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Key Points

• Admission plasma lev-
els of Sdc-1 and
thrombomodulin pre-
dict in-hospital mortality
of iTTP.

• Increases in both
plasma Sdc-1 and
thrombomodulin at
clinical response/re-
mission are significantly
associated with iTTP
exacerbation.

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal blood

disorder resulting from acquired deficiency of plasma ADAMTS13 activity. Despite recent

advances in early diagnosis and novel therapeutics, the mortality rate of acute iTTP remains

as high as 10% to 20%. Moreover, a reliable clinical and laboratory parameter that predicts

disease severity and outcomes is lacking. We show in the present study that plasma levels of

syndecan-1 (Sdc-1) and soluble thrombomodulin (sTM) on admission were dramatically

increased in patients with acute iTTP and remained substantially elevated in a subset of

patients compared with healthy controls. The elevated admission plasma levels of Sdc-1 and

sTM were associated with abnormal Glasgow coma scale scores, low estimated glomerular

filtration rates, the need for intensive care, and in-hospital mortality rates. Moreover,

a further simultaneous increase in plasma Sdc-1 and sTM levels at the time of clinical

response/remission (eg, when normalization of platelet counts and substantial reduction of

serum lactate dehydrogenase activity were achieved) was highly predictive of iTTP

recurrence. These results demonstrate that endothelial injury, resulting from disseminated

microvascular thromboses, is severe and persistent in patients with acute iTTP. Plasma

levels of Sdc-1 and sTM on admission and in remission are predictive of in-hospital mortality

and recurrence of acute iTTP, respectively. Thus, an incorporation of such novel plasma

biomarkers into the risk assessment in acute iTTPmay help implement a more vigorous and

intensive therapeutic strategy for these patients.

Introduction

Thrombotic thrombocytopenic purpura (TTP) is a potentially life-threatening blood disorder, occurring in
3 to 10 cases per million per year.1,2 Most patients are caused by acquired immunoglobulin G (IgG)
autoantibodies against ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor
(VWF).3,4 This type of TTP referred to as immune-mediated TTP (iTTP).5,6 Rarely, TTP may be caused by
hereditary deficiency of plasma ADAMTS13 activity due to inherited mutations in ADAMTS13, referred
to as hereditary or congenital TTP.5,7 Clinical presentations of TTP vary dramatically, but the diagnosis
relies on the presence of thrombocytopenia and microangiopathic hemolytic anemia, as well as
a positive ADAMTS13 test result.8-11 Some patients may present with signs and symptoms of end-organ
damage, including ischemic cerebral infarction or stroke,12,13 renal insufficiency,9,10 and myocardial
ischemia,2,14 at various stages of the disease course.

Therapeutic plasma exchange (TPE) remains the standard of care, which has significantly reduced the
mortality and morbidity rates of iTTP.6,15 This life-saving procedure aims to remove autoantibodies
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against ADAMTS13, ultra large VWF, and inflammatory cytokines while
replenishing the missing or inhibited ADAMTS13 enzyme. International
Society on Thrombosis and Haemostasis TTP guidelines conditionally
recommend the early use of caplacizumab11,16,17 on top of TPE,
corticosteroids, and rituximab in patients with a high probability of iTTP
based on clinical assessment with access to ADAMTS13 testing.11,17

However, such a practice may not be readily adopted by all clinicians
worldwide. The variability in practice and the disparity in resource
utilization result in a high mortality rate (eg, 10% to 20%) of acute
iTTP.2,18-20 Therefore, early identification of risk factors causing death
may allow for the implementation of a more aggressive treatment
strategy. Previous studies have demonstrated that old age,21 high
lactate dehydrogenase (LDH) activity,21 elevated troponin levels,2,14,22

neurological involvement,21 lower ADAMTS13 antigen levels,23,24 and
high anti-ADAMTS13 IgG23 levels at presentation are associated with
poor outcomes of TTP. More recently, we have shown that elevated
plasma levels of soluble terminal attacking complexes (sC5b-9) are
predictive of iTTP mortality.2

Syndecan-1 (Sdc-1)25,26 and thrombomodulin (TM)27 are the major
components of the endothelial glycocalyx, which is a layer of
membrane-bound macromolecules on the luminal surface of the
vascular endothelium.28 Sdc-1, a 33-kDa single-pass type I transmem-
brane proteoglycan, comprises a core protein and $1 glycosamino-
glycan chain covalently attached to the protein. The ectodomain of the
Sdc-1 protein core bears 3 heparan sulfate chains and 2 chondroitin
sulfate chains.25 TM, a 557-amino-acid type I transmembrane protein
on the endothelium, binds exosite I on thrombin to alter thrombin
specificity toward protein C.29 The thrombin-TM complex activates
protein C and thrombin-activatable fibrinolysis inhibitor,30 thus inhibiting
thrombus formation31 and complement activation.32

Under certain pathologic conditions, such as acute inflammation,33,34

hyperglycemia,35,36 endotoxemia,37 ischemia-reperfusion injury,33,38

and bypass surgery,39,40 or stimulation with tumor necrosis factor
a41,42 and atrial natriuretic peptide,43 the ectodomains of Sdc-1 and
TM are cleaved by leukocyte-derived proteases, metalloproteinases,
and heparinase. Therefore, increased plasma levels of Sdc-1 have
been observed in patients with inflammation,40 sepsis,44 traumatic
brain injury,38 hemorrhagic shock,45 disseminated intravascular
coagulation (DIC),46 and respiratory failure.40,44 High plasma levels
of Sdc-1 in septic patients are associated with a higher likelihood of
being intubated.47 Similarly, plasma or serum levels of soluble TM
(sTM) are dramatically increased in patients with trauma, DIC,
pulmonary thromboembolism, acute respiratory failure, chronic renal
failure, and acute hepatic failure.48,49 Serum sTM levels appear to be
correlated with the clinical course of DIC, multiorgan dysfunction
syndrome, and mortality in patients with sepsis.50,51 In the present
study, we test the hypothesis that plasma Sdc-1 and sTM may serve
as sensitive biomarkers for endothelial injury and organ damage, thus
predicting adverse outcome in critically ill patients such as iTTP.

Methods

Patients

Ninety-one unique iTTP patients with 107 acute episodes from April
2006 to July 2019 were enrolled into the study. Institutional review
boards at University of Kansas Medical Center and University of
Alabama at Birmingham approved the study protocol. Demographic
information, routine laboratory results, and treatments were collected
from the electronic medical records. Additional follow-ups were

conducted through outpatient visits, telephone interviews, and
interviews at the annual TTP fairs. Diagnostic criteria for iTTP were
the same as those previously described and included2,6 (1) severe
thrombocytopenia, (2) microangiopathic hemolytic anemia with or
without end-organ damage, and (3) plasma ADAMTS13 activity,10
IU/dL with a detectable ADAMTS13 inhibitor or anti-ADAMTS13
IgG. Myocardial involvement was defined as troponin above the
normal range (,0.025 ng/dL) on admission and neurological
involvement was defined using a reduced Glasgow coma scale
(GCS) as described previously.52

Blood collection

Whole-blood samples were collected from informed and consented
patients prior to the initiation of TPE and anticoagulated with 0.39%
sodium citrate. Serial blood samples were collected from 46
patients until clinical remission. The blood samples were centri-
fuged at 1500g for 15 minutes, and platelet-poor plasma was
aspirated and stored in aliquots in a 280°C freezer until assays.

Table 1. Demographic and clinical features of 107 iTTP patient

episodes

Parameters Values

Age, median (IQR), y 47 (34-55)

Sex, n (%) (n 5 91)

Female 53 (58.2)

Male 38 (41.8)

Race, n (%) (n 5 91)

African American 73 (80.2)

White 18 (19.8)

Disease status (n 5 107)

Initial, n (%) 63 (58.9)

Exacerbation/relapse, n (%) 44 (41.1)

BMI (n 5 104), median (IQR) 32.3 (26.0-39.4)

Comorbidities, n (%) (n 5 107)

Hypertension 59 (55.1)

Diabetes mellitus 24 (22.4)

SLE, n (%) (n 5 57)

Positive 14 (24.6)

Negative 43 (75.4)

HIV, n (%) (n 5 88)

Positive 10 (11.4)

Negative 78 (88.6)

Symptoms/signs, n (%) (n 5 107)

CNS symptoms 60 (56.1)

GFR calc ,60 47 (43.9)

Abdominal pain 33 (30.1)

Fever 16 (15.0)

Chest pain 13 (12.1)

Social history, n (%) (n 5 88)

Smoking 49 (55.7)

Drinking 40 (45.5)

Illicit drug use 16 (18.2)

BMI, body mass index; CNS, central nervous system; n, number of episodes or cases;
SLE, systemic lupus erythematosus.
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Assay for plasma ADAMTS13 activity

Plasma ADAMTS13 activity was determined using an in-house
FRETSVWF73 assay, as described previously.53,54 The results with
the in-house assay were comparable to that performed in the
reference laboratory (Versiti, Milwaukee, WI). Pooled normal human
plasma was used for the calibration, defined as having 100 U/dL (or
100%) of ADAMTS13 activity.

Assay for plasma ADAMTS13 inhibitor

Plasma ADAMTS13 inhibitor titers on admission were determined
in the reference laboratory (Versiti).

Assay for plasma ADAMTS13 antigen

Plasma levels of ADAMTS13 antigen were determined by using
a human ADAMTS13 Quantikine enzyme-linked immunosorbent
assay (ELISA) kit (R&D Systems, Minneapolis, MN) according to the
manufacturer’s instructions.

Assay for plasma anti-ADAMTS13 IgG

Plasma levels of anti-ADAMTS13 IgG were determined by using
Technozym ADAMTS-13 inhibitor ELISA kit (DiaPharma, West
Chester Township, OH) according to themanufacturer’s instructions.

Assay for plasma levels of Sdc-1

Plasma levels of Sdc-1 were determined using a human sydecan-1
DuoSet ELISA kit (R&D Systems) according to the manufacturer’s
instructions.

Assay for plasma sTM

Plasma levels of sTM were determined using a human thrombo-
modulin/BDCA-3 Quantikine ELISA kit (R&D Systems) according
to the manufacturer’s instructions.

Statistical analysis

All statistical analyses were performed with the Prism 8 software. All
data were assumed to be in nonnormal distribution due to the rarity of
iTTP, and values are expressed as the median and interquartile range
(IQR). A Mann-WhitneyU test (2 tailed and nonparametric) was used
to analyze the data. A Kruskal-Wallis with Dunn’s multiple comparison
test was used for data with$3 groups. The Wilcoxon test was used
for paired data that were not normally distributed. The Fisher’s exact
test was performed for categorical variables. The Spearman test was
used to determine the correlation coefficients of the data that were
not normally distributed. Furthermore, the log-rank test was used to
compare the survival probability or recurrence-free probability
between 2 groups. Values of P , .05 and P , .01 were considered
statistically significant and highly statistically different, respectively.

Results

Patient characteristics

Of 107 acute iTTP episodes (91 unique patients), the median age was
47 years (IQR, 34-55 years). Of 91 unique patients, 53 patients
(58.2%) were female and 73 (80.2%) were African American. Of 107
acute patient episodes, 63 (58.9%) were initial episodes and 44
(41.1%) were recurrent ones. Most patients (69.2%) presented with
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Figure 1. Plasma Sdc-1 and sTM in patients on

admission and in clinical remission. Plasma

levels of Sdc-1 (A) and sTM (B) in patients prior to

TPE (Init.) and in clinical remission (Rem.), compared

with healthy controls (Con.). Each dot represents an

individual patient or control value, and horizontal bars

within the dots represent the median and IQR.

Kruskal-Wallis test corrected with Dunn’s multiple

comparisons was performed to determine statistical

significance. Longitudinal changes in plasma levels

of Sdc-1 (C) and sTM (D) in paired individual

patients prior to TPE (Initi., blue dots) and in clinical

response/remission (Remi., red dots). A Wilcoxon

matched-pairs signal test (2 tailed and non-

parametric) was used to determine statistical signifi-

cance. P . .05 (n.s., not significant); *P , .05;

****P , .0001.
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comorbidities, including hypertension (55.1%), diabetes mellitus
(22.4%), systemic lupus erythematosus (13.1%), and HIV infection
(9.3%). The median body mass index of these patients was 32.3 with
IQR of 26.0-39.4. More than half of patients (56.1%) presented with
signs and symptoms that involved the central nervous system (eg,
confusion, disorientation, coma, and seizure), 43.9% had renal dys-
function (eg, estimated glomerular filtration rate [eGFR] ,60), 30.1%
had abdominal pain, 15.0% had fever, and 12.1% reported chest pain.
Of 88 patients who reported their social history, 55.7% were smokers,
45.5% were drinkers, and 18.2% used illicit drugs (Table 1).

Overall, the mortality rate was 10.3% (11/107 patients), with
a median time of death of 10 days (IQR, 2-14 days) from admission.
There was no significant difference in demographic parameters,

blood groups, comorbidities, clinical presentation, and social history
except for GCS scores between the patients who died (median, 15;
IQR, 14-15) and those who survived (median, 12; IQR, 3-15) (P 5
.003) (supplemental Table 1).

Plasma levels of Sdc-1 and sTM in iTTP patients and

healthy controls

Sdc-1 and sTM are the major components of the endothelial
glycocalyx, a layer of membrane-bound macromolecules on the
luminal surface of vascular endothelium.55 As shown, plasma levels
of Sdc-1 (Figure 1A) and sTM (Figure 1B) on admission in patients
with acute iTTP were dramatically increased compared with healthy
controls. Median plasma levels of Sdc-1 and sTM in patients with
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Figure 2. Plasma levels of Sdc-1 and sTM in patients with or without an adverse condition. Plasma levels of Sdc-1 (A) and sTM (B) in patients with normal (n 5 70)
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acute iTTP prior to TPE were 1.5 ng/mL (IQR, 1.1-2.9) and 4.7 ng/
mL (IQR, 3.7-6.6), respectively. Moreover, plasma levels of Sdc-1
(median, 1.2 ng/mL; IQR, 1.0-1.7 ng/mL) (Figure 1A) (P , .0001)
and sTM (median, 4.5 ng/mL; IQR, 3.5-5.6) (P , .05) (Figure 1B)
remained substantially higher in patients during clinical remission,
when platelet counts were essentially normalized, than in healthy
controls. When comparing paired samples, plasma levels of Sdc-1
(Figure 1C) and sTM (Figure 1D) during remission were not
statistically different from those on admission (P . .05). These
results indicate that substantial and persistent endotheliopathy
occurs in patients who have recovered from an acute iTTP episode,
a condition that was not previously recognized.

Plasma levels of Sdc-1 and sTM are associated with

disease severity in patients with acute iTTP

On admission, higher median plasma levels of Sdc-1 (P 5 .0049)
(Figure 2A) or sTM (P 5 .0016) (Figure 2B) were found in patients
with abnormal GCS scores. Higher median plasma levels of sTM
(P , .0001) (Figure 2D), but not Sdc-1 (P 5 .1684) (Figure 2C),
were found in patients with abnormal eGFR compared with those
with normal eGFR. Patients who had systemic lupus erythematosus
(SLE) also exhibited higher median plasma levels of Sdc-1 (P 5
.0014) (Figure 2E), but not sTM (P5 .6115) (Figure 2F), than those
without SLE. Moreover, patients who were admitted to the intensive
care unit (ICU) had dramatically increased median plasma levels of
Sdc-1 (P5 .0095) (Figure 2G) or sTM (P5 .003) (Figure 2H) than
those without ICU admission. Similar results were obtained for Sdc-
1 (Figure 2I) (P5 .01) and sTM (Figure 2J) (P5 .003) from patients

who were or were not intubated. No statistically significant
differences in plasma levels of Sdc-1 or sTM were found between
patients with an initial iTTP episode and those with recurrent
disease (data not shown). These results suggest that plasma levels
of Sdc-1 and/or sTM are associated with disease severity in
patients with acute iTTP.

Plasma levels of Sdc-1 and sTM correlate with

another routine laboratory marker indicative of

organ damage

To determine the relationship between plasma Sdc-1 or sTM and
another routine laboratory parameter, such as troponin, LDH, and
creatine, indicative of organ damage or dysfunction, Spearman
correlation coefficients demonstrated that plasma Sdc-1 or sTM
was modestly but positively correlated with plasma troponin-I
(Figure 3A-B), serum LDH (Figure 3C-D), and creatine (Figure 3E-
F). Additionally, plasma Sdc-1 or sTM was positively correlated with
prothrombin time (Figure 4A-B), activated thromboplastin time
(Figure 4C-D), fibrinogen (Figure 4E-F), and D-dimers (Figure 4G-
H), the critical parameters for coagulopathy.

Increased plasma levels of Sdc-1 or sTM on

admission are associated with acute iTTP

mortality rates

Patients who died within 60 days after admission had much higher
median plasma levels of Sdc-1, but not sTM, on admission than
those who survived an acute episode. The median plasma level of
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Sdc-1 was 15.8 ng/mL (IQR, 1.9-24.5) in patients who died
compared with 1.4 ng/mL (IQR, 1.1-2.7) in those who survived (P,
.0001) (Figure 5A). However, there was no statistically significant
difference in plasma levels of sTM on admission between patients
who died (median, 5.7 ng/mL; IQR, 4.6-7.6) and those who survived
(median, 4.5 ng/mL; IQR, 3.6-6.1) (P 5 .0612) (Figure 5B).

Using the receiver operating characteristic curve, we were able to
identify optimal cutoffs of 3.3 ng/mL for Sdc-1 and 4.0 ng/mL for
sTM for predicting the probability of death. Kaplan-Meier survival
analysis demonstrated that patients with elevated plasma levels of
Sdc-1 ($3.3 ng/mL) (P, .0001) (Figure 5C) or sTM ($4.0 ng/mL)
(P 5 .020) (Figure 5D) had a significantly lower 60-day survival
probability than those with values below the cutoff for Sdc-1 or sTM.

When combined, plasma levels of Sdc-1 and sTM elevated above
the cutoffs were much a better predictor of 60-day mortality (P ,
.0001) (Figure 5E). These results demonstrate for the first time that
elevated plasma levels of Sdc-1 or sTM, alone or in combination,
may be predictive of an adverse acute iTTP outcome.

Increased plasma levels of both Sdc-1 and sTM in

clinical remission predict disease recurrence

Plasma levels of Sdc-1 and/or sTM decreased in some, but not all,
patients during clinical remission. In fact, some patients exhibited
increased levels of plasma Sdc-1 or sTM or both when compared
with their initial levels on admission. The clinical significance of such
a dynamic change in iTTP patients is not known. As shown, 34 of
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46 patients (73.9%) had lower plasma levels of either Sdc-1 or sTM,
while 12 of 46 patients (26.1%) had higher plasma levels of both
Sdc-1 and sTM during clinical remission. Interesting, those with
increases in both Sdc-1 and sTM levels at clinical remission had
a much higher rate of disease recurrence (either exacerbation or
relapse) at 3 months (83.3%) than those without the double
increase in these 2 markers (32.4%) (Figure 6A) (P 5 .003). These
results were consistent with those obtained with the Kaplan-Meier
survival analysis with the Mantel-Cox test (Figure 6B) (P 5 .0014).
Together, our results demonstrate for the first time that persistent
endotheliopathy is a risk factor for iTTP exacerbation and/or relapse.

Discussion

The present study demonstrates that plasma levels of Sdc-1 and/or
sTM are dramatically increased in patients with acute iTTP on
admission and remain elevated during clinical response/remission.
Furthermore, the admission plasma levels of Sdc-1 and sTM appear
to be associated with many routine biomarkers indictive of organ
damage and severity of the disease. These include GSC, eGFR,
LDH, coagulopathy, ICU admission, and intubation. Consistent with
what is in the literature, the episodic mortality rate in our cohort
is ;10%. Interestingly, plasma levels of Sdc-1 and/or sTM on
admission are associated with mortality in patients with acute
disease. Most importantly, a simultaneous increase in plasma levels
of Sdc-1 and sTM on admission is more predictive than a single
elevation of either Sdc-1 or sTM for in-hospital acute iTTP mortality.

Once clinical response or remission (ie, normalization of platelet
counts and LDH) is achieved, 40% to 50% of patients may
experience exacerbation or relapse if not on caplacizumab.2

Laboratory markers predicting iTTP recurrence after clinical re-
mission include low ADAMTS13 activity and antigen and the
presence of anti-ADAMTS13 antibodies.56 In this study, we
demonstrate that plasma levels of Sdc-1 and/or sTM remain
substantially elevated or higher in some patients during clinical
remission. A simultaneous increase in plasma Sdc-1 and sTM
during clinical response/remission is significantly associated with an
increased risk of disease recurrence (ie, exacerbation or relapse) at
the 3-month follow-up. These results suggest the persistence of
microvascular endothelial damage (ie, endotheliopathy) after
achieving clinical response/remission.

Severe deficiency of plasma ADAMTS13 activity is necessary, but
may not be sufficient, to cause acute iTTP. Infection or systemic
inflammation often precedes an acute episode of iTTP. Studies
have demonstrated that Sdc-1 and sTM are involved in the
inflammatory process. For example, leukocyte-endothelium adhe-
sion in postcapillary venules is an essential step in the inflammatory
process. Alterations in the glycocalyx attendant to endothelial cell
activation may affect leukocyte rolling and adhesion to endothelial
surface. Plasma Sdc-1 levels may reflect the endothelial damage
that results from neutrophil activation, neutrophil gelatinase-
associated lipocalin, resistin, and myeloperoxidase.44 MMP-7 also
cleaves the juxtamembrane domain of Sdc-1, liberating an intact
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ectodomain.57 CXCL1, an acute-phase neutrophil chemokine, has
neutrophil chemoattractant activity.58 It is bound to the glycosami-
noglycan chains of shed Sdc-1, where it supports neutrophil
adhesion, but not activation. When Sdc-1 is cleaved, the released
Sdc-1/CXCL1 complexes promote neutrophil activation.59 It was
reported that the lectin‐like domain of TM is involved in the
suppression of inflammation via multiple mechanisms, which include
the suppression of leukocyte adhesion to endothelial cells,60

interference with complement activation,32,61 inactivation of proin-
flammatory nuclear proteins (eg, high mobility group box 1 and
histones),62 and inactivation of bacterial endotoxin.63 Our findings
may not only provide a tool for risk stratification but also provide
a molecular basis for therapeutic intervention. A previous study has
shown that an infusion of tissue matrix metalloprotease inhibitors,
such as doxycycline or the zinc chelator GM6001, suppresses Sdc-
1 shedding, thus reducing the rolling velocity of leukocytes.64

In summary, we have for the first time demonstrated that elevated
plasma levels of Sdc-1 and sTM in patients with acute iTTP on
admission predict disease severity and in-hospital mortality;
a simultaneous increase in both plasma Sdc-1 and sTM during
clinical response/remission is associated with an increased rate of
recurrence of acute iTTP. Our findings demonstrate the persistent
endotheliopathy in acute iTTP, which may guide us when learning
how to best treat and monitor acute iTTP to reduce mortality and
morbidity rates.
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