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The concept of field of values (FoV), also known as
the numerical range, is applied to the 2 × 2 Jones
matrices used in polarization optics. We discover the
relevant interplay between the geometric properties of
the FoV, the algebraic properties of the Jones matrices
and the representation of polarization states on the
Poincaré sphere. The properties of the FoV reveal
hidden symmetries in the relationships between the
eigenvectors and eigenvalues of the Jones matrices.
We determine the main mathematical properties of
the FoV, discuss the special cases that are relevant
to polarization optics, and describe its application to
calculate the Pancharatnam-Berry phase introduced
by an optical system to the input state.

1. Introduction
The Jones calculus introduced by R. C. Jones in 1941
[1,2] is a powerful tool used in polarization optics to
describe the transformation of totally polarized coherent
optical fields by non-depolarizing elements [3,4]. In the
Jones formalism, polarized light is represented by a
2 × 1 complex column Jones vector, and linear optical
elements by 2 × 2 complex Jones matrices. The Jones
matrices have the advantage that they can describe
the absolute optical phase change, which is crucial,
for example, in interferometry, and coherent optical
communications. Nowadays, Jones calculus is typically
studied in university courses on polarization optics and
its properties and applications can be checked out in
many classic textbooks [3–6].

In linear algebra, an important property of a square
matrix is its field of values (FoV), also known as
the numerical range, which in general is defined as
follows [7–9]:
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Definition 1.1. For an n × n matrix J with complex entries, the FoV F (·) is the region (subset)
on the complex plane defined by

F (J, |s〉)≡ 〈s |J| s〉
〈s|s〉 : |s〉 ∈ Cn, 〈s|s〉 = S0 > 0, (1.1)

where |s〉 is a column vector with n entries, and 〈s| is its (adjoint) conjugate transpose.

The FoV is a convex and compact finite region on the complex plane C. It can be considered
as a picture of the matrix that provides useful information about it. For example, another source
of information of J is its spectrum λ(J) (or set of eigenvalues) which is a discrete set of points on
the complex plane. A relevant result is that all eigenvalues of J lie in its FoV, i.e. λ(J) ⊂F (J, |s〉). In
general, the FoV provides information on the matrices that the spectrum does not give alone.
Special cases are particularly relevant, for example, the FoV of a Hermitian matrix is a line
segment on the real axis, whereas for a normal matrix is a polygon of n vertices. The FoV is
not just a mathematical curiosity, but it has interesting applications in the numerical solution of
partial differential equations and the stability analysis of dynamical systems [7].

The notion of FoV is well known in matrix algebra [7–9], but does not seem to have been fully
applied before in optical problems. In a recent article [10], we have marginally applied the concept
of FoV in the calculation of the optical phase introduced by inhomogeneous matrices to an input
polarization state. However, we believe that the FoV is much richer in mathematical properties
and has additional potential applications in other areas of optics.

In this work, we apply the concept of FoV to describe the characteristics of the Jones matrices
used in polarization optics. The main contributions of this work are: (i) the analysis of the
interplay between the geometric properties of the FoV, the algebraic properties of the Jones
matrices, and the representation of polarization states on the Poincaré sphere, see §3a,b. (ii) The
description of the elliptic FoV on the complex plane and its connection with parameters of the
Jones matrices, §3b,c. (iii) The discussion of the special cases of the FoV, §3d. (iv) The solution
path of the inverse problem, i.e. designing a Jones matrix given its FoV.

In obtaining these contributions and establishing the notation, we have included in §2 some
known definitions and results from linear algebra and Pauli matrices [11–13]. This allows us to
make the paper relatively self-contained. In §3, we introduce the geometric representation of FoV
on the complex plane and analysed in detail its relation with the Poincaré sphere. The special
cases of the FoV and some its applications are discussed in §4.

It should be mentioned that some of the concepts discussed in this article were anticipated
in previous papers [10,14–18]. This new article complements these works in the sense that it
establishes a complete, unified and consistent description of the Jones matrices (including all
the special cases) applying the concept of the FoV. The theory described in this paper can be
directly applied to physical systems where linear transformations are described by 2 × 2 complex
matrices, e.g. two-level spinor systems [19].

2. Classification and parametrization of Jones matrices
Consider an optical system characterized by a Jones matrix

J =
[

j1 j2
j3 j4

]
∈ C2×2, (2.1)

with eigenvalues μa, μb and eigenvectors (i.e. polarization eigenstates)

|a〉 =
[

ax

ay

]
∈ C2 and |b〉 =

[
bx

by

]
∈ C2. (2.2)

In order to establish notation and necessary concepts, it is very convenient to review briefly
the classification of 2 × 2 matrices in terms of their Jordan decomposition.
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(a) Canonical Jordan forms of the Jones matrices
The Jordan decomposition is one of the most important and powerful theorems is matrix theory
[11–13]. For the special case of 2 × 2 matrices it states:

Theorem 2.1. Let J be a complex 2 × 2 matrix. Then there always exist an invertible 2 × 2 matrix T

such that
J = TQT−1, (2.3)

where Q has one of the following forms:

Q1 =
[
μa 0
0 μb

]
and Q2 =

[
μ 1
0 μ

]
. (2.4)

The matrices Q1 and Q2 are the Jordan canonical forms of J and their diagonal elements are its
eigenvalues. All 2 × 2 complex matrices, without exception, belong to one form or the other [11,
12]. In equation (2.3), the matrices Q and J are similar, in the sense that represents the same linear
transformation with respect to different basis defined by the matrix T. Let us describe each case
with a little more detail.

1. Diagonalizable Jones matrices. The Jordan canonical form Q1 corresponds to matrices J that are
diagonalizable, have two linearly independent eigenvectors |a〉, |b〉, and two eigenvalues μa, μb
(possibly degenerate). T is a matrix whose columns are the eigenvectors |a〉, |b〉, with |a〉 �= |b〉.
Geometrically, Q1 represents a complex scaling (stretch) transformation of an input state |s〉
expressed in the basis of states |a〉, |b〉.

The vast majority of Jones matrices that one finds in optical applications belong to the
diagonalizable Q1 form. In the optics literature [3,4,14], a Jones matrix J is said to be homogeneous
if the eigenvectors are orthogonal, 〈b|a〉 = 0, otherwise it is said to be inhomogeneous, 〈b|a〉 �= 0.
Mathematically, homogeneous matrices coincide with normal matrices, i.e. matrices that commute
with their transpose conjugate (JJ† = J†J). Hermitian (J† = J), skew-Hermitian (J† = −J) and
unitary (J†J = I) matrices belong to the class of normal (homogeneous) matrices . The properties
of homogeneous matrices have been widely studied because most of the basic polarization
elements, such as polarizers, retarders, rotators, belong to this category of matrices [3–6].

The case when one of the eigenvalues of the Jones matrix is equal to zero, e.g. μb = 0, leads to
singular matrices with zero determinant. These singular matrices model perfect polarizers that
transform any input state |s〉 into the eigenstate |a〉. Singular matrices can be either homogeneous
or inhomogeneous [14].

2. Non-diagonalizable Jones matrices. The Jordan canonical form Q2 corresponds to defective
matrices J that are not diagonalizable [11–13]. They have only one eigenvector |a〉 with eigenvalue
μ, that is, (J − μI)|a〉 = 0. Actually, the shifted matrix K ≡ J − μI operating over any arbitrary
normalized vector |s〉 ∈ C2 yields always a resulting vector proportional to the eigenvector |a〉, i.e.

K |s〉 = (J − μI) |s〉 = c |a〉 , (2.5)

where c is the complex constant of proportionality. The special vector |s〉 → |g〉 for which c = 1 is
called generalized eigenvector of J and satisfies the equation (J − μI)|g〉 = |a〉.

When Q in equation (2.3) corresponds to the Jordan form Q2, the columns of T are the
eigenvector |a〉 and the generalized eigenvector |g〉. It can be verified that |c| is maximum when |s〉
is the vector orthogonal to |a〉, and takes the value |c|max = |j2| + |j3|. Geometrically, Q2 represents
a skew (shear) transformation along the axes defined by the vectors |a〉, |g〉.

Equations (2.3) and (2.4) provide a way to set up a Jones matrix given their eigenvalues and
eigenvectors. To relate the Jordan canonical forms with the global parameters of the Jones matrix
we recall that the eigenvalues of a matrix J are given by

μa,b = trJ
2

±
√(

trJ
2

)2
− det J, (2.6)

where trJ and det J are the trace and determinant of J, respectively. We identify two situations
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(i) If (trJ/2)2 �= det J, the eigenvalues are distinct, and then the matrix J is diagonalizable
with Jordan form Q1.

(ii) If (trJ/2)2 = det J, there is a unique eigenvalue, μ= trJ/2, and there are two subcases

(a) J is already diagonal, i.e. J =μI, which corresponds to a Jordan form Q1 with
degenerate eigenvalues μa =μb =μ.

(b) J is not diagonal, belonging to the Jordan form Q2.

An advantage of the Jordan factorization in equation (2.3) is that it decomposes the matrix J

into matrix factors that depend on the eigenvectors and eigenvalues separately. The classification
of Jones matrices using their canonical Jordan forms will be useful in the following sections when
we discuss the special cases of the FoV of the Jones matrices.

(b) Parametrization of Jones matrices: Pauli formalism
A useful parametrization of Jones matrices is via the Pauli matrices [5,6,20–23]

I =
[

1 0
0 1

]
, σ1 =

[
1 0
0 −1

]
, σ2 =

[
0 1
1 0

]
and σ3 =

[
0 −i
i 0

]
, (2.7)

which form an orthonormal basis for all 2 × 2 complex matrices. This means that J can be written
as a linear combination of the four Pauli matrices as follows:

J (z0, z1, z2, z3)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z0I + z1σ1 + z2σ2 + z3σ3,

z0I + Z · −→
σ ,[

z0 + z1 z2 − iz3

z2 + iz3 z0 − z1

]
,

(2.8)

where zm (m = 0, 1, 2, 3) are the complex Pauli coefficients related to the matrix elements jk
(m = 1, 2, 3, 4) by

z0 = j1 + j4
2

, z1 = j1 − j4
2

, z2 = j2 + j3
2

and z3 = i
j2 − j3

2
, (2.9)

the symbol (·) stands for the usual dot product, −→
σ = [σ1, σ2, σ3]T is the vector of Pauli matrices,

and

Z ≡

⎡⎢⎣z1
z2
z3

⎤⎥⎦ = ZẐ ∈ C3 (2.10a)

is the column vector of Pauli coefficients with norm

Z = |Z| =
√

Z†Z =
√

|z1|2 + |z2|2 + |z3|2. (2.10b)

Eigenvalues μa, μb and (non-normalized) eigenvectors |a〉, |b〉 of the matrix J are expressed in
terms of the Pauli coefficients as follows [5,6]:

μa = z0 + f , |a〉 ∝
[

z1 + f
z2 + iz3

]
(2.11a)

and

μb = z0 − f , |b〉 ∝
[

z1 − f
z2 + iz3

]
, (2.11b)

where
f ≡

√
ZTZ =

√
z2

1 + z2
2 + z2

3 (2.12)

a parameter that depends only on Z and is equal to the half-difference of the eigenvalues, i.e.
f = (μa − μb)/2.
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The global parameters of the Jones matrix J are given by

trJ
2

= j1 + j4
2

= μa + μb

2
= z0 (2.13)

and
det J = z2

0 − (z2
1 + z2

2 + z2
3) = z2

0 − f 2 = (
z0 + f

) (
z0 − f

) =μaμb. (2.14)

Once reviewed the Pauli description of the Jones matrices, we are in position to describe their
FoV.

3. Field of values of the Jones matrices
The general definition of the FoV of a square matrix is given by equation (1.1). For the case of a
2 × 2 Jones matrix, it reduces to [7]

F (J, |s〉)≡ 〈s |J| s〉
〈s|s〉 , |s〉 ∈ C2, (3.1)

where |s〉 is an arbitrary polarization state described by the Jones vector

|s〉 =
[

sx

sy

]
,

sx, sy ∈ C,
〈s|s〉 = S0 ∈ R ≥ 0,

(3.2)

or, equivalently, by its normalized Stokes vector on the Poincaré sphere

Ŝ =

⎡⎢⎣S1
S2
S3

⎤⎥⎦ = 1
S0

⎡⎢⎣〈s| σ1 |s〉
〈s| σ2 |s〉
〈s| σ3 |s〉

⎤⎥⎦ = 1
S0

⎡⎢⎣|sx|2 − ∣∣sy
∣∣2

2 Re
(
s∗

xsy
)

2 Im
(
s∗

xsy
)
⎤⎥⎦ , (3.3)

where the hat symbol means unit vector. In the same way, let us denote by Â and B̂ the Stokes
vectors corresponding to the eigenvectors |a〉 and |b〉 of the Jones matrix, respectively.

The FoV (3.1) is a function of the Jones vector |s〉, but we can express it conveniently in terms
of the Stokes vector Ŝ. To this end, we substitute the Jones matrix J in terms of Pauli coefficients
(2.8), then apply equation (3.3), and after factorizing the Stokes parameters, we get

F (J, Ŝ) ≡ 〈s|J|s〉
〈s|s〉 = z0 + Z · Ŝ. (3.4)

Equation (3.4) is an algebraic and very useful expression for the FoV of a Jones matrix. The set of
polarization states is defined by the Stokes vector Ŝ which spans the Poincaré sphere. The linear
relation (3.4) is a surjective mapping of the unit sphere in R3 onto a finite region on the complex
plane. We will use it to derive the properties and special cases discussed in the following sections.

(a) Geometric representation of the FoV on the complex plane
The FoV of the matrix J (equation (3.4)) is the complete set of all possible resulting values of
F (J, Ŝ) after we have substituted the complete set of possible values of Ŝ. From the theory of
linear algebra [7,8], it is known that the FoV of any 2 × 2 matrix is a closed and bounded elliptical
disc on the complex plane, see figure 1a. All possible values of F (J, Ŝ) lie inside the elliptic region
or its contour. Equation (3.4) shows that the term Z · Ŝ is the generator of the elliptic disc in the
complex plane.

The geometric parameters of the elliptic disc are shown in figure 1, we have

— The centre of the ellipse is located at

z0 = trJ
2

= (μa + μb)

2
. (3.5)

— The foci of the ellipse are the eigenvalues μa and μb of the matrix J.
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Figure 1. TheFoVof a Jonesmatrix is a closedandboundedelliptic disc in the complexplanewith foci at theeigenvalues ofJ. (a)
Relevant parameters of the elliptic FoV. The projections of the FoV to the real and imaginary planes are the FoV of the Hermitian
and skew-Hermitian components of the matrix J, respectively. (b) The orthoptic of the FoV is the circle that circumscribes the
minimum bounding box of the ellipse. (Online version in colour.)

— Size: The major L1 and minor L2 semi-axes of the ellipse can be expressed either in terms
of the shifted matrix K ≡ J − z0I or the Pauli coefficients as follows:

L1,2 = 1
2

√
tr

(
K†K

) ± 2 |det K| = 1√
2

√
Z2 ± ∣∣f ∣∣2, (3.6)

where Z and f are defined in equations (2.10) and (2.12), respectively.
— Semifocal distance: The distance of the foci from the centre of the ellipse is∣∣f ∣∣ = |det K|1/2 = |μa − μb|

2
. (3.7)

— Inclination: The major axis lies on a line passing through the eigenvalues of J, then its
angle respect to the real axis is arg (μa − μb).

— Orthoptic: The orthoptic (i.e. director circle) of an ellipse is the circle that circumscribes
the minimum bounding box of the ellipse, as shown in figure 1b. From equation (3.6), we
can conclude that the radius of the orthoptic is given by the norm of the vector Z, that is

Rorthoptic =
√

L2
1 + L2

2 = Z. (3.8)

— Covertex angle: The covertex angle Θ of the ellipse is the angle subtended by the two
straight lines getting out of the covertex to the focal points, see figure 1b. The angle Θ is
related to the inner product of the eigenvectors |a〉, |b〉 of the matrix J through the relation

η≡ |〈b|a〉| = cos
(
Θ

2

)
= L2

L1
∈ [0, 1], (3.9)

where Θ ∈ [0,π ] is also equal to the angle subtended between the Stokes eigenvectors Â
and B̂ on the Poincaré sphere, see figure 2a. The parameter η= |〈b|a〉| is a measure of the
orthogonality of the eigenvectors and has been proposed to characterize the degree of
inhomogeneity of a Jones matrix [14].

(b) Relation of the FoV with the Poincaré sphere
As suggested by equation (3.4), the FoV of a Jones matrix has a deep and nice connection with
the representation of polarization states on the Poincaré sphere. This relationship is not usually
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Figure 2. (a) Characteristic planes in the Poincaré sphere associated with the Jones matrix. The Stokes eigenvectors Â and B̂
define the eigenvector plane. The u-plane formed by the vectors P̂ and Q̂ is normal to the vector û3. (b) Surjective mapping of
polarization states on the Poincaré sphere onto the elliptic FoV. (c) The eigenvector circular meridian maps onto the major axis
of the FoV covering it twice. (Online version in colour.)

studied in the context of linear algebra [7,8,12,13], but in the context of polarization optics it plays
a special role since it allows to visualize graphically many properties and symmetries at a glance.

Consider the Poincaré sphere S = [S1, S2, S3]T : |S| = 1, depicted in figure 2a. The Stokes
eigenvectors of J are represented by the unit vectors Â and B̂, with eigenvalues μa and μb,
respectively. Let us call the plane formed by the eigenvectors Â and B̂ as eigenvector plane and
the great circle that passes through the eigenvectors as eigenvector circle.

It is convenient to introduce a new rotated orthonormal system (̂u1, û2, û3) defined by
(figure 2b)

û1 ≡ Â × B̂

|Â × B̂| , û2 = Â − B̂

|Â − B̂| and û3 ≡ Â + B̂

|Â + B̂| , (3.10)
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where û3 is the middle unit vector between Â and B̂, and û3 = û1 × û2. Taking the point û3 like a
north pole, the plane spanned by the vectors (̂u1, û2) is like an equatorial plane and thus it will be
referred to as u-plane and its circular perimeter to as u-equator, see figure 2a,b. Do not confuse the
equator of the Poincaré sphere (i.e. S3 = 0) with the u-equator of the rotated system (̂u1, û2, û3).

F (J, |s〉) may be thought of as the image of the surface of the Euclidean unit sphere in C2 under
the continuous transformation |s〉 → 〈s|J|s〉. In the Pauli formalism, this corresponds to a surjective
linear transformation relating each complex point in F (J, Ŝ) with two points on the Poincaré unit
sphere in R3 through the linear mapping F = z0 + Z · Ŝ.

The mapping between the FoV and the points on the Poincaré sphere is illustrated graphically
in figure 2b,c. We identify the following properties:

— The eigenvector circle maps onto the major axis of the ellipse. Special points on the circle
are (figure 2c):

(a) Stokes eigenvectors Â and B̂ and their antipodal vectors map onto the foci of the
ellipse, i.e.

μa =F (J, Â) =F (J, −B̂) (3.11a)

and
μb =F (J, B̂) =F (J, −Â). (3.11b)

(b) The Stokes vector û3 and its antipodal vector are the vectors that satisfy Z · û3 = 0 in
equation (3.4), then map onto the centre of the ellipse

z0 =F (J, ±û3). (3.12)

(c) The Stokes vector û2 and its antipodal vector map onto the vertices of the ellipse, i.e.
the endpoints of the major axis

υ± =F (J, ±û2). (3.13)

— The u-equator maps onto the elliptic contour of the FoV, see figure 2b.

(a) The Stokes vector û1 and its antipodal vector map onto the covertices of the ellipse,
i.e. the endpoints of the minor axis

ζ± =F (J, ±û1). (3.14)

(b) The extreme points ξ± of the ellipse along the horizontal direction are

ξ± =F (J, ±P̂), where P ≡ Re Z. (3.15)

(c) The extreme points γ± of the ellipse along the vertical direction are

γ± =F (J, ±Q̂), where Q ≡ Im Z. (3.16)

(d) The real vectors P̂ and Q̂ always lie on the u-plane; therefore, they can be expressed
as a linear superposition of the vectors (̂u1, û2). The middle vector û3 may be defined
in terms of the vectors P̂ and Q̂ as follows:

û3 = P̂ × Q̂

|̂P × Q̂| . (3.17)

— As shown in figure 2b, the meridians and parallels of the system (̂u1, û2, û3) on the
Poincaré sphere transform onto radial straight lines and concentric ellipses on the
FoV, respectively.

The values inside the elliptic FoV are double degenerate, which means that each value can
be obtained with two different polarization states Ŝ located symmetrically about the equatorial
u-plane of the Poincaré sphere.
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(c) Mathematical properties
The FoV has several useful functional properties [7–9]. Here, we mention briefly some of them for
reference and later use.

— (P1) Linearity (scaling + translation): For all J ∈ C2×2 and α,β ∈ C,

F (αJ + βI) = αF (J) + β, (3.18)

where we have omitted the second argument in the notation of F (J, ·) for simplicity.
— (P2) Projection: Let H(J) ≡ (J + J†)/2 be the Hermitian part of J, and S(J) ≡ (J − J†)/2 the

skew-Hermitian part of J.
Hermitian projection: The Hermitian part of J projects its FoV onto the real axis, see
figure 1a, i.e.

F (H (J)) = ReF (J). (3.19)

The extreme points of the line F (H(J)) are the eigenvalues of the Hermitian matrix H(J),
and correspond to the real parts of ξ± in equation (3.15).
Skew-Hermitian projection: The skew-Hermitian part of J projects its FoV onto the
imaginary axis, i.e.

F (S (J)) = i ImF (J). (3.20)

The extreme points of the line F (S(J)) are the eigenvalues of the skew-Hermitian matrix
S(J), and correspond to the imaginary parts of γ± in equation (3.16).

— (P3) Unitary similarity invariance. For all J ∈ C2×2, and U unitary (i.e. U†U = I),

F (U†JU) =F (J). (3.21)

Therefore, the FoV of a Jones matrix is invariant under unitary transformations.
— (P4) Spectral containment: For all J ∈ C2×2, its eigenvalues λ(J) = {μa,μb} lie inside the

FoV,
λ (J)⊂F (J). (3.22)

As mentioned above, the eigenvalues are the foci of the elliptic FoV.
— (P5) Subadditivity. For all J, M ∈ C2×2

F (J + M) ⊂F (J) + F (M). (3.23)

Thus, the FoV of a sum of matrices in a subset of the sum of the respective FoV.

Combining the properties (P4) and (P5) yields the inclusions

λ(J + M) ⊂F (J + M) ⊂F (J) + F (M), (3.24)

so if F (J) and F (M) are known, something can be concluded about the spectrum of the sum. For
example, let J = [0, j; 0, 0] and M = [0, 0; m, 0]. Then λ(J) = λ(M) = {0}, and λ(J + M) = {±√

jm
} ⊂

F (J + M), which is the elliptic disc with foci ±√
jm and minor axis equal to ||j| − |m||.

Here, we presented the properties of the FoV that are useful in understanding the behaviour
of 2 × 2 complex matrices. We refer the reader to a specialized reference for a more extended
treatment of the general case with n × n matrices [7–9].

4. Special cases of the field of values and applications
The properties of the FoV are useful to characterize the meaningful special cases that we usually
find in optical applications. To obtain a graphic visualization of the relevant cases, see figure 3.

— Homogeneous (normal) matrices. If J becomes normal (JJ† = J†J), i.e. homogeneous
with orthogonal eigenstates (having antipodal eigenvectors Â, and B̂ = −Â in the
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Poincaré sphere), then the elliptic FoV equation (3.4) reduces to the straight line
connecting the eigenvalues, i.e.

F (Jhomo, Ŝ) = z0 + Â · Ŝ. (4.1)

This result is very striking. Once the eigenvalues have been defined, all Jones matrices
with orthogonal eigenvectors have the same FoV. If J is an homogeneous matrix, the
shifted matrix K ≡ J − z0I satisfies K†K = kI, for some constant k ≥ 0. We have the
following meaningful subcases:

(a) Hermitian matrices (J† = J): Their FoV is a line segment on the real axis,
with endpoints being the eigenvalues of J. Example: let J = ( 2 i

−i 0 ). Then F (J) ∈[
1 − √

2, 1 + √
2
]

. Optical devices described by Hermitian matrices are non-singular
absorbers and partial polarizers, either linear and circular.

(b) Skew-Hermitian (J† = −J): Their FoV is a line segment on the imaginary axis, with
endpoints being the eigenvalues of J. Skew-Hermitian optical devices could be
implemented with a partial polarizer and a λ/4 phase retarder in cascade.

(c) Unitary matrices (J†J = I): Since the eigenvalues of unitary matrices have modulus
one, i.e. eiα , it can be concluded that their FoV is a line segment with endpoints
lying on a unit circle centred at the origin. An unitary matrix can be scaled such
its determinant is not unitary, i.e. J†J = αI; in this case, the endpoints of its FoV lie
on the circle with radius |α|1/2. Example: let J = ( 0.6 −0.8

0.8 0.6 ). Then F (J) is the vertical
line connecting the points (0.6 − i0.8) and (0.6 + i0.8). The typical optical devices
described by unitary matrices are the lossless phase retarders, either linear and
circular.

— Singular matrices: If J is singular (det J = 0), then one of the focal points of its
FoV coincides with the origin F = 0. Singular matrices can be inhomogeneous
(elliptic FoV) or homogeneous (line FoV). Example: Let J = ( 1 0

0 0 ). Then F (J) ∈ [0, 1].
The standard optical devices characterized by singular matrices are the perfect
polarizers, where the transmission of one of the eigenstates is equal to zero.

— Degenerate matrices: If both eigenvalues are equal, they collapse at the point μ on
the complex plane. Here, we have the two subcases discussed in §2a.

(a) If J is diagonal, J =μI, then the FoV reduces to a single point located at z0 =μ.
(b) If J is not diagonalizable, it belongs to the Jordan form Q2, then the FoV becomes a

circle centred at μ with radius

RQ2 = L1 = L2 = |c|max

2
= |j2| + |j3|

2
. (4.2)

Example: Let J = ( 0 2
0 0 ). Then F (J) is the closed unit disc centred at the origin, i.e. D =

{α ∈ C : |α| ≤ 1}. The defective optical systems are optical realizations of degenerate
matrices [18].

The FoV of any linear transformation of J of the special cases discussed above can be derived
easily with the linearity property (P1).

(a) Considerations of the inverse problem
Geometrically speaking, an arbitrary ellipse on the plane needs five independent real parameters
to be fully specified. On the other hand, a 2 × 2 Jones matrix with complex entries has eight real
parameters. Therefore, there are three free parameters to adjust the properties of the Jones matrix
for a given FoV and, in fact, it is possible to get different Jones matrices with the same elliptical
FoV.

For instance, with the parametrization used in equations (3.5)–(3.8), the two complex
eigenvalues μa, μb define the foci of the ellipse and provide four real parameters; the fifth
parameter could be the magnitude Z. It is clear that, as long as Z remains constant, the coefficients
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Figure 3. FoV of special cases of Jonesmatrices. Small circles represent the eigenvalues of thematrix. (Online version in colour.)
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Figure 4. (a) The angle between the Stokes eigenvectors Â and B̂ is equal to the covertex angle of the elliptic FoV. (b) The
geometric Pancharatnam-Berry phase introduced by the Jones matrix is the angular opening of the smallest angular sector of
the complex plane anchored at the origin by the ellipse, i.e.ψG =ψmax − ψmin. (Online version in colour.)

z1, z2, z3 of Z can be modified freely without changing the FoV. A natural question arise here: What
is the effect of varying the values zm on the Jones matrix and on the FoV? In this case, the effect
is to change the eigenvectors of J but keeping constant the angular aperture between them on the
Poincaré sphere.

Consider that we want to determine a Jones matrix J given its FoV. The ellipse can be specified
using a variety of parameters, but as mentioned earlier, we need five independent parameters.
For example, suppose we give the two coordinates of the centre, the length of the 2 axes and the
inclination of the major axis. With this information, we can calculate the position of the foci of
the ellipse, which defines the eigenvalues of J. Once the foci are known, we can determine the
covertex angle Θ , which corresponds to the angle between the two Stokes eigenvectors in the
Poincaré sphere, see figure 4a. Now, we have three extra parameters to define the matrix J and set
up its eigenvectors. First, we freely propose a Stokes eigenvector, say Â, on the Poincaré sphere.
This requires two parameters. Because the angle between the Stokes eigenvectors must be Θ ,
then the eigenvector B̂ must lie at any point on a circular parallel Θ taking Â to be a north pole,
see figure 4a. The location of B̂ on the circle defines the third parameter. Finally, once we have
determined the Stokes eigenvectors Â and B̂, we can find the corresponding Jones eigenvectors
|a〉 and |b〉, and together with the eigenvalues, we can calculate the matrix J using the Jordan
decomposition equation (2.3).
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(b) An application of the FoV to determine the Pancharatnam-Berry phase
From a mathematical point of view, the FoV can be applied in a variety of situations. For example
in the numerical solution of partial differential equations and in the stability analysis of dynamical
systems arising in mathematical biology, where an estimation of eigenvalues of the associated
matrices can be obtained using the FoV [7]. In this subsection, we describe briefly an application
of the FoV in polarization optics. For a more detailed explanation of this application, we refer the
reader to [10].

When a light polarization state |s〉 passes through the system J, the output field is |h〉 = J|s〉.
As proposed by Pancharatnam [24–28], the phase difference ψ between two normalized states |s〉
and |h〉 is the argument of its inner product, i.e.

ψ = arg 〈s|h〉 = arg 〈s|J|s〉 . (4.3)

Assuming the time convention exp(−iωt), the state |s〉 is in phase with state |h〉 exp(−iψ),
or equivalently, the superposition |s〉 + |h〉 exp(−iψ) yields maximum intensity. It is clear that
ψ is directly related with the FoV defined in equation (3.1). As shown in figure 4b, for a given
input state with Stokes vector Ŝ, the phase difference with its corresponding output state is the
phase of the complex number F (J, Ŝ), that is, ψ = argF (J, Ŝ). Now, the number F (J, Ŝ) must lie
inside the elliptic FoV or its contour. Therefore, the minimum and maximum values of ψ are
determined with the angles of the tangent lines to the ellipse that go through the origin, as shown
in figure 4b. In this way, the geometric Pancharatnam-Berry phase introduced by the Jones matrix
is the angular opening of the smallest angular sector of the complex plane anchored at the origin
by the ellipse, i.e. ψG =ψmax − ψmin.

If the ellipse contains the origin, 0 ∈F (J, Ŝ), the phase ψ span the full range (−π ,π ], and
there are not definite extrema. This case leads to the possibility of having two ortho-transmission
states, i.e. input polarization states whose output states are orthogonal, i.e. 〈s|h〉 = 〈s|J|s〉 = 0. A
detailed discussion of the ortho-transmission states and the properties of the FoV applied to the
description of the optical phase can be found in [10]. Additional applications of the concept of
FoV in the characterization of optical systems are described in [29].

5. Conclusion
We have applied the concept of the FoV of a square matrix to the case of 2 × 2 Jones matrices used
in polarization optics. The FoV proved to be a very useful tool for analysing the Jones matrices
through the geometric properties and connections between their eigenvalues and eigenvectors.
For the particular case of matrices of dimension 2, the FoV is an ellipse on the complex plane.
Much matrix information can be extracted simply by analysing the geometry of the ellipse.
The special cases of the ellipse (circles, lines and points) serve to classify the matrices typically
found in optical polarization applications. We believe that the concept of FoV contributes to the
understanding and characterization of optical systems that can be described with Jones matrices.
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