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Abstract

Activation of protein phosphatase 2A (PP2A) is a promising anti-cancer therapeutic strategy, as 

this tumor suppressor has the ability to coordinately downregulate multiple pathways involved in 

the regulation of cellular growth and proliferation. In order to understand the systems-level 

perturbations mediated by PP2A activation, we carried out mass spectrometry-based 

phosphoproteomic analysis of two KRAS mutated non-small cell lung cancer (NSCLC) cell lines 

(A549 and H358) treated with a novel Small Molecule Activator of PP2A (SMAP). Overall, this 

permitted quantification of differential signaling across over 1,600 phosphoproteins and 3,000 

phosphosites. Kinase activity assessment and pathway enrichment implicated collective 

downregulation of RAS and cell cycle kinases in the case of both cell lines upon PP2A activation. 

However, the effects on RAS-related signaling was attenuated for A549 compared to H358, while 

the effects on cell cycle related kinases were noticeably more prominent in A549. Network-based 

analyses and validation experiments confirmed these detailed differences in signaling. These 

studies reveal the power of phosphoproteomics studies, coupled to computational systems biology, 

to elucidate global patterns of phosphatase activation and understand the variations in response to 

PP2A activation across genetically similar NSCLC cell lines.
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1 Introduction

As a serine/threonine phosphatase that antagonizes the effects of multiple kinases, PP2A is a 

promising anti-cancer target whose activation may disrupt many cancer-promoting pathways 

simultaneously. PP2A is a well-known tumor suppressor that in many cancer models 

dephosphorylates prominent downstream effectors of KRAS, such as AKT, MEK, ERK, and 

MYC, among others [1–3]. Furthermore, PP2A inactivation is a common feature of cancer 

development, as it is frequently disabled in multiple cancer types [4–7]. Overall, activated 

PP2A has the potential to reverse the general responses mediated by oncogenic kinases often 

required for cancer development and maintenance [1,8–10].

PP2A activation has been shown to be a promising anti-cancer strategy in numerous models 

including chronic myeloid leukemia cell lines [7] and T cell acute lymphoblastic leukemia 

[11]. More recently, the pro-apoptotic and anti-tumor properties of a class of anti-psychotic 

drugs have been described [12], and their anti-cancer activity has been attributed to their 

ability to activate PP2A [11]. Reverse engineering of these drugs resulted in a first-in-class 

series of SMAPs that activates this family of phosphatases but lacks the main dose-limiting 

toxicities associated with the parent molecules [13]. Follow-up assays in NSCLC models 

have confirmed that these molecules bind to the PP2A trimer, and they demonstrated pro-

apoptotic, anti-proliferative properties that are blunted upon PP2A inhibition [14].

A thorough understanding of these compounds’ biological effects and clinical utility 

requires comprehensive identification of their net signaling effects. Notably, the detailed 

characterization of SMAPs’ cellular effects at the protein level, where phosphorylation-

mediated signaling is directly regulated, will enable us to identify key pathways and targets 

of SMAP regulation. Due to the ever-expanding catalog of known PP2A targets, SMAP 

molecules may induce a complex signaling response that would be difficult to fully 

characterize through targeted approaches. High throughput, mass spectrometry-based 

phosphoproteomics can identify and quantitate thousands of peptides that may be 

differentially phosphorylated in the context of disease and/or drug treatment [15], and these 

data, in turn, help identify cellular signaling patterns that reflect the protein-level pathway 

and network response phenotype.

Ultimately, the experimental and computational pipelines presented here intend to 

accomplish the following: 1) generate phosphoproteomic datasets of two KRAS mutant 

NSCLC cell lines treated with our PP2A activator; and 2) characterize the major systems-

level signaling perturbations induced by SMAP treatment. Furthermore, the bioinformatic 

findings would reveal unique response signatures between these cell lines, which share 

mutations in a major oncogene. Ultimately, these findings can contribute to a better 

understanding of SMAP’s mechanism of action and reflect the potential variations in 

patient-specific responses to drug at the protein level.
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2 Materials and methods

2.1 Cell Culture

All cell lines were acquired from the American Type Culture Collection (ATCC) and 

maintained in media (RPMI-1640, 10% FBS, 0.5% Pen/Strep) at 37°C and 5% CO2. The 

TRC-794 compound was dissolved in DMSO solvent and stored at room temperature.

2.2 Cell Viability Assay

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) kit (Sigma-Aldrich). All measurements were performed 24 hours after 

treatment with the increasing concentrations of TRC-794. Values in the plot are relative to 

the DMSO control samples.

2.3 Annexin V

Cells were treated with DMSO, TRC-794 (20μM), Z-VAD (100μM), and a combination of 

TRC-794 + Z-VAD for 24 hours. Annexin V staining was performed using Annexin V 

conjugate Alexa Fluor 488 from Invitrogen (Life Technologies), Annexin binding buffer (no. 

V13246) from Invitrogen (Life Technologies), and Z-VAD (OMe)-FMK (no. sc-311561A) 

from Santa Cruz Biotechnology according to the manufacturer’s protocol. Flow cytometric 

analysis was performed on the FACSCalibur.

2.4 Cell Cycle Analysis

Cells were treated with either TRC-794 or DMSO for 24 hours and subsequently fixed in 

100% ethanol at −20°C overnight. Cells were then resuspended in propidium iodide (Sigma-

Aldrich) and RNAseA (Roche) and allowed to stain for 20 minutes prior to flow cytometry 

analysis, performed on the FACSCalibur.

2.5 Phosphoproteomics Experimental Design

Two cell lines, A549 and H358, were tested, with each one having 3 independent replicates 

of DMSO (control) treatment and 3 independent replicates of SMAP treatment, all incubated 

for 12hrs. After protein lysis, each sample was further divided into 2 technical replicates to 

assess the consistency of the LC-MS/MS runs. In total, there were 6 Controls + 6 Treatments 

= 12 runs per cell line. Note that one technical replicate in the treated A549 group was 

ultimately excluded due to poor detection of phospho-enriched peptides. Based on 

optimization studies (unpublished), a 12hr time-point allowed for reproducible 

dephosphorylation of ERK1/2, a target previously shown to be differentially phosphorylated 

with SMAP [13,14], without induction of apoptosis. This strategy was intended to limit the 

secondary signaling that may accumulate from cell death. Additionally, a priori power 

analysis required n = 3 per group in order to achieve a power = 0.8 and alpha = 0.05 based 

on the effect size of phospho-ERK2.

Peptide/protein data from the featured phosphoproteomics experiment were compiled into 

Supporting Information Table 1. The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository (https://

www.ebi.ac.uk/pride/archive/) with the dataset identifier PXD005698 and 10.6019/
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PXD005698. Supporting Information Table 3 matches the uploaded file names to the 

specific treatment conditions.

2.6 Label-Free Phosphoproteomics Sample Preparation and Phosphopeptide Enrichment

Cells were treated with fresh media containing either 0.025% (v/v%) DMSO (control) or 

20μM of TRC-794 for 12hrs. Samples were harvested and triple-washed with ice-cold PBS 

prior to storing cell pellets in −80°C for subsequent phosphoproteomic analysis. Cell pellets 

from the previous step were pulse sonicated in 2% SDS, 50mM Tris buffer, pH 8 over ice 

and in the presence of protease and phosphatase inhibitors (Sigma Aldrich). The samples 

were centrifuged, and the supernatants were reduced (25mM DTT for 1 hour at 37C), 

alkylated (25mM iodoacetamide for 30min at room temperature in the dark), and cleared of 

SDS using the previously-published FASP protocol [16]. The protein concentration in the 

cleaned supernatant was then measured using a protein assay kit (Bio-Rad). 800 micrograms 

of protein per sample were then digested with Lys-C for 1 hour at 37°C, followed by Trypsin 

overnight at 37°C (1:20 enzyme (g) to protein (g) ratio for each enzyme; final mixture 

concentrations were adjusted to 2M Urea and 50mM Tris buffer, pH 8). Digested peptides 

were desalted using C18 cartridges (Oasis 1cc HLB. Waters), eluted in 0.1% formic acid and 

70% acetonitrile, and lyophilized for 1 hour. Samples were reconstituted with buffer 

containing 0.3% trifluoroacetic acid (TFA), 60% acetonitrile, and 13% lactic acid. 

Subsequent phosphopeptide enrichment was performed using a titanium dioxide spin tips 

(Thermo Fisher, IL). Samples were eluted using 1.5% ammonium hydroxide and 

concentrated before combined with 0.1% formic acid (FA) in HPLC grade water.

2.7 LC-MS/MS

400 nanograms of each phospho-enriched peptide mixture were analyzed by LC-MS/MS 

using a LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific, CA) equipped with a 

nanoAcquity Ultra-high pressure liquid chromatography system (Waters, MA). Separation 

and detection of peptides were performed as previously described [17,18]. LC-MS/MS raw 

data were acquired in a data-dependent mode using Xcalibur (Thermo Scientific, 2.2 SP1). 

The injection order was randomized, and the technician was blinded to the sample labels.

2.8 Data Processing

The LC-MS/MS raw files were imported into Rosetta Elucidator™ (Rosetta, 3.3.0.1.SP.25) 

and processed as previously described [18]. The aligned and normalized peaks were 

annotated at the feature level by generating database search files (*.dta). The files were 

searched by Mascot (version 2.3.01) against the human Universal Protein Resources 

(UniProt) (20,233 sequences) database using the following parameters: trypsin enzyme 

specificity; mass accuracy window for precursor ion, 10 ppm; mass accuracy window for 

fragment ions, 0.8 Da; carbamidomethylation of cysteines as fixed modifications; oxidation 

of methionine, phosphorylation of serine, threonine and tyrosine as variable modification; 

and 1 missed cleavage. Comparison of the runs against decoy searches yielded an average 

false discovery rate (FDR) of 1.3% ± 0.3% across all samples.

Relative quantitation was based on area under the curve. Subsequently, each peptide ion 

intensity was normalized by the median intensity within its replicate sample. The 
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phosphopeptide intensity values for every technical replicate were then averaged, and the 

resulting datasets were analyzed for differential phosphorylation between DMSO vs. 

TRC-794 using Welch’s t-test, 2-tailed (Supporting Information Table 1). The resulting p-

values were adjusted for multiple-hypothesis testing using the Benjamini-Hochberg method 

and reported in the supplementary table. However, since at this step we were performing a 

discovery-based study, we refrained from any filtering based on the corrected p-values in 

order to maximize hypothesis generation. Unless noted, all subsequent discussion of the t-

test results involved the raw p-values.

2.9 Kinase-Substrate Enrichment Analysis (KSEA)

KSEA was used to infer kinases’ relative activities upon SMAP treatment using the global 

phosphoproteomics data. This method relies on a fundamental assumption that a kinase’s 

differential activity is positively correlated with the collective phosphorylation changes of its 

substrates. Calculations were performed using R version 3.3.0. Please refer to the original 

publication [19] for details on KSEA and the statistical scoring. Our analysis was based on 

the third formula variation described in their Materials and Methods. We assigned kinase-

substrate (K-S) links based on the Kinase Substrate Dataset from PhosphoSitePlus (July 

2016 release) [20], search restricted to human proteins. To maximize the coverage of usable 

phosphosites from our experiment, this K-S dataset was supplemented with predicted K-S 

links using the NetworKIN method [21]. We pulled these additional relationships from pre-

computed data, downloaded from the KinomeXplorer-DB website [22], for all available 

kinase predictors against ENSEMBL version 59. Only predictions with scores 5 and above 

were considered. Each site’s fold change was derived by taking the ratio of the mean peptide 

ion intensity of SMAP over that of DMSO. Normalized scores (calculated from the weighted 

z-scores, as described in original paper) were reported. Fold change values were averaged 

for identical phosphosites detected across multiple peptides.

2.10 Reactome Pathway Enrichment Analysis

We performed Fisher’s exact test to identify the processes that are enriched in proteins 

differentially phosphorylated between the two cell lines. Analysis was performed at the 

protein level, in which the p-value and phosphorylation fold change values for each protein 

were selected from the peptide with the lowest p-value from Welch’s t-test. The Reactome 

database [23] (version 60) served as the reference pathway annotation. The “background” 

for which enrichment is calculated against was not the list of all universally-known proteins; 

rather, it was restricted to all the proteins that were quantified from the phosphoproteomics 

experiment. Per pathway, a 2X2 contingency table was constructed to assess counts of 

proteins included/excluded from the pathway and meeting/lacking the specified inclusion 

criteria, described as follows: For enrichment of dephosphorylated proteins, the criteria were 

p < 0.05 from Welch’s t-test and log2FC < 0 (FC = fold change determined from the peptide 

ion intensity ratio of (mean TRC-794) / (mean DMSO)). For enrichment of 

hyperphosphorylated proteins, the criteria were p < 0.05 from Welch’s t-test and log2FC > 0. 

The raw one-tailed p-value from Fisher’s exact test on each contingency table was reported. 

All calculations were performed in R version 3.3.0.
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2.11 MoBaS Analysis

Using the STRING database of protein interactions [24], we first built a PPI network, one 

per cell line, with all identified proteins from the unfiltered dataset. We scored the nodes of 

the networks by taking the minimum of the p-values from Welch’s t-test across identified 

peptides for each protein and taking −log of this p-value. We assigned a null score to 

proteins for which phosphorylation data was not available. From that, we then applied the 

Steiner Tree algorithm to recruit additional nodes that would optimize the connectivity 

amongst the experimentally-identified nodes. Subsequently, we applied MoBaS [25] to 

identify subnetworks that are enriched with proteins that are tightly interconnected and 

differentially phosphorylated (having significant p-value scores). Additional details on this 

method are available in “Supporting Information (Materials and Methods cont’d)”.

2.12 Additional Materials and Methods

Procedures exclusively featured in the Supporting Information figures are described in the 

document “Supporting Information (Materials and Methods cont’d)”.

3 Results and discussion

3.1 SMAP reduces cell viability and induces apoptosis

Previous work from our group and collaborators have 1) described the derivatization and 

structures of our series of small molecules [13], 2) studied its mechanism of action as a 

PP2A activator [14], and 3) demonstrated its anti-tumor properties in murine models [14]. 

We have selected TRC-794 (aliases RT-30, DT-794, and SMAP3 in other publications) as 

the featured molecule for our global phosphoproteomics studies; Supporting Information 

Fig. 1 illustrates its chemical structure. In line with other members of the SMAP family of 

compounds, TRC-794 exhibits consistent dose-dependent inhibition of cell viability between 

two KRAS mutated NSCLC cell lines, A549 and H358 (Figure 1A). Increased Annexin V 

staining in treated cells indicates induction of cell death, which is partly reversed with co-

treatment of Z-VAD, a pan-caspase inhibitor (Figure 1B). This suggests that TRC-794 

promotes cell death that is partially caspase-dependent.

3.2 Phosphoproteomics enabled system-wide characterization of differential 
phosphorylation changes

Label-free shotgun phosphoproteomics was used to interrogate the differential 

phosphorylation changes with drug treatment in the A549 and H358 cell lines. TRC-794 and 

DMSO-treated samples were treated for 12hrs and processed in parallel as illustrated in the 

workflow (Figure 2A). Principle component analysis (PCA) and Spearman correlation 

assessment of the two datasets yielded good separation between DMSO and TRC-794-

treated samples and consistency among the technical and independent replicates (Supporting 

Information Fig. 2).

We identified 3,396 unique phosphosites mapping to 2,999 unique phosphopeptides 

mapping to 1,605 unique phosphoproteins in the A549 cells. Of this total, 400 phosphosites 

(mapping to 363 phosphopeptides and 308 phosphoproteins) passed a p < 0.05 threshold of 

being differentially phosphorylated between DMSO and TRC-794 treatment. As for H358, 
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we identified 3,135 unique phosphosites mapping to 2,895 unique phosphopeptides mapping 

to 1,617 unique proteins; 372 of these phosphosites (337 peptides and 283 proteins) met a p 

< 0.05 criteria for significance. Additional summary statistics are outlined in Supporting 

Information Fig. 3.

Although PP2A activation is expected to lead to reduced phosphorylation for direct targets 

of PP2A, we expected a wide-ranging response of both increases and decreases in 

phosphorylation. In fact, phosphosite-level volcano plots (Figure 2B) illustrate significantly 

larger numbers of dephosphorylated phosphosites meeting p < 0.05 and −log2(fold change) 

≤ −1.0 for the A549 cell lines compared to H358. In contrast, the H358 dataset included a 

greater number of significantly hyper-phosphorylated sites upon drug treatment. Although 

these cell lines have ~70% of their identified proteins in common (58% of phosphopeptides 

and 39% of phosphosites), there are striking differences in their responses to the PP2A 

activator: out of the phosphoproteins meeting the p < 0.05 criterion, no more than 25% of 

these proteins (16% of phosphopeptides and 13% of phosphosites) are shared between the 

two (Figure 2C, Supporting Information Fig. 4). Thus, a detailed examination of the 

pathways and network differences was carried out to understand the molecular basis for the 

sharply differing cellular responses.

3.3 Kinase-Substrate Enrichment Analysis (KSEA) implicated downregulation of MAPK 
and cell cycle signaling

Since phosphorylation-based signaling is heavily dependent on the actions of kinases, we 

first sought to characterize changes in treatment-induced signaling by estimating the relative 

activities of kinases. Consequently, we employed Kinase-Substrate Enrichment Analysis 

(KSEA) [19] to compute scores that reflect the directional shifts in each kinase’s signaling 

output. Ultimately, a negative score corresponds to a kinase with substrates that are generally 

dephosphorylated with TRC-794, thereby suggesting that the overall kinase activity is 

decreased with treatment relative to DMSO control. Inversely, a positive score implies 

upregulated activity with treatment.

Altogether, 149 unique kinases were scored in both cell lines using data from 632 and 535 

phosphosites with known kinase-substrate (K-S) relationships in A549 and H358, 

respectively (Supporting Information Table 2). Both cell lines exhibited robust SMAP-

induced downregulation of RAF1, MAP2K1/MAP2K2, and RPS6KA1—all of which 

annotate to the canonical MAPK pathway downstream of (K)RAS (Figure 3). This pattern is 

consistent with early published observations of diminished MAPK signaling with SMAP 

treatment [13,14]. Interestingly, though, H358-specific downregulation of AKT1, RPS6KB1, 

and MAPK3 (all downstream of RAS) suggests stronger suppression of the RAS family 

cascade in this cell line. Additionally, while some cell cycle kinases (PLK1 and AURKA) 

experienced negative scores in both cells, many other related kinases (CDK1, CDK2, CDK4, 

AURKB, and TTK) showed downregulation unique to A549. Targeted Western blots and 

quantitative PCR validation confirmed downregulation of select MAPK and cell cycle 

pathway members (Supporting Information Fig. 5). These KSEA findings altogether suggest 

that SMAP treatment induced a stronger suppression of cell cycle members in A549 and 

more robust inhibition of RAS effectors in H358.
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3.4 Reactome pathway enrichment identified dephosphorylation of numerous cell cycle-
related proteins

This initial observation provided very interesting insight on differential signaling changes 

from a kinase perspective. However, since only a small subset of the experimental 

phosphosites had K-S annotations and were thus used for KSEA calculations, we wanted to 

expand our analysis to general pathway enrichment, so we could potentially characterize 

processes that have too few identified substrates to generate robust KSEA signatures. 

Consequently, we performed Reactome pathway enrichment scored by Fisher’s exact test 

against a background of all the proteins from the phosphoproteomics dataset. Interestingly, 

when focusing on the dephosphorylated proteins, cell cycle pathways were significant for 

both cell types (Figure 4A); however, cell cycle annotations (notably, those linked with 

transcriptional regulation) were more numerous for the A549 cell line. Furthermore, H358 

displayed notable dephosphorylation of MAPK-related signaling, while these pathways were 

not significant for A549. Analysis of hyperphosphorylated pathways revealed common hits 

on intracellular transport (Figure 4B). Network-based pathway enrichment using the 

YourCrosstalker™ software also revealed similar trends as with Figure 4A: there was a 

stronger cell cycle effect in A549 and preferential enrichment of IGF1R, mTOR, EGFR, and 

SOS-mediated signaling pathways—all of which overlap with RAS and/or MAPK signaling

—in H358 (Supporting Information Fig. 6; http://proteomics.case.edu/ct/nsclc/dwiredja/).

3.5 MoBaS network-based scoring identified a protein cluster that reflected differential 
SMAP response between A549 and H358 cells

Since canonical pathways are pre-defined and rigid, the earlier Reactome enrichment results 

may miss protein groupings that are not classically established but may better capture the 

differential signaling response in our model. Motivated by this challenge, we decided to take 

a protein-protein interaction (PPI) network approach and employed Modularity-Based 

Scoring (MoBaS) [25]. Overall, this method aims to identify densely-connected subnetworks 

of proteins that 1) are functionally related and 2) exhibit robust differential phosphorylation 

with treatment. Statistical scoring of the subnetworks is illustrated in Supporting 

Information Fig. 7, and the top ten readouts are listed in Supporting Information Fig. 8 for 

both cell lines.

Not only did the resulting top module for A549 comprise entirely of proteins that participate 

in cell cycle processes, but all the protein nodes were also uniformly dephosphorylated in 

drug treatment (Figure 5A). Analysis of the H358 dataset yielded a similar module 

comprising of cell cycle players; however, these proteins displayed no coherent directional 

phosphorylation change (Figure 5B). To verify that MoBaS offers relevant cluster 

identification, we performed a parallel analysis using the popular MCODE method [26]. 

Indeed, for both A549 and H358, MCODE also extracted high-scoring modules populated 

with cell cycle proteins (Supporting Information Fig. 9), and these constituents significantly 

overlapped with the proteins from their MoBaS cluster counterparts (p-value < 2.2e−16 for 

both cell lines, Fisher’s exact test). Along with previous kinase and pathway findings, 

MoBaS analysis confirms that A549 has greater cell cycle sensitivity to drug treatment.
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3.6 TRC-794 induces A549-specific cell cycle disruption

Thus far, although our SMAP compound frequently induced dephosphorylation of many cell 

cycle and RAS/MAPK-related proteins, bioinformatic analyses have consistently uncovered 

a more vigorous downregulation of cell cycle processes in A549. We sought to confirm this 

collective observation by testing if these system-level patterns translate into specific 

phenotypic differences between A549 and H358’s response to TRC-794. Cells were 

differentially treated with DMSO or two varying doses of our compound for 24hrs and 

subsequently incubated with propidium iodide (PI) to stain the DNA content. Flow 

cytometric analysis against the PI staining would then determine the distribution of cells 

across the different phases of the cell cycle. Interestingly, A549 treatment with 10μM SMAP 

induced a striking increase in the G1 population and shrinkage of the G2M phase (Figure 6, 

thin arrow), whereas H358 experienced a more apoptotic/cell death reaction at the same dose 

(Figure 6, thick arrow), as indicated by the rise in cells that had undergone DNA 

fragmentation (Sub-G1). Ultimately, however, the higher concentration of TRC-794 had 

marked increase in the Sub-G1 population in both cell lines. Collectively, these observations 

reaffirm our computational findings and suggest that our SMAP promotes diverging 

intermediate cellular responses within KRAS mutant lines at the given time points, which 

ultimately converge on cell death.

4 Concluding remarks

Our study applied quantitative phosphoproteomics to explore the global signaling effects of 

a novel phosphatase activator in KRAS mutant NSCLC, and subsequent bioinformatics 

analyses revealed stronger disruption of cell cycle proteins in A549, while H358 had a more 

prominent dysregulation of RAS/MAPK-related pathways. These observations not only 

corroborate previous studies that suggest diverging pathway dependencies between the two 

[27–29], but they also exemplify how SMAP therapy may target unique combinations of 

pathways that eventually promote cell death. Although our current experimental study did 

not explore the temporal aspect of the signaling response and cannot distinguish whether or 

not a given dephosphorylation event is due to direct PP2A-substrate interaction, our work 

highlights the intricacies of the primary and secondary signaling patterns that accumulate 

from small molecule phosphatase activation. Ultimately, the observed variations in response 

of similar cell lines depict potential complexities in drug response for individual patients 

harboring identical mutations. Phosphoproteomics, coupled to advanced bioinformatics, is a 

valuable tool to dissect the phospho-signaling basis of these differences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

NSCLC Non-Small Cell Lung Cancer

PP2A Protein Phosphatase 2A

SMAP Small Molecule Activator of PP2A

KSEA Kinase-Substrate Enrichment Analysis

K-S Kinase-Substrate

PPI Protein-Protein Interaction

MoBaS Modularity-Based Scoring

PI Propidium Iodide
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Significance of the study

PP2A is a documented phosphatase and tumor suppressor that downregulates numerous 

oncogenic targets. Its activation thus provides a promising anti-cancer therapeutic 

strategy that can potentially mirror the signaling effects of kinase inhibitor combinations. 

This study features high-throughput phosphoproteomic characterization of KRAS 
mutated NSCLC cell lines treated with a novel class of small molecules previously shown 

to bind to PP2A and potentiate its activity. The results would 1) provide one of the 

earliest glimpses of the differential phosphorylation changes upon phosphatase activation 

on a global scale; 2) resolve the compounds’ mechanism of action at the signaling level; 

and 3) demonstrate how similar cell lines may exhibit unique response signatures that 

ultimately converge and manifest as cell death.
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Figure 1. 
TRC-794 decreases cell viability and induces apoptosis.

(A) MTT cell viability assay against increasing concentrations of the SMAP TRC-794 after 

24hr incubation. All measurements are normalized to DMSO control. (B) Annexin V 

staining of cells treated with DMSO, 100uM Z-VAD (caspase inhibitor), TRC-794, or a 

combination of Z-VAD + TRC-794 after 24hrs. Annexin V staining in the A549 control and 

Z-VAD groups was barely detectable. The means ± SD across 3 independent replicates are 

reported.
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Figure 2. 
Phosphoproteomics identified numerous differentially phosphorylated peptides between the 

two treatment groups.

(A) The phosphoproteomics workflow that was applied: two NSCLC cell lines were treated 

separately with DMSO control and the PP2A activator TRC-794 for 12hrs. Three 

independent replicates per condition were analyzed. (B) Volcano plots of A549 and H358 at 

the phosphosite level. The horizontal dotted line represents Welch’s t-test p = 0.05; vertical 

lines represent log2(fold change) ± 1, corresponding to 2-fold change in magnitude. Blue 

dots = hits with p < 0.05 and mean log2(FC) ≤ −1 in the TRC-794 group. Red dots = hits 

with p < 0.05 and mean log2(FC) ≥ 1 in the TRC-794 group. (C) Venn diagram depicting 

phosphoprotein-level overlap between A549 and H358 between all proteins (left diagram) 

and significant proteins (right diagram).
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Figure 3. 
KSEA calculations identified common downregulation of select MAPK proteins but a high 

proportion of cell cycle kinases in A549.

Heat map reporting KSEA results according to the normalized scores. Only kinases that are 

shared between the two datasets and that have 5+ substrates are included. Asterisks indicate 

the scores meeting the p < 0.05 statistical cutoff. Blue color represents negative kinase 

scores, and red represents positive.
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Figure 4. 
Reactome pathway enrichment revealed dephosphorylation of cell cycle pathways.

Analysis was performed at the protein level, in which the p-value and phosphorylation fold 

change values for each protein was selected from the peptide with the lowest p-value from 

the Welch’s t-test. All the pathways with visible bars met the Fisher’s exact p < 0.05 cutoff 

in the designated cell line(s). All shared pathways are listed, but only the top 5 unique 

pathways to each cell line are included. The purple dots in the volcano plots indicate the 

proteins that enrichment was calculated for. (A) Pathways enriched with dephosphorylated 

proteins. (B) Pathways enriched with hyper-phosphorylated proteins.
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Figure 5. 
MoBaS identified a tightly-interconnected subnetwork involved in cell cycle progression.

(A) The top-scoring protein-protein interaction (PPI) subnetwork in A549, identified from 

the MoBaS approach. (B) Second top-scoring subnetwork from MoBaS analysis on H358 

cells, which enriched for cell cycle proteins. Each node is a phosphoprotein represented by 

its most significant peptide. Node color is based on log2(fold change) relative to DMSO 

control.
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Figure 6. 
SMAP resulted in A549-specific cell cycle disruption.

Cell cycle analysis measured by propidium iodide staining of DNA in the samples. Cells 

were treated with DMSO or two different concentrations of TRC-794 for 24 hours prior to 

analysis. The thin and thick arrows mark specific conditions featured in the results and 

discussion text.
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