Table 2.
Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F-measure for the machine learning model and the CURB-65 (confusion, urea, respiratory rate, blood pressure, and 65 years of age or older) score, with different cut-offs.
| Cut-off | Sensitivity | Specificity | PPV | NPV | F-measure |
| CURB-65 score >0.5 | 0.89 | 0.66 | 0.05 | 1.00 | 0.10 |
| XGBoost score >0.06 | 0.89 | 0.75 | 0.36 | 0.99 | 0.43 |
| CURB-65 score >1.5 | 0.53 | 0.93 | 0.14 | 0.99 | 0.22 |
| XGBoost score >0.34 | 0.53 | 0.97 | 0.63 | 0.95 | 0.58 |
| CURB-65 score >2.5 | 0.06 | 1.00 | 0.40 | 0.98 | 0.11 |
| XGBoost score >0.89 | 0.06 | 1.00 | 0.95 | 0.90 | 0.12 |