differed depending on whether inferences were made across events encountered on 

the same day versus those encountered across days, presumably reflecting whether 

participants were retrieving integrated memories or making on-demand inferences from 

separate memories. Collectively, this work indicates that new information related to existing 

memories can be linked to those existing memories or encoded as a separate memory trace, 

with distinct consequences for behavior. Both types of representations can support 

generalization and inference across events, but inferences based on separate representations 

are slower and less accurate (Schlichting, Zeithamova, & Preston, 2014; Shohamy & 

Wagner, 2008).

If representations of related events are either integrated or separated, one would expect a 

distinct pattern of advantages and disadvantages for each memory code. Most notably, one 

would expect a trade-off between remembering specific episodic details of an experience 

versus the ability to generalize and integrate across experiences. Integrated representations 

may facilitate new inferences but it may be difficult to retrieve details of a specific event 

without also activating elements from the related event, leading to source confusion or false 

memories (Gershman, Schapiro, Hupbach, & Norman, 2013; Roediger et al., 1995; Varga, 

Gaugler, & Talarico, 2019). A fear response in a neutral context that was experienced close 

in time to a context in which a mouse received a shock (Cai et al., 2016) could be viewed as 

an example of such false memory resulting from integration. In humans, an across-subject 

relationship between generalization and false memory was alluded to in the previously 

described study of acquired equivalence by Shohamy and Wagner (2008). From an informal 

debriefing, the authors noted that many subjects were unaware of being tested on new, 

untrained relationships and thought they had observed rather than inferred them. The few 

who did notice were those who generalized poorly. Presumably, most subjects formed 

integrated memories, helping them generalize but at a cost to source memory specificity, 

such as a false memory for the inferred relationship. Others encoded related associations as 

separate memories, leading to slower and weaker generalization but retention of specificity. 

However, this trade-off evidence was only anecdotal as source memory was not formally 

tested and was not observed in another acquired equivalence study that tested source 

memory directly (de Araujo Sanchez & Zeithamova, 2020). Bowman and Zeithamova 

(2020) added a recognition test to a category learning paradigm to more formally test the 

trade-off idea in concept generalization. They indeed found that participants who 

generalized better tended to have more false memories during an old/new recognition 

(Bowman & Zeithamova, 2020). However, the false memory-concept generalization 

relationship was only marginally significant and the recognition performance was overall 

quite poor. Thus, it is possible that there are individual differences in the tendency to 

integrate vs. separate related events, with distinct consequences for memory specificity and 

generalization, but more conclusive evidence is yet to be established.
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On-demand generalization from specific memories can lead to the formation of integrated 
representations

Even if events are initially stored as separate representations, those representations may be 

affected in response to generalization demands. For example, the previously discussed 

computational model REMERGE (Kumaran, 2012; Kumaran & McClelland, 2012b) 

postulates that separated representations can easily support new inferences through recurrent 

associative connections. In our example, separate man-house and woman-house associations 

provide a pathway through which to activate the representation of the woman after being 

cued with the man (Figure 4, blue). However, it is plausible that once indirectly related 

elements are co-activated through recurrent connections, they can become associated 

directly (for example through Hebbian learning). A neural implementation of such a model 

has been recently described by Koster and colleagues (2018). A loop recurrence exists 

within the medial temporal lobe, where entorhinal layers that receive output from the 

hippocampus are connected with the entorhinal layers that provide input to the 

hippocampus. This provides a mechanism of how the hippocampal output to the entorhinal 

cortex can be recirculated as a new input back into the hippocampus. Thus, once the indirect 

association (the woman) is generated by the network in response to the cue (the man), the 

man-woman association may then be encoded by the hippocampus, leading to the formation 

of a memory representation that integrates elements across events. This idea also aligns with 

our prior discussion that generalized concept representations would be expected to emerge in 

the brain at one point of the hierarchy, even if we assume exemplar representations are at the 

base of the hierarchy (Hintzman, 1984; Hintzman & Curran, 1994). The recurrent models 

take this idea one step further, providing a mechanism for how initially separated memories 

may become integrated in the hippocampus itself. Integrated memories would form from 

separate ones as long as the separated memories become co-activated, which may happen 

spontaneously over time or more rapidly in response to task demands.

Behavioral data consistent with the idea that related memories can start out as separated 

representations but become co-activated and linked in response to task demands (Koster et 

al., 2018; Kumaran & McClelland, 2012a) have been recently reported in two episodic 

inference paradigms. In acquired equivalence, de Araujo Sanchez and Zeithamova (2020) 

observed reliable generalization learning during test even though test trials did not include 

feedback. Little evidence for generalization of preferences from one face to another (Figure 

1A) was found the first time it was tested, but generalization tendency increased with 

repeated testing. Presumably, as related experiences were repeatedly jointly co-activated in 

response to task-demands, the associations between co-activated indirectly related elements 

were re-encoded as new memories, increasing the probability of generalization with each 

subsequent test. In associative inference, Carpenter and Schacter (Carpenter & Schacter, 

2017) had subjects learn overlapping person-object associations, overlaid on a background 

indoor scene. For example, there may be a man with a toy in a room with a white couch and 

the overlapping associations may be a child with the same toy in a different room with a 

brown couch. Tests probed memory for direct associations (e.g., the man and the toy), 

inferred associations (e.g., the man and the child), as well as specific context details (e.g., 

was the man near a white, brown or green couch?). Results showed reduced memory for 

specific contextual details (such as increased false attribution of the brown couch rather than 
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the white couch to the man) but only after successful inference. The authors proposed that 

initially separate memories of related events became integrated after making a generalization 

judgment, which led to the loss of specific details that were distinguishing between related 

events (see also, Carpenter & Schacter, 2018a). Thus, the need to make inferences across 

experiences may facilitate a fast transformation from specific to generalized memories, 

similar to what is assumed to happen more slowly over time through consolidation 

(McClelland et al., 1995; McKenzie & Eichenbaum, 2011; Norman, 2010; O’Reilly & 

Norman, 2002; Winocur, Moscovitch, & Sekeres, 2007).

Experiences may be simultaneously represented at multiple levels of specificity

Does linking related information in service of generalization—whether spontaneously at 

encoding or in response to task demands—inevitably come at the cost to memory 

specificity? Or can both specific and generalized representations form in parallel, despite 

both involving the hippocampus? Generalization and false memory are often seen as flip 

sides of the same coin, both driven by memory integration (Carpenter & Schacter, 2017, 

2018a; Roediger et al., 1995; Shohamy & Wagner, 2008; Varga et al., 2019; Zeithamova, 

Schlichting, et al., 2012). However, a relatively limited number of studies have explicitly 

tested the generalization-specificity tradeoff for the same stimuli, in the same subjects. 

Furthermore, not all studies that focused on such a potential tradeoff found it. As one 

example, Banino and colleagues (2016) tested generalization and source memory in the 

associative inference paradigm, asking participants after each test trial whether it was 

directly learned (AB, BC) or indirect (AC). AC inference success was positively related to 

the source memory for AB and BC trials, indicating that memory specificity and 

generalization go hand in hand. However, testing the relationship between AC inference and 

AC source memory would provide a more direct test of the tradeoff hypothesis. Second, 

anecdotal evidence from Shohamy and Wagner (2008) indicated that generalization of 

preferences from one face to another may be associated with false memory for that inferred 

association, but de Araujo Sanchez and Zeithamova (2020) did not find such relationship 

when using an explicit source memory probe. Finally, following up on their work on 

generalization-false memory relationship in young adults (Carpenter & Schacter, 2017, 

2018a), Carpenter and Schacter found no evidence of it when testing a group of older adults 

(2018b). In a more applied domain, Chang and colleagues (2019) trained math fluency 

(known to increase hippocampal engagement) and found better transfer of trained math 

problems to novel ones to be associated with better discrimination of novel from trained 

problems. Thus, behavioral evidence does not rule out that it is possible to form 

generalizable knowledge and retain specific memories at the same time.

One challenge with determining whether specific and generalized memories may co-exist 

using purely behavioral methods is the potential contribution of specific memories to 

generalization decisions. In other words, no behavioral tradeoff between generalization and 

source memory may be observed because generalized representations may form alongside 

specific ones, but also because participants relied to a greater degree on separate memories 

instead of generalized representations (Banino et al., 2016; de Araujo Sanchez & 

Zeithamova, 2020). The degree of a trade-off (or lack thereof) observed in a given study may 

then indicate the degree of reliance on specific vs. generalized representations in that 
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particular study. Thus, it is important to also consider converging evidence from the 

implementation level. Is there neural evidence to help us determine whether specific and 

generalized representations may co-exist in parallel, even when both types of representations 

involve the hippocampus?

Notably, at least two mechanisms have been proposed for how the hippocampus may 

represent events at multiple levels of specificity in parallel. One mechanism stems from 

differences in the computational properties across hippocampal subfields (e.g., Schapiro, 

2017). The dentate gyrus and CA3 are thought to maintain sparse representations of specific 

episodes that can be reinstated from partial input. In contrast, CA1 receives both retrieved 

memory input from CA3 and current perceptual input from the cortex (Steward, 1976). This 

makes CA1 is well positioned to form representations spanning across experiences, linking 

elements from current events with reinstated prior memories. A biologically plausible 

computational model of the hippocampus that implements these dissociations has been 

shown to be able to learn the specifics of individual experiences while also extracting 

regularities across those experiences (Schapiro et al., 2017). The model is able to account for 

both episodic memory and generalization learning through separate anatomical pathways 

within the hippocampus: the monosynaptic pathways from cortex to CA1 can account for 

generalization learning while the trisynaptic pathway from cortex through dentate gyrus and 

CA3 to CA1 can maintain specific representations. Both rodent work (Clelland et al., 2009; 

Leutgeb, Leutgeb, Moser, & Moser, 2007; Nakashiba, Young, McHugh, Buhl, & Tonegawa, 

2008) and human neuroimaging work (Schlichting et al., 2014; Zeithamova et al., 2016) 

indicate functional differences among hippocampal subfields that align with such specificity/

generalization distinction, with CA3 supporting detailed representations of individual events 

and CA1 supporting integration across events.

Functional dissociations that map well onto the specificity/generalization dissociation also 

exist along the long axis of the hippocampus (Poppenk, Evensmoen, Moscovitch, & Nadel, 

2013). Animal work shows an anterior-posterior gradient in receptive field size (Kjelstrup et 

al., 2008), with larger receptive fields in anterior (ventral in rodents) and smaller in posterior 

(dorsal in rodents) hippocampus. This indicates that the same information is simultaneously 

represented at multiple spatial scales, such as perhaps coding of one’s position within a 

room, position of the room within a house, and position of the house in the wider spatial 

context. Consistent with the gradient in rodents, a recent human fMRI study has shown 

larger overlap in spatial and temporal representations in anterior compared to posterior 

hippocampus (Brunec et al., 2018). Tentatively, the overlapping spatial and temporal signals 

in anterior hippocampus may help link across similar contexts while the more distinct 

representations in posterior hippocampus may help with discrimination between similar 

contexts.

The anterior-posterior hippocampal gradient is also apparent in memory paradigms that are 

not purely spatial in nature. Schlichting and colleagues (2015) used neural pattern similarity 

to index hippocampal representations of novel objects after participants learned overlapping 

sets of object associations (e.g., object A with B, object B with C). Patterns in the anterior 

hippocampus were consistent with an integrated coding scheme for the overlapping 

associations (A and C becoming similarly represented following learning) while neural 

Zeithamova and Bowman Page 11

Neurobiol Learn Mem. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patterns in posterior hippocampus were consistent with separated representations (A and C 

becoming less similarly represented following learning). Bowman and Zeithamova (2018, 

2020) found generalized concept representations (prototypes) to be unique to anterior rather 

than posterior hippocampus. Collin and colleagues (Collin, Milivojevic, & Doeller, 2015) 

had participants watch movie scenes in which two seemingly unrelated scenes were 

connected by a third scene to form a larger narrative. Posterior hippocampal activation 

patterns we more closely linked with small-scale information while anterior hippocampal 

patterns were more closely linked to large-scale narratives that bridged across scenes and 

included inferred relationships. Thus, rather than representing events by a single engram, the 

hippocampus may represent events concurrently at multiple levels of specificity, with coarse, 

big picture representations providing broader context for detailed representations of 

individual events. Whether at the level of hippocampal subfields or through a 

representational gradient along the long hippocampal axis, representing information at 

multiple levels of specificity and multiple timescales would provide a mechanism for 

forming generalizable knowledge while still remembering specific details.

Notably, while the hippocampus may support both specificity and generalization, it appears 

to interact with distinct sets of cortical memory regions to support each function. As noted 

previously, research on both associative inference and concept generalization highlighted the 

role of hippocampal-VMPFC interactions in memory integration (Bowman & Zeithamova, 

2018; Frank et al., 2019; Schlichting et al., 2015; Zeithamova, Dominick, et al., 2012). More 

broadly, the VMPFC is a region implicated by a large number of studies in schema-related 

memory (Baldassano, Hasson, & Norman, 2018; Brod, Lindenberger, & Shing, 2017; 

Ghosh, Moscovitch, Melo Colella, & Gilboa, 2014; Romero, Barense, & Moscovitch, 2019; 

Spalding, Jones, Duff, Tranel, & Warren, 2015; Tse et al., 2011; van Kesteren, Fernandez, 

Norris, & Hermans, 2010). Although not reported in episodic inference studies, lateral 

temporal cortex is also thought to represent some forms of generalized memories, such as 

semantic knowledge (Mummery et al., 2000; Renoult, Irish, Moscovitch, & Rugg, 2019) and 

gist representations (Dennis, Bowman, & Peterson, 2014; Dennis, Kim, & Cabeza, 2008; 

Turney & Dennis, 2017). Thus, the VMPFC, and perhaps lateral temporal cortices, may play 

a broader role in highlighting commonalities across experiences.

In contrast, other cortical memory regions, such as lateral prefrontal and lateral parietal 

regions, are instead implicated in differentiating similar memories to prevent interferences 

and maintain specificity (Badre & Wagner, 2005; Hutchinson, Uncapher, & Wagner, 2009; 

Kuhl & Chun, 2014). Interestingly, regions implicated in exemplar-based vs. prototype-

based category representations align quite well with these cortical representational 

differences: generalized (prototype) concept representations have been found in VMPFC and 

lateral temporal cortices (Bowman & Zeithamova, 2018) while specific exemplar 

representations have been found in lateral parietal and lateral prefrontal cortices (Mack et 

al., 2013). A recent study found that both prototype and exemplar representations can form 

across these distinct regions within the same task (Bowman et al., 2020). Finally, Frank and 

colleagues (2019) found greater resting state and background connectivity of putative 

generalization regions (VMPFC, lateral temporal cortex) with the anterior hippocampus and 

putative specificity regions (lateral prefrontal, lateral parietal cortex) with the posterior 

hippocampus. These findings provide one mechanism how the hippocampus may form 
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distinct types of representations along the anterior-posterior axis through interactions with 

distinct cortical memory regions, differentially implicated in specificity and generalization. 

Because of differential neural mechanisms within the hippocampus and across cortex, 

specific and generalized representations can in principal co-exist rather than trade-off, to 

inform a range of judgments.

Conclusions

Reconciling how the brain is able to form representations that support two fundamental 

memory functions, specificity and generalization, has been a long-standing issue in memory 

research. In the current review, we first highlighted research that has blurred the division of 

labor between distinct memory systems tailored for each function, emphasizing the 

contribution of the hippocampus to many forms of generalization. We then outlined evidence 

in support of several potential representational schemes that may account for such 

hippocampal-based generalization, as schematically summarized in Figure 5. The evidence 

comes from tasks that span memory domains typically thought to rely on distinct memory 

and neural systems – episodic inference and category learning – suggesting they are likely 

domain general and not linked to a particular type of generalization task. Most broadly, the 

hippocampus likely contributes specific memories to generalization decisions, but also forms 

generalized representations that span experiences, indicating a hippocampal role in 

generalization that goes beyond remembering specific events. Furthermore, such generalized 

representations may form instead of specific ones, from specific ones, or perhaps in addition 
to them. While one of these views may become dominant in future research, current 

evidence suggests that more than one view may be valid, perhaps under different conditions 

or in different individuals. For example, under some conditions, individuals may form 

primarily separated representations of related events during learning and use those separate 

representations to generalize on demand during retrieval. In some of those cases, on-demand 

generalization may cause those separated representations to become integrated, causing loss 

of memory specificity. Other times, integrated representations may form without replacing 

or disrupting memory for individual events, allowing both specificity and generalization 

judgments without trade-off. The multi-layered and interconnected nature of the brain 

should be sufficient to support each of these types of representations.

Many studies to date have focused on demonstrating the existence of a specific mechanism, 

such as the existence of generalized representations in the hippocampus, the contribution of 

specific memories to generalization decisions, or demand-driven integration of initially 

separated memories. Importantly, taken together, the results indicate that any given study is 

likely uncovering a mechanism of generalization rather than the mechanism of 

generalization. We should not necessarily dismiss one view because a particular study found 

evidence for another. The question then becomes, not which of these representational 

schemes is correct, but rather what conditions lead memories to be represented one way 

versus another? Some conditions that promote one type of representational scheme over 

another have already been a focus of investigation and discussed in the current review, such 

as the coherence of a category structure or the temporal proximity of related events. Other 

conditions that promote each type of representation will be the focus of future research. 

Different representational schemes have different consequences for behavior, which will be 
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important for fundamental understanding of memory as well as applications of memory 

research to areas such as education. Using cognitive models, measuring both specificity and 

generalization in the same study, and leveraging neural indices to answer cognitive questions 

will be increasingly important for fully characterizing the memory representations 

underlying the multiple functions of memory.
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Figure 1. Example episodic inference tasks.
Episodes often share elements. Episodic inference tasks test the degree to which new 

knowledge can be inferred by linking information across different learning episodes. 

Acquired equivalence. Through feedback-based learning, participants learn a correct choice 

for a set of cues. Circles (not visible to the participants while they are making their guesses) 

denote the correct choice for a given clue. For example, when presented with the first face, 

participants should choose the mountain image over the city image, indicating that Face 1 

prefers mountains over city. Generalization through acquired equivalence—the tendency to 

assume that Faces that share one association also share another—is tested. For example, 

Face 1 and Face 2 both prefer the mountains. Face 1 also prefers fields over tennis courts. 

The tendency to choose fields over tennis court for Face 2, although that preference was 

never trained, would indicate generalization of preferences across the two faces. Associative 
inference. Participants are asked to remember pairs of images (paired associate learning). 

Some pairs share elements, providing an opportunity to link elements from events 

experienced at different times. For example, a woman and a man are presented on different 

trials with the same house. Inference of indirect relationship (here, the man and the woman 

live together) is then tested.
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Figure 2. Example categorization task.
A. In training, participants learn category labels (here, species) for a set of category 

members (here cartoon animals). Training can be observational, where the label is presented 

with the stimulus, or feedback-based, where participants guess on each trial and then receive 

feedback. B. In a generalization test, participants categorize new animals that were not part 

of the training set, typically without feedback.
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Figure 3. Formal categorization models.
A. Exemplar models posit that a category is represented by its specific exemplars. In this 

example, taken from Bowman and Zeithamova, 2018, participants were trained to categorize 

four members of category A and four members of category B, all cartoon animals with 8 

binary dimensions. The trained exemplars are thought to form the representations of the two 

categories. Joint consideration of all exemplars from both categories underlies generalization 

judgments. B. Prototype models posit that a category is represented by its central tendency 

(prototype) generalized from specific instances. In this example, category prototypes 

combine all features that are characteristic for each category. Categorization judgments are 

then based on comparison of a stimulus to the two category prototypes.
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Figure 4. 
Two episodes with overlapping elements can be encoded as two separate representations 

(blue) or linked together into an integrated representation (red). New information (here, the 

man and the woman are a couple) can be inferred by retrieval and joint consideration of 

separate specific memories (blue). Alternatively, integrated memories represent the inferred 

relationship directly (red).
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Figure 5. 
Multiple views of how related experiences (X1, X2, X3) may be represented in memory to 

support generalization across experiences. From left to right: Generalization may rely on the 

same representations as memory specificity—separated memories of individual events. 

Alternatively, related events may be encoded into an integrated representation that span 

experiences. Integrated memories may form instead of separated memories, from initially 

separated memories, or alongside separated memories.
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