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ABSTRACT

Introduction: The breakdown of a deadly infectious disease caused by a newly discovered coronavirus
(named SARS n-CoV2) back in December 2019 has shown no respite to slow or stop in general. This
contagious disease has spread across different lengths and breadths of the globe, taking a death toll to
nearly 700 k by the start of August 2020. The number is well expected to rise even more significantly. In
the absence of a thoroughly tested and approved vaccine, the onus primarily lies on obliging to standard
operating procedures and timely detection and isolation of the infected persons. The detection of SARS n-
CoV2 has been one of the core concerns during the fight against this pandemic. To keep up with the scale
of the outbreak, testing needs to be scaled at par with it. With the conventional PCR testing, most of the
countries have struggled to minimize the gap between the scale of outbreak and scale of testing.
Method: One way of expediting the scale of testing is to shift to a rigorous computational model driven
by deep neural networks, as proposed here in this paper. The proposed model is a non-contact process of
determining whether a subject is infected or not and is achieved by using chest radiographs; one of the
most widely used imaging technique for clinical diagnosis due to fast imaging and low cost. The dataset
used in this work contains 1428 chest radiographs with confirmed COVID-19 positive, common bacterial
pneumonia, and healthy cases (no infection). We explored the pre-trained VGG-16 model for classifi-
cation tasks in this. Transfer learning with fine-tuning was used in this study to train the network on
relatively small chest radiographs effectively.
Results: Initial experiments showed that the model achieved promising results and can be significantly
used to expedite COVID-19 detection. The experimentation showed an accuracy of 96% and 92.5% in two
and three output class cases, respectively.
Conclusion: We believe that this study could be used as an initial screening, which can help healthcare
professionals to treat the COVID patients by timely detecting better and screening the presence of
disease.
Implication for practice: Its simplicity drives the proposed deep neural network model, the capability to
work on small image dataset, the non-contact method with acceptable accuracy is a potential alternative
for rapid COVID-19 testing that can be adapted by the medical fraternity considering the criticality of the
time along with the magnitudes of the outbreak.

© 2020 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

Introduction

due to SARS n-CoV2 (severe acute respiratory syndrome novel
coronavirus-2). The disease originated in December 2019 and has

The brisk spread of novel coronavirus disease (COVID-19)
throughout the world has put an unprecedented load on healthcare
systems around the globe. It is a highly infectious disease caused
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affected more than 200 countries worldwide.' It is declared a
pandemic by the world health organization (WHO).? The disease
has a mortality rate of 2%, which is due to massive respiratory
failure and alveolar damage.’

The current form of testing, i.e., viral nucleic acid detection using
real-time polymerase chain reaction (RT-PCR), is the acceptable
form of COVID diagnosis. However, in many countries, especially
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developing nations where testing kits are not adequate and wide-
spread testing has not started, early, automatic, and cost-effective
diagnosis can be crucial for timely monitoring of the spread of
disease.*> Non-contact automated diagnosis systems can prove to
be an essential tool in containing the virus spread (even in
healthcare professionals) with the timely referral of patients to care
facilities and quarantine. Currently, in India, the cost of the RT-PCR
test is very high and is out of budget for the majority of the pop-
ulation.® Financial constraints arising from diagnostic test cost is a
significant concern for patients in major developing nations.’”

Healthcare systems across the globe have evolved in multiple
domains to enhance the detection and diagnosis rates with the
central aim of being minimally invasive. This underlines the fact
that invasive procedures for the detection and diagnosis of diseases
should be avoided to a great extent and wherever possible. The
inclusion of medical imaging techniques like ultrasound, Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Functional
Magnetic Resonance Imaging (fMRI), etc. has dramatically changed
the way that diseases are detected, diagnosed, examined, or
analyzed. Since each of these imaging modalities has a unique
underlying physics of operation, each imaging modality is different.
Hence, every imaging modality cannot be used for every anatomical
site. Among these imaging modalities, the best that suits the study
of lungs and its health conditions is the radiograph. The details
from a radiograph can aid a radiologist or other relevant healthcare
professionals to evaluate lungs to diagnose conditions like a
persistent cough, breathlessness, etc. Radiographs can also be uti-
lized to diagnose conditions like emphysema, pneumonia, and
cancer. In addition to this, generating radiographs from a subject is
relatively straightforward in practice. This makes radiographs
suitable for detection and diagnosis in emergency situations.

With the advent of these medical imaging modalities, re-
searchers and other professionals have continuously attempted to
develop computer-aided systems that act a second opinion to the
healthcare experts. There is a plethora of work in literature wherein
computer-aided detection and diagnosis systems have been
developed. These systems have been developed for numerous ap-
plications like the detection of brain tumors, thyroid nodules,
ground-glass opacity, Alzheimer's disease, etc.

With the help of publicly available datasets of chest radiographs
(X-ray images) of COVID-19 patients and healthy cases, the study of
automatic COVID detection became possible through the use of
radiographs, which demonstrate COVID positive patients, other
bacterial pneumonia patients, and healthy patients.® Chest radio-
graphs are the universally used imaging technique for diagnosis,
and almost all the healthcare facilities, even in remote (underde-
veloped) areas, have radiographic imaging as a basic diagnosis
system. CT imaging can also be used for COVID-19 detection,” !
but due to the non-availability of CT scanners in small healthcare
facilities and its time-consuming nature, it prohibits the timely
detection and screening of COVID patients. Also, real-time chest
radiographic imaging can help to study the progression of the
disease, which in turn can help to better screen the patients at
different stages of disease (sec-4). Fig. 1 demonstrates the radio-
graphs of COVID-19 positive, bacterial pneumonia, and healthy
cases.

In view of the above-mentioned advantages, a deep learning-
based model was developed that can be used to automate COVID-
19 detection and screening with high accuracy and sensitivity.
This could reduce the number of RT-PCR tests required as only
those patients can be sent for viral nucleic tests, which test positive
with this model.

In recent years deep learning models have been very successful
in object detection and classification.’>~'* In medical image anal-
ysis and classification, these models have started to prove very

484

Radiography 27 (2021) 483—489

useful and are of great help to doctors, especially radiologists, to
detect patterns in medical images'”~'® Computer-aided diagnosis
(CAD) systems employed with deep learning techniques help pro-
fessionals to make clinical decisions.

Deep learning architectures, especially convolutional neural
networks (CNNs), help in automatic feature detection in images."”
The repeated process learns rich and discriminative features of
linear and non-linear transformations at every layer of the CNN
model.”® The network starts with more straightforward features
and learns more abstract and discriminative features deeper into
the network.

This study aimed to utilize state of the art deep learning tech-
niques for automatic COVID-19 detection on chest radiographs to
assist in testing and screening of COVID-19 patients.

Materials and method
Transfer learning

Transfer learning is the strategy by which we can use the
knowledge gained while solving some problems and applying it to
some different but related issues. Usually, the dataset involved in
the new problem is small in order to train the CNN from scratch.
Transfer learning involves initially training the deep neural
network for a specific task using a large-scale dataset like Image-
Net. To obtain useful features extracted from the network, it is
usually believed that the dataset must have at least 5000 to 6000
instances per class,®! i.e., data availability is the most important
factor for initial training for successfully extracting the significant
features. After successfully initial training of the CNN, the network
is set to process the new data and extract features from it based on
knowledge gained from the initial training.

Transfer learning in deep neural networks can be done in two
ways. The first method involves feature extraction using transfer
learning, where the original CNN model is treated as a feature
extractor, and a new classifier is trained on top of that.®? In this
method, the pre-trained model retains its model architecture as
well as its learned parameters. The learned features from this
model are given to the new classifier learned for the specific task at
hand. The second method involves network modification to pre-
trained models to obtain better results. Usually, some blocks in
these models are replaced with new fine-tuned ones according to
the specific task at hand. Mostly fully connected (FC) layers in the
original pre-trained model are replaced with a new FC head whose
weights are initialized randomly. In order to preserve the rich
discriminating filters learned by convolutional (Conv) layers, the
convolutional layers are frozen, i.e., backpropagation is not allowed
through these layers but only up to FC layers, as their weights are
random. This method allows FC layers to start to learn the patterns
from highly discriminative and feature-rich convolutional layers.
After FC layers have started to learn the patterns of a new dataset,
the whole network is allowed to train (unfreeze) with very small
learning in order to achieve sufficient accuracy on the new task.

Model

In this study, we use the second strategy for training the VGG-16
network for COVID-19 detection. A pre-trained VGG-16 model was
used for a classification task.”> VGG-16 is a 16-layer convolutional
neural network which consists of 13 convolutional layers and 3
fully connected layers. It also contains 5 max-pooling layers. In two
experimental settings, the last dense layer of the network is
changed to two classes (COVID and non-COVID) and three class
(COVID, non-COVID pneumonia, and normal) output settings. It
takes an input image of size 224 x 244 x 3 images and produces a
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Figure 1. Chest radiographs of COVID positive patient, bacterial pneumonia and healthy case.

feature vector of 1 x 1 x 4096 at the first dense layer. We freeze the
convolutional layers and use a new FC head containing three fully
connecting layers with 512, 64, and 2 neurons in two-class cases
while 512, 64, and 3 neurons in three-class case. In FC head, we use
ReLU activation while as during training, dropout of 0.5 is used to
avoid overfitting. In the base VGG-16 model, there are 13 convo-
lution layers and 5 max-pooling layers. Conv1_1 and conv1_2 use
64 filters, conv2_1 and conv2_2 use 128 filters, conv3_1, conv3_2
and conv3_3 use 256 filters while as conv4_1, conv4_2, conv4_3,
conv5_1, conv5-2, conv5-3 use 512 filters. VGG-16 in all its con-
volutional layers use 3x3 filters while as max-pooling layers use
2 x 2 pooling with a stride of 2. Figure (2) shows the original ar-
chitecture of VGG-16. In transfer learning, layer cutoff represents
the number of untrainable layers in the network, i.e., no of frozen
layers while as rest of the layers are trained on the new dataset. In
our experiments, the layer cutoff is 13, i.e., 13 untrainable layers,
while as FC head, which contains 3 FC layers are trained on the
COVID dataset.

Dataset used
In this work, we used the following datasets:
1. We used an open-source database containing chest X-rays of
COVID and non-COVID patients (including different diseases like
SARS, Streptococcus, etc.).*

2. Kaggle chest X-ray competition dataset.>

A dataset consisting of 1428 radiographs is created by a data
augmentation technique that generates more samples by rotation

at five different angles, translation, and flipping (up/down, right/
left).

Results

We allocated the dataset randomly into training and test sets
with 70% from each class (COVID, non-COVID pneumonia, and
healthy) as the training set and the remaining 30% as the test set.
Regarding the classification, specific metrics are recorded as
follows:

o True-positive (TP): refers to correctly classified cases of COVID-
19.

o False-positive (FP): refers to incorrectly classified healthy cases
as COVID-19.

o True-negative (TN): refers to healthy cases that are correctly
classified.

o False-negative (FN): refers to incorrectly classified COVID-19
cases as healthy.

The main goal of the study is to identify and detect COVID-19
cases; therefore, in three-class cases (COVID, non-COVID pneu-
monia, and normal (healthy)). TP indicates the correctly classified
COVID-19 cases, TN indicates the cases belonging to non-COVID
pneumonia or healthy, which are classified as COVID-19. FP
shows the cases that actually belong to non-COVID pneumonia or
normal but classified as COVID-19, while as FN indicates cases
belonging to COVID-19 but classified as normal or non-COVID
pneumonia. We use gradient class activation maps (Grad-CAM)>®
to highlight the regions of interest (ROI) that the model used to

Covid positive
radiograph

Non-Covid (healthy)
radiograph

Figure 2. A schematic model for automatic COVID-19 detection.

485



M.K. Pandit, S.A. Banday, R. Naaz et al.

make predictions. Grad-CAM images of different patients are
shown in Fig. (3), which highlights the highly localized regions of
interest for COVID-19 positive cases class within chest radiographs.

Figure (4) shows the grad-cam images of non-COVID patients
(non-COVID pneumonia and healthy).

An accuracy of 96% in the two-class output case and 92.53% in
the three-class output case is achieved. The network in both cases
was trained 25 epochs with a batch size of 64. The learning rate was
set to 0.001, and Adam optimizer was used for training. All the
layers in the network use the ReLU activation function.

Figure (5) represents the plot of accuracy/training loss vs.
epochs. Table (1) shows that we managed to achieve sensitivity
(true positive rate) of 92.64% and 86.7%, while as we achieved
specificity (true negative rate) of 97.27% and 95.1% in 2 and 3 output
class cases, respectively.

The confusion matrices on the test data for the two configura-
tions of our model are shown in Fig. 4. It can be seen that in 2 class
cases, the false-negative of 4.01% and false positive of 7.55%. The
true positive in this case is 96.0%. In the 3 class case, the false
negative is 7.76%, while false positives are 14.38%. In this case, we
got an accuracy of 92.53% (see Fig. 6).

Discussion

The study is aimed at designing the deep neural network-based
model to automatically detect the COVID-19 using chest radio-
graphs without explicit feature engineering. Fig. 7 shows the
timeline of the radiographs of a 50-year-old COVID-19 positive
patient for a week.?” Day 1 represents no markers of infection, i.e.,
lungs are clear. On day4, the radiograph is patchy and ill-defined. It
has bilateral alveolar consolidations. Day 5 radiograph shows the
typical radiological worsening with consolidation in the left upper
lobe. Day 7 shows the typical presence of pneumonia in the
radiograph.

Radiography 27 (2021) 483—489

Fig. 3 shows the saliency maps of positive COVID-19 radio-
graphs. The typical markers present in Fig. 3 that depict the pres-
ence of COVID infection include:

1. Patchy shadows and ground-glass opacity in the early stages.
(Day1, Day4 Fig. 7).

2. As the infection progresses, multiple ground glass and infiltrate
in both lungs appear. (Day 7 Fig. 7).

In saliency maps, the highlighted regions represent the regions
of interest in the radiograph. This can be a useful tool for doctors to
elevate the efficiency of diagnosis based on saliency maps. The
frequently observed characteristics are observed in COVID-19
radiographs®®:

1. Ground glass opacities.

2. Broncho vascular thickening.
3. Air space consolidation.

4. Bronchiectasis.

Table 2 demonstrates the comparison of deep learning-based
techniques used in COVID-19 detection and outlines the proposed
method achieves the state of the art accuracy in 2 class case. Sethy
et al.?” used a combination of CNN model-based and SVM classifier
for COVID-19 detection. They achieved 95.38% accuracy on 50 chest
radiograph images. Song et al.>° and Wang et al.>! used deep
learning on CT images to detect COVID-19 and managed to achieve
90.8% and 82.9% accuracy, respectively. Xu et al.>* used ResNet deep
learning model on CT images and got 86.7% accuracy. Zheng at al>
also used CT images couples with deep learning and achieved 90.8%
accuracy.

It must be noted that the proposed model can be used for
COVID-19 diagnosis without putting pressure on the already satu-
rated hospital systems. The availability of chest radiographs for
COVID-19 detection is the limitation of this study as only limited

Figure 3. Grad-CAM images of COVID-positive patients (left: heat map, middle: guided grad-cam, right: original x-ray).
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(d)

Figure 4. Grad-cam images of Non-COVID patients (a: Healthy X-ray, b: Bacterial pneumonia, c: SARS, d: Streptococcus).
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—¥— LOSS

Accuracy/Loss

0 5 10 15 20 25
Epochs

Figure 5. Learning curve accuracy/training loss obtained on VGG-16.

Table1 ) number of samples are present in the datasets. In this study, we
Result metrics obtained. utilize the dataset of 1428 chest radiographs, of which 224 radio-
Network Accuracy Specificity Sensitivity graphs are of COVID-19 positive patients, 700 radiographs belong to
VGG-16 (2 class output) 96% 97.27% 92.64% pacterlal pneumonia cases while as 594 radiographs are of healthy
VGG-16 (3 class output) 92.53% 95.1% 86.7% instances. To demonstrate the effectiveness of the approach, we
Confusion matrix 2 class case (Percentage) Confusion matrix 3 class case (Percentage)
True non-covid 6.95 5.53
True non-covid
True bacterial pneumonia 8.85
True covid
True covid
(,0\‘\\6 &0&’0 (,04\a>
& > L
<& & e
Q R N
& R N
& &
€ &
6‘0
<2
6\0 6\(4
N N

Day-1 Day-4 Day-5 Day-7

Figure 7. Chest radiographs of a 50-year-old COVID-19 patient with pneumonia over a week.
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Table 2
Comparison of proposed automatic COVID-19 detection technique using
deep learning with other deep learning methods.

Reference Types of Dataset used Accuracy (%)
images
loannis et al.>*  Chest 224 COVID-19(+) 93.48
radiographs 700 Pneumonia
504 Healthy
Wang & Wong  Chest 53 COVID-19(+) 924
et al>® radiographs 5526 COVID-19 (—)
8066 Healthy
Sethy & Behar  Chest 25 COVID-19(+) 95
et al.?® radiographs 25 COVID-19 (-)
Ying et al.*® Chest CT 777 COVID-19(+) 90.8
708 Healthy
Wang et al.>! Chest CT 195 COVID-19(+) 82.9
258 COVID-19(-)
Xu et al.*? Chest CT 219 COVID-19(+) 86.7
224 Viral pneumonia
175 Healthy
Zheng et al.>>  Chest CT 313 COVID-19(+) 90.8
229 COVID-19(-)
This study Chest 224 COVID-19(+) 96 - 2 class
radiographs 504 Healthy

224 COVID-19(+)
700 Pneumonia
504 Healthy

92.53 - 3 class

used two experimental settings with two and three output class
cases. In two output class cases, bacterial pneumonia and healthy
case images are treated as non-COVID while, as in three output
class cases, we used COVID positive, pneumonia, and healthy as
three output classes.

Conclusion

In this paper, we used the deep learning model to detect COVID-
19 using chest radiographs automatically. The study shows the
robust and effective method of non-contact testing on COVID pa-
tients, which can help in early and cost-effective detection and
screening of COVID cases. A collaboration of medical professionals
is required to check if the model extracts sufficient biomarkers for
the COVID-19 positive cases. Grad CAM images of chest radiographs
are presented, which shows the regions of interest for confirmed
COVID-19 positive cases, bacterial pneumonia, and healthy cases.

We believe that this study could be used as an initial screening,
which can help healthcare professionals to treat the COVID patients
by timely detecting better and screening the presence of disease. It
provides not only a cost-effective but also an automatic non-
contact testing method, which helps in reducing the risk of
COVID contraction by medical practitioners.
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