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Abstract

The ability to suppress distractions is essential to successful completion of goal-directed 

behaviors. Several behavioral studies have recently provided strong evidence that learned 

suppression may be particularly efficient in reducing distractor interference. Expectations about a 

distractor’s repeated location, color, or even presence is rapidly learned and used to attenuate 

interference. In this study, we use a visual search paradigm in which a color singleton, which is 

known to capture attention, occurs within blocks with high or low frequency. The behavioral 

results show reduced singleton interference during the high compared to the low frequency block 

(Won et al., 2019). The fMRI results provide evidence that the attenuation of distractor 

interference is supported by changes in singleton, target, and non-salient distractor representations 

within retinotopic visual cortex. These changes in visual cortex are accompanied by findings that 

singleton-present trials compared to non-singleton trials produce greater activation in bilateral 

parietal cortex, indicative of attentional capture, in low frequency, but not high frequency blocks. 

Together, these results suggest that the readout of saliency signals associated with an expected 

color singleton from visual cortex is suppressed, resulting in less competition for attentional 

priority in frontoparietal attentional control regions.
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1. Introduction

Imagine taking a walk through a snowy landscape when a red cardinal lands on a nearby tree 

branch. It is likely that your attention will be captured by the bird because of its visual 

salience, produced by its unique color against the uniform background. This type of sensory-

driven attentional capture has been well documented in human behavior (Egeth & Yantis, 

1997; Itti & Koch, 2000; Posner, Snyder, & Davidson, 1980; Theeuwes, 1991; Treisman & 

Gelade, 1980) and is known to drive attentional and oculomotor systems in the brain (Bisley 

& Goldberg, 2006; Bogler, Bode, & Haynes, 2011; de Fockert, Rees, Frith, & Lavie, 2001; 

de Fockert & Theeuwes, 2012; Geng & Mangun, 2009; Sprague, Itthipuripat, Vo, & 

Serences, 2018; Suzuki & Gottlieb, 2013). While the ability to orient attention towards novel 

and salient objects is essential for adaptive human behaviors, continuous or frequent 

attentional capture by salient objects that are task-irrelevant (i.e., distractors) is deleterious 

for goal-driven behaviors. Thus, the ability to control and reduce distraction, particularly 

when it recurs and is predictable, is important for human behavior. Yet, the mechanisms that 

lead to distractor attenuation based on learned ignoring are still poorly understood.

The role of learned expectations in distractor suppression has been the subject of a surge of 

behavioral studies in recent years (Chelazzi, Marini, Pascucci, & Turatto, 2019; Failing & 

Theeuwes, 2018; Gaspelin & Luck, 2018; Geng, Won, & Carlisle, 2019; Noonan, 

Crittenden, Jensen, & Stokes, 2018). This work has led to a consensus that predictable 

characteristics of recurring distractors are easily learned and used in a highly effective way 

to reduce interference. For example, a number of studies have shown that spatial locations 

with a high probability of containing a salient distractor are de-prioritized and this reduces 

distractor interference. Evidence of spatial de-prioritization comes from the finding that it 

takes longer to find targets that (infrequently) appear in that same location (Failing & 

Theeuwes, 2018; Ferrante et al., 2018; Wang & Theeuwes, 2018a, 2018b; Wang, van Driel, 

Ort, & Theeuwes, 2019; Zhang, Allenmark, Liesefeld, Shi, & Müller, 2019). Likewise, a 

spatially unpredictable color or luminance singleton distractor that initially captures 

attention, no longer does so when it recurs (Gaspelin, Gaspar, & Luck, 2019; Geng & 

Diquattro, 2010; Geyer, Muller, & Krummenacher, 2006; Vatterott & Vecera, 2012). 

Interestingly, the color of the singleton does not have to be the same as long as the color 

singleton is predictably a distractor (Gaspelin, Leonard, & Luck, 2017; Stilwell & Vecera, 

2019; Vatterott, Mozer, & Vecera, 2018; Won, Kosoyan, & Geng, 2019; Yantis & Egeth, 

1999; Zhang et al., 2019). Statistical learning of distractor properties, regardless of whether 

it is spatial or feature-based, appears to occur relatively fast. The number of repetitions 

required for attentional capture to be attenuated is relatively few suggesting that learned 

suppression may build on local repetition suppression (Chetverikov, Campana, & 

Kristjansson, 2017a, 2017b) or sensory habituation (Bonetti & Turatto, 2019; Chelazzi et al., 

2019; Turatto, Bonetti, Pascucci, & Chelazzi, 2018; Won & Geng, 2020).

While learned suppression has emerged within the behavioral literature as a powerful 

modulator of attentional capture by distractors, there is still sparse evidence for where 

distractor processing is attenuated in the brain during learned suppression. The few studies 

of distractor suppression using fMRI have mostly used spatial cues to indicate the upcoming 

location of distractors. For example, Serences et al. (2004) used a spatial cue that indicated 
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the location of target stimuli and probability of dense distractors. They found that when the 

cue indicated probable distractors, there was an increase in preparatory activation in visual 

ROIs (V1, V2, VP, V4v) corresponding to the expected location of distractors. On those 

trials, behavioral performance was also unimpaired by distractors. In contrast, preparatory 

activation was absent in ROIs that encoded locations unlikely to contain distractors. When 

distractors appeared in those locations, performance suffered (Serences, Yantis, Culberson, 

& Awh, 2004). Others have since reported similar findings that foreknowledge of a distractor 

location resulted in increased BOLD activation in retinotopic visual cortex accompanied by 

weaker indices of distractor interference in behavior (Munneke, Heslenfeld, Usrey, 

Theeuwes, & Mangun, 2011; Ruff & Driver, 2006). These results show that activation 

increases in visual cortex are an indicator of preparatory distractor suppression.

Fewer studies have used fMRI to look for evidence of learned suppression for features or 

objects in visual cortex, but of those that have, some have found evidence for the 

suppression of stimulus-evoked brain responses to distractors in visual cortex (Adam & 

Serences, 2020; although see, Reeder, Olivers, Hanke, & Pollmann, 2018; Reeder, Olivers, 

& Pollmann, 2017; Seidl, Peelen, & Kastner, 2012). For example, Reeder et al. (2017) found 

evidence for a decrease in univariate activation in response to negative color cue compared 

to a positive cue in large regions of visual cortex. Adam and Serences (2020) more recently 

reported that target and distractors with consistent, repeating, colors resulted in target 

enhancement and distractor suppression, respectively, compared to target and distractor 

colors that randomly switched. Interestingly, suppression only occurred for distractors 

adjacent to the target, suggesting that competition plays a role in inducing suppression 

(Alvarez & Cavanagh, 2005; Schwartz et al., 2005; Sereno & Kosslyn, 1991; Stormer, 

Alvarez, & Cavanagh, 2014; Walter, Quigley, & Mueller, 2014). These results suggest that 

learned expectations about distractors can lead to suppression of the stimulus-evoked 

response in early visual cortex compared to unexpected distractors, particularly when 

distractor competition is strong.

There is also evidence for early visual suppression of stimulus-evoked distractor responses 

from event-related potential (ERP) studies. In particular, active distractor suppression for a 

variety of distractor types has been associated with the Pd ERP (Hickey, DiLollo, & 

McDonald, 2008; Sawaki & Luck, 2010), which has been shown to arise from visual cortex 

in response to feedback from the frontal eye fields (FEF), an area involved in the control of 

spatial attention (Cosman, Lowe, Zinke, Woodman, & Schall, 2018). Interestingly, Wang et 

al., (2019) found a Pd component in response to a salient distractor no matter where it 

appeared in the visual search display, however, the Pd was earlier for distractors appearing in 

probable locations (van Moorselaar & Slagter, 2019; Wang et al., 2019).

In contrast to distractor suppression, there is substantial evidence from neurophysiology and 

human fMRI that salient stimuli that capture attention are specifically encoded in the lateral 

intraparietal sulcus (LIP in monkeys; more generally intraparietal sulcus, i.e. IPS, in 

humans) of the parietal lobe (Bisley & Goldberg, 2006; Bogler et al., 2011; Buschman & 

Miller, 2007; de Fockert et al., 2001; de Fockert & Theeuwes, 2012; Geng & Mangun, 2009; 

Hodsoll, Mevorach, & Humphreys, 2009; Ipata, Gee, Gottlieb, Bisley, & Goldberg, 2006; 

Mevorach, Humphreys, & Shalev, 2006; Sprague et al., 2018; Suzuki & Gottlieb, 2013). 
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Although distractor signals are also found within other regions of the oculomotor and 

attentional network including the FEF, pulvinar, and superior colliculus (Bisley & Mirpour, 

2019; Corbetta, Patel, & Shulman, 2008; Seidl et al., 2012; Xuan et al., 2016), the parietal 

cortex appears to play a special role in processing perceptual saliency (Geng & Mangun, 

2009 ; Hodsoll et al., 2009; Mevorach, Hodsoll, Allen, Shalev, & Humphreys, 2010; 

Mevorach et al., 2006). For example, distractor related activity in LIP is attenuated when 

salient stimuli are successfully ignored (Ipata et al., 2006) suggesting that the response of 

parietal neurons to salient stimuli reflects the strength of attentional capture. LIP neurons 

also respond earlier than frontal areas to salient sensory signals (Buschman & Miller, 2007) 

both when they are relevant and irrelevant (Bisley & Goldberg, 2006). In addition to saliency 

signals, these regions also incorporate information about a stimulus’ “top-down” relevance. 

The integration of top-down and bottom-up signals has lead to the characterization of LIP 

and related regions as priority maps from which attention is allocated based on a winner-

take-all computation (Bisley & Goldberg, 2010; Bogler et al., 2011; Gottlieb, Balan, 

Oristaglio, & Suzuki, 2009; Pollmann et al., 2003).

Taken together, these studies suggest that expectations alter distractor processing in visual 

cortex, and this change leads to better suppression of attentional capture and behavioral 

interference; however, when that does not occur (or fails), then information about the salient 

distractor is carried forward and encoded in parietal cortex within the frontoparietal 

attentional network, producing greater competition for attention and the need for reactive 

attentional control (Geng, 2014; Marini, Demeter, Roberts, Chelazzi, & Woldorff, 2016; van 

Diepen, Miller, Mazaheri, & Geng, 2016). Here we test these predictions directly with a 

previously used distractor suppression paradigm (Won et al., 2019) that found better 

behavioral suppression of color singletons when they were frequent and expected compared 

to rarer and therefore more surprising. We hypothesized that saliency signals from 

predictable, frequent, distractors would be attenuated in visual cortex, produce weaker 

activation in parietal cortex, and less attentional capture. Infrequent distractors were 

expected to show the opposite pattern and produce stronger behavioral costs associated with 

attentional capture.

2. Materials and Methods

2.1. Participants

Twenty-six subjects ranging in age from 19 to 31 (mean age, 24.7) participated in a 2h 

session and received monetary compensation. Data from two participants were excluded 

from analyses due to a poor behavioral performance (lower than 3 standard deviation from 

mean accuracy) and a scanner malfunction, which resulted in a final group of 24 subjects (12 

females). This sample size was chosen based on the results of a power analysis to detect a 

behavioral attentional capture effect using the data from Won et al. (2019). To achieve a 

power of 95% and an alpha of 5% with an effect size (dz) of 8.55, a sample size of only 4 

participants would be needed. This suggests that the behavioral effect we wished to detect 

was highly reliable, but we chose sample size of 24, a number well over the sample size of 

the three most closely related fMRI studies (Munneke et al., 2011; Ruff & Driver, 2006; 

Serences et al., 2004). All participants had normal or corrected-to-normal vision and no 
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neurological history. Informed consent was obtained according to procedures approved by 

the Institutional Review Board of the University of California, Davis.

2.2. Stimuli and design

Search displays contained four gray shapes – three diamonds, (2.8° x 2.8°, distractors) and 

one circle (2.5° in diameter, target), or one diamond (target) and three circles (distractors) – 

on a black background. The target shape was counterbalanced across participants. The target 

was always a fixed shape and the non-targets were all another shape. Thus, while we 

expected that subjects would rely mostly on feature-search mode given the certainty of the 

target identity (Hout & Goldinger, 2015), it is possible that shape pop-out also contributed to 

target localization at the time of stimulus onset. The eccentricity (center of each item to the 

center of screen) was 3°. Each shape was randomly assigned with a number between 1 

through 4 (1° x 1°). The target shape appeared randomly but equally often in the four 

possible locations. Importantly, on some trials, one distractor was drawn in color, i.e., the 

color singleton. Note that hereafter, “singleton” refers the uniquely colored distractor object. 

The color of the singleton was drawn from four possible values from a CIE Lab color wheel 

(radius: 39, luminance: 70, a* = 0, b* = 0, Figure 1A). The colors were chosen to be 

maximally different from each other in hue but to similar in luminance. Participants were 

informed that the color singleton is task-irrelevant and were encouraged to ignore it. The 

singleton location and color were equally, but randomly chosen among the four possible 

locations and colors. A white fixation cross (1° x 1°) was maintained throughout a scan.

The experiment was composed of eight experimental scans. Each experimental scan 

consisted of two blocks, a low frequency block and a high frequency block, which order was 

counterbalanced across eight scans. In the low frequency block, the singleton appeared on 

25% of trials (i.e., 16 trials among 64 trials); in the high frequency block, the singleton 

appeared on 80% of trials (i.e., 16 trials among 20 trials). Importantly, we kept the absolute 

number of singleton trials the same across blocks in order to optimize statistical comparisons 

between singleton trials in the two frequency conditions, as this was the main interest of this 

study.

2.3 Procedure

Participants were asked to keep fixating on the central fixation cross during the experiment 

and reminded not to move their head. At the beginning of each block, participants were 

shown a text cue (i.e., “HIGH” or “LOW”) indicating the singleton frequency of the 

upcoming block (Figure 1B). A fixation display followed for a randomly jittered duration 

resulting in an SOA with a mean of 4000-ms, ranging from 2000-12000-ms. The fixation 

cross very briefly blinked 500-ms before the search display to notify the subject of the 

upcoming search display. The search display appeared for only 200-ms. The short display 

duration and unpredictable target location was used to prevent systematic eye-movements in 

response to the target location. Participants were asked to find the preassigned target (e.g., 

the gray diamond) and then report the number inside of the target by pressing a 

corresponding button on a button box within 1300-ms. Participants completed 84 trials in 

each of the eight experimental scans, which took 6.8 min each.
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The retinotopic locations of the visual search stimuli were localized using two functional 

localizer scans. Each scan consisted of 24 trials, with each trial comprised of a colored 

square (2.5° x 2.5°) in one of four locations. The location and color of the squares were the 

same as those used in the visual search displays from the main experiment. On each trial, the 

square flickered 10 times (500-ms on and 500-ms off). Each color and location were probed 

once in a four-trial sequence and followed by a 20-sec fixation period. In order to ensure 

fixation on the central fixation cross, participants were asked to make a button press 

whenever the fixation briefly (500-ms) turned to gray. This change occurred once during 

each trial at a randomly chosen time point between the 2nd and 9th square. We used R 

program (R Core Team, 2013; http://www.R-project.org/) and JASP software 

(www.jasp.org) for the statistical analysis.

Subjects practiced the main experiment outside of the scanner to be trained with a search 

task and familiarized with the frequency and singleton manipulations. They completed eight 

runs of 84 trials that consisted of 64 low frequency trials (16 singleton trials and 48 non-

singleton trials) and 20 high frequency trials (16 singleton trials and 4 non-singleton trials) 

prior to scanning. The training took around 30 min.

2.4. fMRI Analysis

2.4.1. fMRI acquisition and preprocessing—MRI scanning was performed on a 3-

Tesla Siemens Skyra scanner (Siemens Health Care, Erlangen, Germany) with a 32-channel 

phased-array head coil at the Imaging Research Center at the University of California, 

Davis. A T2-weighted echoplanar imaging (EPI) sequence was used to acquire whole-brain 

volumes of 48 axial slices of 3 mm thickness (TR/TE 2100/2.98ms, flip angle 75°, base/

phase resolution 70/100, FOV 210 mm). Each scan session acquired 285 volumes (399.2 s) 

and consisted of 84 experimental trials. A total of 8 scan session were acquired. An 

MPRAGE T1-weighted structural image was acquired for visualizing the associated 

anatomy (TR/TE 2100/2.98 ms, flip angle 7°, base/phase resolution 256/100, FOV 256 mm, 

Sagittal acquisition; acquisition time = 7:28). fMRI data were preprocessed using SPM12 

(Wellcome Department of Imaging Neuroscience, University College London, UK) running 

with Matlab 2019a (MathWorks). The first five functional images of each run were dummy 

scans to allow for equilibrium effects. The preprocessing included slice-time correction and 

realignment using a two-pass procedure in order to register the images to the mean of the 

images after the first realignment. The high-resolution images (MPRAGE) was used to 

determine parameters for spatial normalization into the standard MNI reference brain and 

with the parameters, EPI images were normalized and smoothed with an 8 mm (FWHM) 

isotropic kernel. Head motion was minimal (mean +/− sd across 6 parameters = .117+/

−.08mm; .002+/−.001°).

2.4.2. Region of Interest Analysis—A functional localizer was run in order to 

localize the retinotopic locations of the four visual search stimuli within visual cortex1. The 

scan parameters were identical to the main experiment except that each scan acquired 280 

1We excluded one out of two functional localizer scans from one subject in the ROI analyses due to scanner malfunction during the 
functional localizer scan.
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volumes. The localizer was comprised of 10 second blocks of the four stimulus locations 

(top-left, top-right, bottom-left, and bottom-right). Each block was modeled by a 10 sec 

boxcar convolved with a canonical hemodynamic response function. The regions of interest 

(ROIs) were selected by a statistical contrast of each location condition against the other 

three conditions. A combined Juelich V1-V3 atlas was used as a mask to select visual cortex 

ROIs. The threshold was pfwe < .05 for cluster sizes > 10 voxels2. The average number of 

selected voxels at each of the four locations was 817.6 voxels (Figure 1C).

A general linear model (GLM) was constructed with 24 regressors to fully describe the two 

frequency conditions (high, low) crossed with the 12 possible spatial configurations of 

stimuli on different trials (i.e., all combinations of the target in each of four locations crossed 

with the three possible singleton locations given each target location). For example, one 

regressor was used for trials with the target in the top-left, the singleton in the top-right, and 

other distractors in the bottom-left and bottom-right. Thus, this model provided independent 

estimates of the BOLD response for each stimulus type (target, singleton, distractor) in each 

of the four visual locations. Two additional regressors were defined for the non-singleton 
trials in the high frequency and low frequency blocks.

Next, beta values from each of the three stimulus types (target, singleton, distractor) 
occurring in the same visual location were averaged. For example, all the beta values from 

trials with a target in the top left visual quadrant were extracted from voxels within the lower 

right visual cortex ROI, as defined by the functional localizer, and averaged. This resulted in 

a single averaged beta value for the target in each of the four possible locations, providing 

separate measures for the target stimulus in each retinotopic region (Figure 1C). The same 

procedure was used for creating averaged beta values for the singleton and distractor stimuli 

in each visual location. Note that the distractor appeared in two visual locations in each 

display, thus, the averaged beta values were composed from more data than the other two 

stimulus types. This resulted in beta values for each stimulus type extracted from each of the 

four visual ROIs corresponding to four quadrants of the visual field.

MVPA was implemented by using a binary linear support vector machine (SVM). The beta 

maps from the ROI analysis (described above, but without averaging across runs) were 

normalized to remove univariate difference between conditions (Misaki, Kim, Bandettini, & 

Kriegeskorte, 2010) and entered into a binary linear SVM classifier with leave-one-run-out 

cross-validation for each pair of stimuli using LIBSVM using a default cost parameter of 1 

(Chang & Lin, 2011). We estimated the classification accuracy for the target versus 

singleton, the target versus distractor, and the singleton versus distractor in each of two 

frequency blocks separately, for each visual ROI in each person. The final classification 

accuracy in visual cortex was estimated by averaging the classification accuracies across all 

four ROIs (one for each visual quadrant) for each person and then across all participants. 

Group-level significance was established using a nonparametric statistical test of the 

classification accuracy. The chance-level distribution was created by 10,000 permutations of 

each classification pair for each individual by randomizing the labels of the training and 

2For one subject, there were no voxels that survived pfwe < .05, # of voxel > 10 for the upper right quadrant stimulus, so the threshold 
was lowered to uncorrected p < .0001, # of voxel > 10 to create that one subject’s lower left hemisphere ROI.
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testing data set. Next, these classification accuracies were averaged across participants and 

ROIs, yielding a chance-level distribution for the group classification. The permuted p value 

(one-tailed) was calculated using a formula: (n + 1)/(10,000 + 1). Here, n refers to the counts 

of the permuted accuracies that were equal or greater than the observed group average 

accuracy. Family wise error was controlled for all pairs of classification by using Bonferroni 

correction.

2.4.3. Whole brain analyses—A separate GLM was constructed with four trial types 

(singleton trials in the high frequency block; non-singleton trials in the high frequency 
block; singleton trials in the low frequency block; non-singleton trials in the low frequency 
block). Each trial was modeled by a stick function convolved with a canonical hemodynamic 

response. Linear contrasts of parameter estimates were estimated for each participant and 

combined for the group level in a random effects general linear model. We corrected for 

multiple comparisons using cluster correction at pfwe < .05, with a height cut-off of p < .001 

uncorrected for clusters with greater than 10 voxels.

3. Results

3.1. Behavior

We excluded slow (RTs greater than 2.5 standard deviations from the individual mean) and 

inaccurate trials from behavioral and image data analyses (an average of 4.5% data were 

excluded per person). The average accuracy was 97.4% (SD = 2.0%).

RT and accuracy data were combined into a single metric of behavior, the inverse efficiency 

score (IE; RT / accuracy) (Townsend & Ashby ,1978, 1983). IE was entered into a repeated 

measures ANOVA with trial type (singleton,non-singleton) and frequency (low, high). There 

was a significant main effect of singleton presence, with worse performance on singleton 
trials than non-singleton trials, F(1, 23) = 11.972, p = .002, η2

p = .342, but no main effect of 

frequency, F(1, 23) = 3.254, p = .084. Critically, there was a significant interaction between 

the trial type and the frequency, F(1, 23) = 4.775, p = .039, η2
p = .172, which indicates that 

interference by a singleton was reduced in the high frequency blocks (singleton trial: mean = 

7.14, SD = .92 vs. non-singleton: mean = 7.05, SD = 1.15) compared to the low frequency 
blocks (singleton trial: mean = 7.14, SD = .96 vs. non-singleton trial: mean = 6.83, SD 

= .93); this pattern replicates our previous behavioral finding (Won et al., 2019; Figure 2).

3.2. Visual ROIs

3.2.1. MVPA—The primary hypothesis to test was that visual information regarding the 

singleton would differ as a function of the frequency block in which it appeared. We used 

MVPA that is sensitive to distributed spatial information to test if the singleton’s identity 

could be better distinguished from targets and distractors from the same trials in the high 
compared to low frequency block. Distinct information encoding of the singleton compared 

to other simultaneously competing stimuli should allow the singleton to be better identified 

as a non-target and more efficiently suppressed. In order to maximize the competition 

necessary to select the target, we limited our analysis to only trials with singleton distractors 

that were adjacent (vertically or horizontally aligned) to the target and excluded trials with 
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diagonal singletons (Adam and Serences, 2020 VSS poster presentation; also supplemental 

materials S1-S2).

Next, we extracted the beta values from the singleton, target, and distractor stimuli from 

singleton trials in the low and high frequency blocks. The data from each stimulus type and 

for each frequency condition were compared using separate binary linear SVM classifiers 

and significance was established using a non-parametric permutation test (see Methods). 

Most importantly, targets and singletons were classified with greater than chance accuracy in 

the high frequency block (mean = .53, SD = .08, pBonf corr < .005) but not the low frequency 
block (mean = .50, SD = .09, pBonf corr > 1). Similarly, singletons and distractors (mean 

= .55, SD = .06, pBonf corr < .001) were also classified with above chance accuracy in the 

high frequency but not in the low frequency block (mean = .52, SD = .05, pBonf corr = .31). 

However, classification of targets and distractors from both blocks was significant (mean 

= .56, SD = .05 for the high frequency; mean = .57, SD = .08 for the low frequency, both 

pBonf corr < .001) (Figure 3, see also S1). Together these results clearly show that information 

about singletons, targets, and distractors had more distinct sensory representations during the 

high frequency block; perhaps this distinctiveness gives rise to better discrimination of 

targets from singletons, which leads to more efficient target selection and singleton 

suppression.

3.2.2. Univariate analyses—The preceding analyses demonstrated more distinctive 

information encoding of stimuli in the high frequency block compared to the low frequency 
block. Next we used complementary univariate analyses to test for evidence of differences in 

global visual processing of the stimulus types. Beta values for each stimulus type were 

averaged across runs and the four visual cortical quadrants. The data were entered into a 

repeated measures ANOVA with stimulus type (singleton, target, distractor) and frequency 

block (low, high). We found a significant main effect of stimulus type, F(2, 46) = 14.353, p 
< .001, η2

p = .384, but no main effect of frequency block, F < 1. Most importantly, the 

interaction was significant, F(2, 46) = 4.673, p = .014, η2
p = .169.

The interaction between stimulus type and frequency block was due to different patterns of 

singletons and distractors activations between two frequencies. In the low frequency block, 

there was greater activation in response to singletons than distractors, t(23) = 3.710, p 
= .001, Cohen’s d = .757, BF10 = 30.9483 whereas in the high frequency block, there was no 

difference in activation between singletons and distractors, t(23) = .298, p = .768, BF01 = 

4.473. Consistent with the main effect of stimulus type, there was greater activation for 

targets compared to the other two stimuli in both blocks, low frequency block target vs. 

singleton: t(23) = 2.430, p = .023, Cohen’s d = .496, target vs. distractor: BF10 = 2.401; t(23) 

= 6.452, p < .001, Cohen’s d = 1.317, BF10 = 13239; high frequency block, target vs. 

singleton: t(23) = 2.535, p = .019, Cohen’s d = .517, BF10 = 2.899, target vs. distractor: t(23) 

= 3.163, p = .004, Cohen’s d = .646, BF10 = 9.808. Targets are processed with greater 

intensity than singletons and distractors in both frequency blocks, but singletons evoke 

3We provide the Bayes factor (BF) corresponding to the t-tests (JASP Team, 2019; Rouder, Speckman, Sun, Morey, &Iverson, 2009). 
BFs quantify the relative likelihood of obtaining the observed data under the null hypothesis compared to the alternative hypothesis 
and have the advantage of being equally well suited to quantify the evidence for and against the null hypothesis. Evidence in favor of 
the null hypothesis is denoted as BF01 and in favor of the alternative hypothesis as BF10.
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greater activation than distractors only in the low frequency block. This suggests that 

processing of the singleton is suppressed in the high frequency block (Figure 4; see 

Supplemental Figure S2 for full results from all spatial configurations of the target and 

singleton).

The interaction was due to a null difference between singletons and distractors in the high 
frequency block, but inspection of the data reveals that this was due in part to an increase in 

distractor activation, not just a reduction of singleton activation (similar to the behavioral 

result). One possible explanation for the increase in distractor activation is that it reflects a 

strategy of global sensory suppression in the high frequency block. Global suppression 

would reduce sensory sensitivity overall (leading to increased distractor activation) but also 

have the effect of attenuating the “attend-to-me” signal of the expected, salient, singleton in 

an unknown location and of an unknown color. Pre-stimulus increases in univariate 

activation in anticipation of the need to suppress sensory processing associated with a 

distractor has been found in spatial cuing paradigms of the distractor location (Munneke et 

al., 2011; Ruff & Driver, 2006; Serences et al., 2004).

3.3. Whole brain analysis to identify regions that encode singleton salience

If the differences in results for the two frequency blocks in visual cortex are related to 

differences in singleton suppression, as we hypothesize, then we should see weaker evidence 

of singleton capture in parietal and frontal cortex in the high frequency block compared to 

the low frequency block. In order to be as inclusive as possible in searching for regions of 

the brain that might respond to singleton presence overall, we created a univariate whole 

brain contrast for regions showing greater activation for singleton trials compared to non-
singleton trials4 (Figure 5A). This resulted in only two significant clusters corresponding to 

left and right IPS, consistent with the literature on attentional capture (see Introduction). To 

determine if the profile of attentional capture was modulated by singleton frequency as we 

hypothesized, we extracted the beta values for singleton and non-singleton trials from both 

frequency blocks from the two IPS clusters (Figure 5B). Extraction of these data do not 

constitute “double dipping” because the main effect of singleton presence used to select the 

parietal ROIs is orthogonal to the comparison of interest for the extracted betas, which 

involves the relative difference between singleton and non-singleton trials as a function of 

frequency block (i.e., an interaction between trial type and frequency block).

The extracted betas for left and right IPS were entered into a trial type (singleton, non-
singleton), and frequency (low, high) repeated measures ANOVA. Because the main effect 

of trial type is based on the contrast from which IPS was selected, we do not report main 

effects to avoid circularity. The interaction between singleton presence and frequency was 

significant in both left and right IPS, for left IPS, F(1, 23) = 7.924, p = .010, η2
p = .256; for 

4This analysis is based on a GLM with unequal number of trials in the non-singleton trial condition between the low- and high-
frequency blocks. To be sure that that these results are not a spurious consequence of unequal numbers in this one condition, we 
conducted the same whole brain contrast from a separate GLM in which non-singleton trials from the low-frequency condition were 
divided across two regressors: one included a numerically matched number of non-singleton trials per run (four) as the high-frequency 
condition and the other modeled the remaining trials. The whole brain contrast of singleton minus non-singleton trials using only the 
numerically matched regressor for non-singleton low-frequency trials resulted in the same pattern of results: bilateral IPS were still the 
only two significant clusters at pFWEcorr < .05.
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right IPS, F(1, 23) = 4.212, p = .052, η2
p = .155 (Figure 5B). Both interactions were due to a 

greater difference in activation for singleton compared to non-singleton trials in the low 
frequency condition than in the high frequency condition. Paired t-tests revealed significant 

differences between the singleton and non-singleton trials in the low frequency block, lIPS: 

t(23) = 6.691, p < .001, Cohen's d = 1.366, BF10 = 22075.48, rIPS: t(23) = 6.622, p < .001, 

Cohen's d = 1.352, BF10 = 19068.26, but not in the high frequency block, lIPS: t(23) = 

1.047, p = .306, BF01 = 2.851, rIPS: t(23) = 1.440, p = .163, BF01 = 1.875. The pattern 

mimics the behavioral results (cf. Figure 2). The univariate contrast of the simple effect of 

singleton minus non-singleton trials from only the low frequency block are in supplementary 

results (S3); the results illustrate wider scale activation of the frontoparietal network when 

the contrast is limited to the low frequency block.

4. Discussion

The ability to suppress distraction is essential to efficient goal-oriented behaviors. Recent 

work from behavioral studies suggest that learned expectations are a powerful way to reduce 

distractor interference. Seeing distractors repeatedly in predictable locations, configurations, 

or features leads to a decrease in interference from those distractors (Chelazzi et al., 2019; 

Chetverikov et al., 2017a, 2017b; Failing & Theeuwes, 2018; Gaspelin & Luck, 2018; Geng 

et al., 2019; Noonan et al., 2018). For example, the study on which the current experiment is 

based, we showed that colored singleton distractors produced less interference when they 

occurred frequently and could be predicted, compared to when they occurred infrequently. 

This suggests that learned expectations are highly efficient and can occur for any number of 

distractor properties. This mimics the literature on target selection, which has also found 

statistical regularities to be a powerful source of information that guide attention towards 

targets without requiring awareness (Anderson, 2016; Awh, Belopolsky, & Theeuwes, 2012; 

Druker & Anderson, 2010; Geng & Behrmann, 2005; Hansmann-Roth, Chetverikov, & 

Kristjansson, 2019; Hoffman & Knude, 1999; Jiang, 2018; Shaw & Shaw, 1977).

In our current study, we tested the brain systems involved in the suppression of a 

perceptually salient singleton based on its frequency of occurrence. Importantly, visuospatial 

properties such as its location or color could not be predicted. Nevertheless, this expectation 

was sufficient to alter processing of the singleton in visual cortex and reduce its sensory 

readout to attentional control regions in parietal and frontal cortex.

In visual cortex, the MVPA results revealed that singletons, targets, and distractors all had 

distinct representations in visual cortex on singleton trials in the high frequency block but 

singletons could not be distinguished readily from targets or distractors in the low frequency 
block. We speculate that this greater distinctiveness in the high frequency block reflected 

better information separation of each stimulus, which in turn, attenuated readout of the 

“attend-to-me” saliency signal associated with the singleton to subsequent parietal and 

frontal regions. The finding that singleton distractors of unknown color and location can be 

effectively suppressed in visual cortex simply based on an expectancy of their presence is a 

novel finding that has not been shown previously.
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Interestingly, however, the pattern of univariate activation in the two frequency blocks 

suggested that the suppressive effects of the singleton were not due only to a reduction in 

activation of the singleton but also an increase in activation for distractors. This global 

increase indicates that participants may have employed an effortful strategy in high 
frequency blocks that attenuate sensory processing overall. This increase may not be obvious 

in response to targets, which are selected and processed to a greater extent, leading to 

saturation effects. Global univariate increases in sensory activation related to anticipatory 

suppression of sensory information is consistent with previous findings that increases in 

retinotopic visual cortex lead to better distractor suppression following spatial cues 

(Munneke et al., 2011; Ruff & Driver, 2006; Serences et al., 2004). These studies used 

experimental designs that separated signals associated with preparatory distractor 

suppression from target enhancement leading to the conclusion that increases in univariate 
BOLD activity related to attentional expectations are not only related to gain enhancement 

of relevant task-relevant sensory representations (Hopfinger, Buonocore, & Mangun, 2000; 

McMains, Fehd, Emmanouil, & Kastner, 2007; Sylvester, Shulman, Jack, & Corbetta, 2009), 

but also reflect suppression of expected distractors.

Given that the BOLD signal reflects a combination of pre- and post-synaptic neural activity 

and other vascular and metabolic processes (Attwell & Iadecola, 2002; Ekstrom, 2010; 

Logothetis, 2008; Logothetis & Wandell, 2004), an increase in BOLD that reflects a change 

in sensory processing is agnostic to the underlying neuronal mechanisms. Increased 

univariate activation in preparatory suppression may reflect predictive coding or imagery of 

upcoming distracting stimuli, or neural inhibition (Ruff & Driver, 2006; Serences et al., 

2004). However, we note that while the suppression effects we observed were in visual 

cortex, it remains unclear whether these effects arise from local processing within visual 

cortex or through feedback from frontoparietal regions. Nevertheless, these previous studies 

and our current one, provide clear evidence that mechanisms of distractor suppression 

operate to attenuate distractor processing in visual cortex in order to reduce cognitive and 

behavioral interference.

Finally, consistent with the idea that singleton salience is suppressed in visual cortex, we 

found no evidence of attentional capture in frontoparietal attentional control regions by 

singletons relative to distractors in the high frequency block. In contrast, singleton trials in 

the low frequency condition produced robust increases in activation in parietal cortex 

compared to their non-singleton counterparts. Activation in IPS is consistent with a wide 

literature showing that IPS encodes the capture of bottom-up salience driven attentional 

signals (Bisley & Goldberg, 2006; Bogler et al., 2011; Buschman & Miller, 2007; de Fockert 

et al., 2001; de Fockert & Theeuwes, 2012; Geng & Mangun, 2009; Mevorach et al., 2010; 

Mevorach et al., 2006; Sprague et al., 2018; Suzuki & Gottlieb, 2013). Although more 

inferior portions of the parietal cortex have also been associated with attentional reorienting, 

it is important to remember that TPJ and the ventral attentional network are involved in 

reorienting, but specifically towards unexpected but potentially relevant stimuli (Corbetta et 

al., 2008; Geng & Vossel, 2013; Igelstrom & Graziano, 2017). For example, TPJ is 

associated with invalidly cued targets in a spatial cueing paradigm (Doricchi, Macci, Silvetti, 

& Macaluso, 2010; Dugue, Merriam, Heeger, & Carrasco, 2018; Vossel, Thiel, & Fink, 

2006) and selection of target-colored distractors (DiQuattro, Sawaki, & Geng, 2014; Painter, 
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Dux, & Mattingley, 2015). The visually salient singletons in our study were completely task-

irrelevant and therefore do not carry any signals associated with task-relevance.

The most critical result here is the finding that low frequency singleton trials produced large 

changes in parietal regions and the entire frontoparietal network (see Supplemental 

materials) compared to non-singleton trials in the classic profile of attentional capture; in 

contrast, high frequency singleton trials could not be distinguished from non-singleton trials 

in any of these regions indicating that the saliency signals from the singleton were already 

attenuated by the time information about the visual search display reached parietal cortex, 

affording a reduction in attentional capture.

5. Conclusion

Together, our results provide clear evidence that the mechanisms necessary to suppress 

saliency signals associated with an expected color singleton operate in visual cortex. This 

was true despite the fact that the expectation was only for the frequency of the singleton 

occurring, not of its specific location or color. When singletons were frequent and expected, 

the information encoded about the singleton was more distinct from targets and non-salient 

distractors, but the univariate activation was more similar to non-salient distractors. This 

suggests that expectations improved sensory discrimination of the singleton while reducing 

global levels of stimulus-evoked BOLD activation, allowing the readout of saliency signals 

associated with the color singleton to be attenuated. The success of this attenuation was 

evident in the activation patterns in parietal and frontal regions in response to singleton 

present vs. singleton absent trials: trials with singletons only showed increased activation 

compared to non-singleton trials in the low frequency block, as would be expected by a trials 

with stimuli that capture attention, but not in the high frequency block. Together our results 

provide a novel demonstration of how learned expectations produce sensory suppression for 

singleton distractors during visual search.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Singleton colors, trial procedure, and ROIs. A. Singleton colors were chosen from CIELab 

color space (see text), B. At the beginning of each block, a cue indicated the upcoming 

block’s singleton frequency (HIGH or LOW) followed by a series of visual search trials on 

which participants were asked to find the predefined target (in this example, the diamond) 

and make a button press to indicate the number inside. C. Illustration of the four ROIs for 

each stimulus location (one in each visual quadrant) defined by the functional localizer and 

the Juelich probabilistic atlas for V1-V3. Display inset illustrates the six experimental 

conditions from which data were analyzed within a single ROI.
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Figure 2. 
Behavioral performance in the scanner. The inverse efficiency (IE) score was calculated as 

RT (ms) divided by percent accuracy (%); lower IE indicates better search performance. 

These results show that the interference by a singleton was reduced in the high frequency 
condition compared to that in the low frequency condition. All error bars shown here and in 

subsequent figures are ± 1 standard error of the mean.
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Figure 3. 
MVPA results. A. Classification accuracy for each stimulus pair in each frequency block. 

The dotted line indicates chance level decoding (50%), *** indicates p < .001, ** indicates p 
< .01. B. Illustration of the permuted null distributions (vertical black dotted line indicates 

mean) and actual classification accuracy (vertical red dotted line) between stimulus types in 

each frequency block.
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Figure 4. 
Univariate beta values for each stimulus type collapsed across the four visual ROIs. *** 

indicates p < .001, ** indicates p < .01, * indicates p < .05.
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Figure 5. 
Whole brain analysis. A. Brain regions that show the higher BOLD response in the singleton 

trials than that in non-singleton trials. B. Beta values extracted from bilateral IPS. *** 

indicates p < .001.

Won et al. Page 23

Cortex. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Participants
	Stimuli and design
	Procedure
	fMRI Analysis
	fMRI acquisition and preprocessing
	Region of Interest Analysis
	Whole brain analyses


	Results
	Behavior
	Visual ROIs
	MVPA
	Univariate analyses

	Whole brain analysis to identify regions that encode singleton salience

	Discussion
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

