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The present study aimed to identify genes associated with
patient survival to improve our understanding of the underly-
ing biology of gliomas. We investigated whether the expres-
sion of genes selected using random survival forests models
could be used to define glioma subgroups more objectively
than standard pathology. The RNA from 32 non-treated grade 4
gliomas were analyzed using the GeneChip Human Genome
U133 Plus 2.0 Expression array (which contains approximately
47 000 genes). Twenty-five genes whose expressions were
strongly and consistently related to patient survival were iden-
tified. The prognosis prediction score of these genes was most
significant among several variables and survival analyses. The
prognosis prediction score of three genes and age classifiers
also revealed a strong prognostic value among grade 4 glio-
mas. These results were validated in an independent samples
set (n = 488). Our method was effective for objectively classify-
ing grade 4 gliomas and was a more accurate prognosis predic-
tor than histological grading. (Cancer Sci 2013; 104: 1205–1210)

G lioblastomas are pathologically the most aggressive form
of glioma, with a median survival range of only

9–15 months.(1,2) Even advances in cancer biology, surgical
techniques, chemotherapy and radiotherapy have led to little
improvement in survival rates of glioblastoma patients.(1) Poor
prognosis is attributable to difficulties in early detection and to
a high recurrence rate after initial treatment. Therefore, more
effective therapeutic approaches, a clearer understanding of the
biological features of glioblastoma and the identification of
novel target molecules are needed for improved diagnosis and
therapy of this disease.
Several histological grading schemes exist. The World

Health Organization (WHO) system is currently the most
widely used; a high WHO grade correlates with clinical pro-
gression and decreased survival rate.(3) However, individual
fates vary within diagnostic categories, even in grade 4
glioma,(1,2) indicating the need for additional prognostic mark-
ers. The inadequacy of histopathological grading is evidenced,
in part, by the inability to recognize patients prospectively.
Microarray technology has permitted the development of

multiorgan cancer classification including gliomas, the identifi-
cation of glioma subclasses, the discovery of molecular mark-
ers and predictions of disease outcomes.(4–14) Unlike
clinicopathological staging, molecular staging can predict
long-term outcomes of individuals based on gene expression
profiles of tumors at diagnosis, enabling clinicians to make
optimal clinical decisions. The analysis of gene expression
profiles in clinical materials is an essential step towards
clarifying the detailed mechanisms of oncogenesis and the
discovery of target molecules for the development of novel
therapeutic drugs.

In the present study, we describe an expression profiling
study of a panel of 32 patients with grade 4 gliomas for the
identification of genes that predict overall survival (OS) using
random survival forests models, with validation in independent
data sets.

Materials and Methods

Samples. Tissues were snap-frozen in liquid nitrogen within
5 min of harvesting and stored thereafter at �80°C. The clini-
cal stage was estimated from accompanying surgical pathology
and clinical reports. Samples were specifically re-reviewed by
a board-certified pathologist at Niigata University, Niigata,
Japan according to WHO criteria, by observing sections of par-
affin-embedded tissues that were adjacent or in close proximity
to frozen samples from which the RNA was subsequently
extracted. The histopathology of each collected specimen was
reviewed to confirm the adequacy of the sample (i.e. minimal
contamination with non-neoplastic elements) and to assess the
extent of tumor necrosis and cellularity. Informed consent was
obtained from all patients for the use of the samples, in accor-
dance with the guidelines of the Ethical Committee on Human
Research, Niigata University Medical School (Protocol #70).
Overall survival was measured from the date of diagnosis.
Survival end-points corresponded to the dates of death or last
follow up.

RNA extraction and array hybridization. Approximately
100 mg of tissue from each tumor was used to extract total
RNA using the Isogen method (Nippongene, Toyama, Japan)
following the manufacturer’s instructions. The quality of RNA
obtained was verified with the Bioanalyzer System (Agilent
Technologies, Tokyo, Japan) using RNA Pico Chips. Only
samples with 28S ⁄18S ratios >0.7 and with no evidence of
ribosomal peak degradation were included in the present study.
One microgram of each RNA was processed for hybridization
using GeneChip Human Genome U133 Plus 2.0 Expression
arrays (Affymetrix, Inc., Tokyo, Japan), which comprised
approximately 47 000 genes. After hybridization, the chips
were processed using a Fluidics Station 450, a High-Resolution
Microarray Scanner 3000 and a GCOS Workstation Version
1.3 (Affymetrix, Inc).

Validation of differential expression using real-time quantita-
tive PCR. The quantitative PCR (QPCR) was performed using
a StepOne Real-Time PCR System (Applied Biosystems,
Tokyo, Japan) and TaqMan Universal PCR Master Mix
(Applied Biosystems) according to the manufacturer’s proto-
col. The Assays-on-Demand probe ⁄primer sets (Applied Bio-
systems) used were as follows: ANGPTL1, Hs00559786_m1;
ARHGAP39, Hs00286798_m1; ASF1A, Hs00204044_m1;
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CASP8, Hs01018151_m1; C11orf71, Hs00535489_s1; EFNB2,
Hs00187950_m1; GAPDH, Hs99999905_m1; GPNMB, Hs01-
095679_m1; ITGA7, Hs00174397_m1; LDHA, Hs00855332-
_g1; LMAN2L, Hs01091681_m1; LOXL3, Hs01046945_m1;
MED29, Hs00378316_m1; and MGMT, Hs01037698_m1.
Total RNA (1 lg) was reverse transcribed into cDNA

using SuperScript II (Invitrogen, Tokyo, Japan) and 1 lL of
the resulting cDNA was used for QPCR. Validation was per-
formed on a subset of tumors that were part of the original
tumor data set assessed. Assays were carried out in duplicate.
The raw data produced using the QPCR referred to the num-
ber of cycles required for reactions to reach the exponential
phase. Expression of GAPDH was used to normalize the
QPCR data. Mean expression fold change differences
between tumor groups were calculated using the 2�DDCT

method.(15)

Immunohistochemistry. Five-micron sections from formalin-
fixed, paraffin-embedded tissue specimens were used for
immunohistochemistry (IHC). Endogenous peroxidase was
blocked with 0.3% H2O2 in methanol. Antigen retrieval was
performed by autoclaving at 120°C for 10 min in 50 mM
citrate buffer (pH 6.0). The IHC for anti-O6-methylguanine-
methyltransferase (MGMT; antibody dilution 1:50; clone
MT3.1; Millipore, Billerica, MA, USA) was performed as
described previously.(16) Immunoreactivity (MGMT staining
index [SI]) was quantified by counting stained tumor nuclei in
>1000 cells and was expressed as a percentage of positive
cells. A MGMT SI >30% was considered positive for MGMT.
Averages of three independent measurements were calculated
to the first decimal place. Observers were not aware of case
numbers.

Analysis of the isocitrate dehydrogenase 1 (IDH1) codon 132
mutation. A 129-bp fragment of IDH1 that included codon
132 was amplified using IDH1f, 5′-CGGTCTTCAGAGAAG
CCATT-3′ as the sense primer and IDH1r, 5′-GCAAAATCA
CATTATTGCCAAC-3′ as the antisense primer. A PCR was
performed on 20 ng of DNA with Taq DNA Polymerase
(Takara, Tokyo, Japan) and standard conditions of 35 cycles
were used. The PCR amplification product was sequenced
using a BigDyeTerminator v3.1 Sequencing Kit (Applied Bio-
systems) using the sense primer IDH1f and antisense primer
IDH1rc, 5′-TTCATACCTTGCTTAATGGGTGT-3′. Sequences
were determined using the semiautomated sequencer (ABI
3100 Genetic Analyzer; Applied Biosystems) and Sequence
Pilot version 3.1 software (JSI-Medisys, Kippenheim, Ger-
many) as described previously.(17)

Bioinformatics analysis. All statistical analyses were per-
formed using R software(18) and Bioconductor.(19) The
Affymetrix GeneChip probe-level data were preprocessed
using MAS 5.0 (Affymetrix Inc.) for background adjustment
and log-transformation (base 2). Each array was normalized
using a quantile normalization to impose the same empirical
distribution of intensities to each array. Genes that passed the
filter criteria below were considered for further analysis. To

select predictors (genes) for OS, we first set filtered gene
expressions and applied the random survival forests–variable
hunting (RSF-VH) algorithm.(20) Among the algorithm parame-
ters, the number of Monte Carlo iterations (nrep) and value to
control step size used in the forward process (nstep) were set
as nrep = 100 and nstep = 5, respectively, following the
method of Ishwaran et al.(20) For other parameters such as
number of trees and number of variables selected randomly at
each node, we used the default settings for varSelfunction
within the RandomSurvivalForest package before selection.
We classified samples into two survival groups using Ward’s
minimum variance cluster analysis, inputting ensemble cumu-
lative hazard functions for each individual for all unique death
time-points estimated from the fitted random survival forests
model to selected genes.
The two classified survival groups were used to compute the

prognosis prediction score (PPS) from a simple form (linear
combination of gene expressions). To do this, we used principal
component analysis and receiver operating characteristic

Table 1. Patient characteristics of grade 4 glioma

Variable
Test set Validation set

P
(n = 32) (n = 488)

Age (years)

Average 54.5 55.0 0.84

Range 18–80 10–86

Gender

Male 20 305 1.00

Female 12 183

Survival time (days) 411 364 0.41

Table 2. Identification of survival related 25 genes

Probe Symbol Description VI

225708_at MED29 Mediator complex subunit 29 0.0202

217939_s_at AFTPH Aftiphilin 0.0101

227876_at ARHGAP39 Rho GTPase activating protein

39

0.0101

228821_at ST6GAL2 ST6 beta-galactosamide alpha-

2,6-sialyltranferase 2

0.0101

200650_s_at LDHA Lactate dehydrogenase A 0.0081

220260_at TBC1D19 TBC1 domain family, member

19

0.0060

218981_at ACN9 ACN9 homolog (S. cerevisiae) 0.0060

231773_at ANGPTL1 Angiopoietin-like 1 0.0060

201141_at GPNMB Glycoprotein (transmembrane)

nmb

0.0040

228255_at ALS2CR4 Amyotrophic lateral sclerosis 2

(juvenile) chromosome region,

candidate 4

0.0040

203427_at ASF1A ASF1 anti-silencing function

1 homolog A (S. cerevisiae)

0.0020

222108_at AMIGO2 Adhesion molecule with Ig-like

domain 2

0.0020

1562527_at LOC283027 Hypothetical protein

LOC283027

0.0000

218789_s_at C11orf71 Chromosome 11 open reading

frame 71

0.0000

219240_s_at C10orf88 Chromosome 10 open reading

frame 88

�0.0020

213373_s_at CASP8 Caspase 8, apoptosis-related

cysteine peptidase

�0.0020

225126_at MRRF Mitochondrial ribosome

recycling factor

�0.0020

209663_s_at ITGA7 Integrin, alpha 7 �0.0040

223222_at SLC25A19 Solute carrier family 25

(mitochondrial thiamine

pyrophosphate carrier),

member 19

�0.0040

214271_x_at RPL12 Ribosomal protein L12 �0.0040

229648_at ARHGAP32 Rho GTPase activating

protein 32

�0.0040

228253_at LOXL3 Lysyl oxidase-like 3 �0.0060

202669_s_at EFNB2 Ephrin-B2 �0.0081

206172_at IL13RA2 Interleukin 13 receptor, alpha 2 �0.0101

221274_s_at LMAN2L Lectin, mannose-binding 2 like �0.0141

VI, variable importance.
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analysis. Briefly, we computed the first principal component of
gene expressions selected by the RSF-VH algorithm as a risk
score and then searched for the optimal value to predict sur-
vival groups with maximum accuracy using the Youden
index.(21) Validation for this method is used in the validation
set (n = 488; Table 1), which is derived from glioblastoma
patients in four external data sets.(8,10,12,22)

The survival tree method(23) constructs prognostic groups
based on PPS and age among those with grade 4 glioma. This
method is based on a recursive partition of the PPS and age
values while splitting patients into the subset. Final output
results in groups of patients with similar prognoses, which are
represented as combinations of binarized PPS or age. This was
executed using the rpart package of the R software.
The Kaplan–Meier method was used to estimate the survival

distribution for each group. A log-rank test was used to test
differences between survival groups. The association of the
PPS with OS was evaluated using multivariate analyses with
clinical characteristics and with other predictors using the Cox
proportional hazards regression model. P < 0.05 was consid-
ered statistically significant.

Results

Patient characteristics. Thirty-two non-treated primary glio-
blastomas (WHO grade IV) came from patients who under-
went surgical resections between 2000 and 2005 (Table 1).
The median age of patients was 54.5 years (range,
18–80 years). Twenty patients were male and 12 were
female. The preoperative Karnofsky performance status
(KPS) was at least 70 in 25 (78%) patients. The IDH1 muta-
tion was negative in 31 cases, but was detected in one
patient who remains alive 2365 days after the onset of dis-

ease. The MGMT IHC was positive in 21 cases and negative
in 11 cases. After maximum surgical tumor resections,
patients received external beam radiation therapy (standard
dose of 60 Gy to the tumor with a 2-cm margin) and first-
line chemotherapy with nimustine and temozolomide at
recurrence. Patients were monitored for tumor recurrence
during initial and maintenance therapy using MRI or com-
puted tomography. Treatments were carried out at the
Department of Neurosurgery, Niigata University Hospital.
The median survival time was 13.7 months.

Selection of predictive genes. Microarray data were deposited
in the Gene Expression Omnibus (accession number GSE
43378) and 25 genes were selected as predictors. Table 2
shows a list of the genes with their variable importance values.
The scatter plot in Supporting Information Figure S1 shows
the relationships between the estimated ensemble mortalities
and expression for six selected genes (AFTPH, ARHGAP39,
CASP8, ITGA7, LDHA and LOXL3). Validation of the micro-
array results was accomplished using QPCR. These 10 genes
were also found to be differentially expressed between short-
term (survival time, ≤1.5 years) and long-term (survival time,
≥2.5 years) survivors (Table S1). The heat map (Fig. S2)
shows patients clustered by estimated ensemble mortalities
(columns) and genes clustered by their expression levels
(rows). For patients with low survival (blue bar), the lower
genes are overexpressed while the upper genes are underex-
pressed. For patients with improved survival (red bar), these
patterns were reversed; thus, the indicated genes might be
effective in distinguishing between patients with different sur-
vival rates.

Identification of a PPS associated with survival. The gene
expression predictor PPS was computed from a linear combi-
nation of the 25 genes and was calculated for each tumor as

(a) (b)

Fig. 1. Survival analyses using the selected 25-
gene classifiers show the prognostic value for
glioblastoma. Kaplan–Meier curves that compare
groups classified using the Z1 prognosis prediction
score with the 25-gene model in the test (a) and
validation (b) sets.

(a) (b)

Fig. 2. Survival analyses using the selected three-
gene classifiers show the prognostic value for
glioblastoma. Kaplan–Meier curves that compare
groups classified using the Z2 prognosis prediction
score with the three-gene model in the test (a) and
validation (b) sets.
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follows:

Z1 ¼ 0:27�GPNMBþ 0:09�EFNB2� 0:22�ASF1Aþ 0:02

� LOC283027þ 0:15�AMIGO2þ 0:22� IL13RA2

þ 0:25� ITGA7þ 0:15� LDHA� 0:01�C11orf71

þ 0:15�AFTPH þ 0:15� TBC1D19� 0:21�MED29

þ 0:02�ACN9þ 0:29� SLC25A19þ 0:16�RPL12

� 0:09�ALS2CR4� 0:14�C10orf88� 0:11

�ARHGAP39þ 0:18� LMAN2Lþ 0:29�CASP8

� 0:28� ST6GAL2þ 0:33� LOXL3þ 0:08�ANGPTL1

þ 0:22�MRRF� 0:33�ARHGAP32:

The Z1 score of the expression value for each individual
gene was adapted in this formula. The Z1 scores ranged from
�4.91 to 4.28, with high scores associated with poor out-
comes. The optimal cut-off was a Z score of �1.17. As
expected, the predictor performed well in terms of patient
prognosis; the improved prognosis group (Z ≤ �1.17) had a
median survival time of 721 days, while the poor prognosis
group (Z > �1.17) had a significantly lower median survival
time of 335 days (P < 0.0001; Fig. 1a).

Identification of a PPS with a three-gene set associated with
survival. For more practical purposes, the gene expression pre-
dictor PPS was computed from a linear combination of three
genes and was calculated for each tumor as follows:

Table 3. Prognostic value of clinical factors stratified by overall

survival (OS) in patients with grade 4 glioma

Variable n Median OS (days) P

Age (years)

≥60 17 352 <0.05
<60 15 525

Gender

Male 20 434 0.48

Female 12 337

KPS

≥70 25 474 <0.01
<70 7 268

IDH1

Wild 31 405 0.05

Mutated 1 N.D.

MGMT IHC

Positive 21 352 0.09

Negative 11 630

MGMT mRNA

>0.017 16 407 0.42

≤0.017 16 419

Subtype

CL 7 432 0.009

MES 11 308

NL 7 988

PN 7 417

Z1 Score

>�1.17 20 335 <0.0001
≤�1.17 12 721

Z2 Score

>�0.76 20 335 <0.0001
≤�0.76 12 721

CL, classical; IDH1, isocitrate dehydrogenase 1; IHC, immunohistochem-
istry; KPS, Karnofsky performance status; MES, mesenchymal; MGMT,
O6-methylguanine-methyltransferase; ND, not determined; NL, neural;
PN, proneural.

Table 4. Multivariate analysis: prognosis prediction score and clinical

and therapeutic variables associated with overall survival in patients

with grade 4 glioma

Variable Subgroup
Entire series (n = 32)

Hazard ratio 95% CI P

Z1 Continuous variable 1.34 1.03–1.77 0.026

Z2 Continuous variable 1.48 0.95–2.38 0.081

MGMT IHC Positive ⁄Negative 1.72 0.70–4.30 0.228

Age (years) ≥60, <60 2.22 0.95–5.37 0.065

KPS ≥70, <70 2.76 0.88–8.50 0.078

CI, confidence interval; IHC, immunohistochemistry; MGMT, anti-O6-
methylguanine-methyltransferase.

Z2 ¼ �0:63� ASF1Aþ 0:62� ITGA7þ 0:47� AFTPH

The Z2 score of the expression value for each individual
gene was adapted in this formula. The Z2 scores ranged from
�2.53 to 2.27, with high scores associated with poor out-
comes. The optimal cut-off was a Z score of �0.76. As
expected, the predictor performed well in terms of patient
prognosis; the improved prognosis group (Z ≤ �0.76) had a
median survival time of 721 days, while the poor prognosis
group (Z > �0.76) had a significantly lower median survival
time of 335 days (P < 0.0001; Fig. 2a). Classification using
cell-of-origin is associated with survival. We classified our
cases into proneural, neural, classical and mesenchymal
subtypes using a gene expression-based method according to
Verhaak et al.(13) (Fig. S3A). These four groups differed
significantly in survival rates (P = 0.0093; Fig. S3B) and
classification by cell-of-origin was found to be significantly
associated with patient survival.

The gene expression predictor is the most significant fea-
ture. The Z PPS results were compared with traditional indi-
vidual indicators. As shown in Table 3, Z1, Z2, age, KPS and
subtype were significantly associated with OS in univariate
analyses. Table 4 shows the results of the multivariate analy-
ses, which found that the gene expression predictor Z1 was
significantly associated with OS. The PPS was the most
significant feature of these clinical parameters.

The PPS formula was validated in the independent sample set.
The PPS formula was validated in the validation set (n = 488;
Table 1), which is derived from glioblastoma patients in four
external data sets.(8,10,12,22) The Z1 scores ranged from �5.43
to 5.33. As expected, the OS was significantly higher in the
improved prognosis group (Z ≤ �1.17) than in the poor prog-
nosis group (Z > �1.17; P = 0.0016; Fig. 1b). The Z2 scores
ranged from �3.98 to 2.66. As expected, the OS was signifi-
cantly higher in the improved prognosis group (Z ≤ �0.76)
than in the poor prognosis group (Z > �0.76; P = 0.028;
Fig. 2b).

Survival analyses using the PPS with a three-gene set and age
classifiers shows a prognostic value for patients with grade 4
glioma. Even among Grade 4 gliomas in both test (n = 32)
and validation sets (n = 488), the OS ranged between 0 and
3880 days. Fifty-two patients (10%) survived for longer than
1000 days. As predicted by the survival tree, the OS differed
significantly between the improved prognosis group
(�0.76 ≥ Z2 or �0.76 < Z2 with age <57 years) and the poor
prognosis group (�0.76 < Z2 with age ≥57 years) in the test
and validation set (P = 0.0006 and P < 0.0001, respectively;
Fig. 3). The median OS using test and validation data sets was
641 and 490 days, respectively, for the improved prognosis
group and 347 and 302 days, respectively, for the poor prog-
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nosis group. The two-year survival rates were 36.3% and
30.8% in the improved prognosis group and 4.7% and 11.8%
in the poor prognosis group, using the test and validation data
sets, respectively.

Discussion

We assessed relationships between gene expression and sur-
vival time using a random survival forests model. This is clas-
sified into a tree-based method, which aids the detection of
interactions. As discussed by Cordell, the functional form
should contain gene-by-gene interaction terms.(24) The model
was developed for use with datasets in which several variables
(genes, in the present case) greatly outnumber patients; a
framework of random forests is needed for such an analysis.
Genes were selected using the RSF-VH algorithm, which elim-
inates the need to screen the genes.(20)

Many studies of microarray data use univariate analyses for
screening in which potential genes that interact with other
genes may be dropped from the analyses. However, the RSF-
VH algorithm is more appropriate for our application and we
previously reported its usefulness(20) in the identification of a
gene-expression signature that predicts outcomes in patients
with malignant glioma and primary central nervous system
lymphoma.(14,25)

Although our predictor was mainly based on cases from
first-line nitrosourea-based chemotherapy, results from the
combined four external data sets,(8,10,12,22) in which first-line
temozolomide-based chemotherapy was used, support the uni-
versal performance of the predictor, irrespective of the chemo-
therapeutic regimen. Survival benefit by chemotherapy is
relatively small in most grade 4 gliomas, so it is important to
elucidate the differences in the intrinsic biological characteris-
tics of the tumors. Genetic differences within malignant glio-
mas also underscore the heterogeneity of these tumor types.
Compared with our previous report of oligodendrocytic tumor
patients,(14) three (GPNMB, LOXL3 and IL13RA2) out of 25
genes are identical to the present study.
The value of gene expression-based predictors in estimating

the prognosis of malignant glioma patients will not be fully

realized until more efficacious therapies are available for those
in whom current treatment is less successful. In this regard,
although the biological investigation of these genes is impor-
tant, expression profiles might predict long-term survival as
well as yielding clues about individual genes involved in
tumor development, progression and response to therapy.
Moreover, the ability to distinguish between histologically
ambiguous gliomas will enable appropriate therapies to be
tailored to specific tumor subtypes. Class prediction models
based on defined molecular profiles allow the classification of
malignant gliomas in a manner that will better correlate with
clinical outcomes than with standard pathology. Glioblastomas
have wide-ranging survival times, which require a more pre-
cise prognostic scoring system to study novel therapeutic
approaches. Therefore, the identification of molecular subclass-
es could greatly facilitate prognosis and our ability to develop
effective treatment protocols. As our PPS involves a small
number of genes, quantitative reverse transcriptase PCR assays
or customized DNA microarrays could be developed for clini-
cal applications. Molecular targeted therapies that specifically
target disabled pathways might then be tailored for those
patients with poor prognoses.
In summary, we identified gene signatures associated with

outcome in patients with glioblastoma. Adaptation of subsets
of these genes for use in clinical assays could result in
improved outcome prediction. We have extended our observa-
tions to validate these signatures using independent data sets
from other institutions. Our profiling results should help con-
struct a new classification scheme that better assesses clinical
malignancies compared with the conventional histological clas-
sification system.
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