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Genome-wide transcriptional expression analysis is a powerful
strategy for characterizing the biological activity of anticancer
compounds. It is often instructive to identify gene sets involved
in the activity of a given drug compound for comparison with
different compounds. Currently, however, there is no comprehen-
sive gene expression database and related application system
that is; (i) specialized in anticancer agents; (ii) easy to use; and
(iii) open to the public. To develop a public gene expression data-
base of antitumor agents, we first examined gene expression
profiles in human cancer cells after exposure to 35 compounds
including 25 clinically used anticancer agents. Gene signatures
were extracted that were classified as upregulated or downregu-
lated after exposure to the drug. Hierarchical clustering showed
that drugs with similar mechanisms of action, such as genotoxic
drugs, were clustered. Connectivity map analysis further revealed
that our gene signature data reflected modes of action of the
respective agents. Together with the database, we developed
analysis programs that calculate scores for ranking changes in
gene expression and for searching statistically significant
pathways from the Kyoto Encyclopedia of Genes and Genomes
database in order to analyze the datasets more easily. Our data-
base and the analysis programs are available online at our web-
site (http://scads.jfcr.or.jp/db/cs/). Using these systems, we
successfully showed that proteasome inhibitors are selectively
classified as endoplasmic reticulum stress inducers and induce
atypical endoplasmic reticulum stress. Thus, our public access
database and related analysis programs constitute a set of effi-
cient tools to evaluate the mode of action of novel compounds
and identify promising anticancer lead compounds. (Cancer Sci
2013; 104: 360–368)

C ancer chemotherapy has gradually improved with the
development of new anticancer agents. In particular,

recent progress in the development of molecular cancer thera-
peutics has revealed new types of anticancer agents that
directly target abnormal proteins in cancer cells.(1,2) These
agents are effective against certain types of cancer where the
target protein plays a predominant role in the growth and sur-
vival of the cancer cells, but are generally less successful
against other types of tumor.
To improve the present status of cancer chemotherapy, it is

essential to search for novel compounds that selectively target
new classes of molecular targets in cancer or induce cancer-
specific cell death with new modes of action. It has been
shown that compounds that selectively interfere with cellular
biological targets abrogate specific signaling pathways and
modulate the expression of individual subsets of signature
genes. Therefore, gene signature-based analysis is a powerful

strategy for characterizing the mechanism of action of drug
candidates. Recently, Lamb et al.(3,4) has developed a system-
atic approach named C-map to find connections among small
molecules sharing a mechanism of action, chemicals and phys-
iological processes, and diseases and drugs. They used a refer-
ence collection of gene expression profiles from cultured
human cells treated with bioactive small molecules. However,
the system was not specifically designed for anticancer drugs
and lacks several standard agents.
Here, we obtained comprehensive gene expression datasets

of anticancer drugs, consisting of standard anticancer agents,
molecularly targeted drugs, and related inhibitors. The datasets
include some compounds that are not contained in the C-map
database. To develop a comprehensive database, we used the
Affymetrix GeneChip HG-U133 Plus 2.0 arrays (Affymetrix,
Santa Clara, CA, USA), which contained more probes
(54 675 probe sets) than the arrays that were mainly used for
the C-map database (HT_HG-U133A arrays; 22 283 probe
sets). We further developed a calculation program that enables
us to rapidly compare gene signatures of test compounds with
those of antitumor agents to predict likely modes of action.
Using our established systems, we successfully show that ER
stress is differentially involved in the effect of antitumor
agents.

Materials and Methods

Cell line and compounds. We used human colon adenocarci-
noma HT-29 cells for the analysis. The cells were cultured in
a humidified atmosphere of 5% CO2 and 95% air at 37°C. The
anticancer compounds used in our analysis are listed in
Table 1. These compounds were added to culture medium,
with the solvent being <0.5% of the medium’s volume.

Drug treatment and GeneChip analysis. The HT-29 cells were
seeded in 6-well plates in RPMI-1640 medium supplemented
with 10% heat-inactivated FBS and 100 lg ⁄mL kanamycin.
After 20 h of culture, we added the anticancer compounds to
the cells at various concentrations. Incubation was then contin-
ued for a further 6 or 16 h. In each batch, we also prepared
untreated cells as a negative control (Table 1, CS1–CS8).
Total RNAs were extracted from the drug-treated cells using
an RNeasy Mini kit (Qiagen, Hilden, Germany). The quality
of the RNAs was assessed using an Agilent 2100 Bioanalyzer
and RNA 6000 Series II Pico Kit (Agilent Technologies, Palo
Alto, CA, USA). We then carried out gene expression analyses
using the GeneChip 3’ IVT Expression Kit and GeneChip
Human Genome U133 Plus 2.0 Array (both Affymetrix)
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Table 1. Treatment samples of anticancer compounds, their corresponding control sample, manufacturer, solvent, target ⁄mode of action, and

drug concentration for treatment

Treatment

sample ID
Compound

Control

sample ID
Manufacturer Solvent Target ⁄mode of action Concentration

GR001 Cisplatin CS1 Bristol-Myers Squibb

(New York, NY, USA)

DMSO DNA cross-linker 30 lM

GR002 Trichostatin A CS1 Wako Pure Chemical Industries

(Osaka, Japan)

DMSO HDAC 300 nM

GR003 Vorinostat CS1 Cayman Chemical Company

(Ann Arbor, MI, USA)

DMSO HDAC 10 lM

GR004 Bortezomib CS1 Millennium Pharmaceuticals

(Cambridge, MA, USA)

DMSO Proteasome 100 nM

GR005 MG-132 CS1 Peptide Institute (Osaka, Japan) DMSO Proteasome 1 lM
GR006 Geldanamycin CS1 Sigma (St Louis, MO, USA) DMSO Hsp90 30 nM

GR007 17-AAG CS1 Wako Pure Chemical Industries DMSO Hsp90 100 nM

GR008 Vincristine CS2 Eli Lilly (Indianapolis, IN, USA) Distilled water Tubulin 30 nM

GR009 Paclitaxel CS2 Bristol-Myers Squibb DMSO Tubulin 30 nM

GR010 Docetaxel CS2 Astra Zeneca (London, UK) DMSO Tubulin 30 nM

GR011 5-FU CS2 Sigma DMSO Pyrimidine 100 lM
GR012 Gemcitabine CS2 Eli Lilly Saline Pyrimidine 1 lM
GR013 Melphalan CS3 Sigma 75% DMSO DNA cross-linker 100 lM
GR014 Mitomycin C CS3 Sigma 50% DMSO DNA alkylator 10 lM
GR015 Oxaliplatin CS3 Yakult (Tokyo, Japan) DMSO DNA cross-linker 3 lM
GR016 Bleomycin CS3 Sigma Distilled water DNA cleavage 30 lg ⁄mL

GR017 Actinomycin D CS3 Sigma DMSO RNA synthesis 30 nM

GR018 Neocarzinostatin CS3 Sigma – DNA cleavage 3 lg ⁄mL

GR019 Methotrexate CS3 Sigma DMSO DHFR 1 lM
GR020 6-Mercaptopurine CS3 Sigma DMSO Purine 100 lM
GR021 Temsirolimus CS3 Santa Cruz Biotechnology

(Santa Cruz, CA, USA)

DMSO mTOR 10 lM

GR022 Everolimus CS3 Sigma DMSO mTOR 10 lM
GR023 PP242 CS3 Sigma DMSO mTOR 10 lM
GR024 Nimustine CS4 Sigma Distilled water DNA alkylator 1 mM

GR025 SN38 (Irinotecan) CS4 Yakult DMSO Topo I 3 lM
GR026 Camptothecin CS4 Sigma DMSO Topo I 3 lM
GR027 Topotecan CS4 Sigma DMSO Topo I 3 lM
GR028 Doxorubicin CS4 Sigma DMSO DNA intercalator ⁄ Topo II 3 lM
GR029 Etoposide CS4 Bristol-Myers Squibb DMSO Topo II 30 lM
GR030 Mitoxantrone CS4 Sigma DMSO DNA intercalator ⁄ Topo II 3 lM
GR031 Pemetrexed CS4 Santa Cruz Biotechnology DMSO DNA ⁄ RNA synthesis 1 lM
GR032 2-Deoxyglucose CS1 Sigma Distilled water ER stress (glycolysis) 10 mM

GR033 Tunicamycin CS1 Nacalai Tesque (Kyoto, Japan) DMSO ER stress (N-glycosylation) 3 lg ⁄mL

GR034 Thapsigargin CS1 Wako Pure Chemical Industries DMSO ER stress (SERCA) 10 nM

GR035 A23187 CS1 Wako Pure Chemical Industries DMSO ER stress (Ca2+ ionophore) 3 lM
GR036 Vorinostat (16 h) CS5 Cayman Chemical Company DMSO HDAC 10 lM
GR037 Bortezomib (16 h) CS5 Millennium Pharmaceuticals DMSO Proteasome 100 nM

GR038 Vincristine (16 h) CS5 Eli Lilly Distilled water Tubulin 30 nM

GR039 Paclitaxel (16 h) CS5 Bristol-Myers Squibb DMSO Tubulin 30 nM

GR040 Docetaxel (16 h) CS5 Astra Zeneca DMSO Tubulin 30 nM

GR041 5-FU (16 h) CS5 Sigma DMSO Pyrimidine 100 lM
GR042 Mitomycin C (16 h) CS5 Sigma 50% DMSO DNA alkylator 10 lM
GR043 Vorinostat CS6 Cayman Chemical Company DMSO HDAC 10 lM
GR044 Bortezomib CS6 Millennium Pharmaceuticals DMSO Proteasome 100 nM

GR045 Vorinostat (16 h) CS7 Cayman Chemical Company DMSO HDAC 10 lM
GR046 Bortezomib (16 h) CS7 Millennium Pharmaceuticals DMSO Proteasome 100 nM

GR047 Gemcitabine (16 h) CS8 Eli Lilly Saline Pyrimidine 1 lM
GR048 Oxaliplatin (16 h) CS8 Yakult DMSO DNA cross-linker 3 lM
GR049 Bleomycin (16 h) CS8 Sigma Distilled water DNA cleavage 30 lg ⁄mL

GR050 Neocarzinostatin (16 h) CS8 Sigma – DNA cleavage 3 lg ⁄mL

GR051 Methotrexate (16 h) CS8 Sigma DMSO DHFR 1 lM
GR052 6-Mercaptopurine (16 h) CS8 Sigma DMSO Purine 100 lM
GR053 PP242 (16 h) CS8 Sigma DMSO mTOR 10 lM
GR054 Etoposide (16 h) CS8 Bristol-Myers Squibb DMSO Topo II 30 lM
GR055 Pemetrexed (16 h) CS8 Santa Cruz Biotechnology DMSO DNA ⁄ RNA synthesis 1 lM

17-AAG, 17-N-allylamino-17-demethoxygeldanamycin; DHFR, dihydrofolate reductase; ER, endoplasmic reticulum; 5-FU, 5-fluorouracil; HDAC,
histone deacetylase; Hsp90, heat shock protein 90; mTOR, mammalian target of rapamycin; SERCA, sarco ⁄ endoplasmic reticulum Ca2+-ATPase;
Topo, topoisomerase. –, This product was provided as a solution (20 mM MES [2-Morpholinoethanesulfonic acid, monohydrate] buffer, pH 5.5)
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according to the protocols provided by the manufacturer.
Hybridization was carried out at 45°C for 16 h in a hybridiza-
tion oven (Affymetrix). The GeneChips were then automati-
cally washed and stained with streptavidin–phycoerythrin
conjugate in an Affymetrix GeneChip Fluidics Station. Fluo-
rescence intensities were scanned with a Gene-Array Scanner
(Affymetrix). Affymetrix GeneChip Command Console
(AGCC) version 3.1 was used for the data output.

Statistical analysis. All analyses except for original C-map
analysis were carried out using R version 2.15.0 (http://www.
r-project.org/) and Bioconductor version 2.10 (http://biocon-
ductor.org/).
Data preprocessing. The R package software of Affymetrix

Micro Array Suite 5.0, MAS5, was used to generate signal
intensities for each of the HG-U133 Plus 2.0 arrays in the
study. Expression values were normalized to a mean target
level of 100.
Identifying gene signatures. We examined gene expression

changes in HT-29 cells after exposure to 35 anticancer com-
pounds (55 treatment samples). Gene sets were extracted and
classified as upregulated or downregulated after exposure to
the drug. For each treatment sample, we calculated treatment-
to-control ratio statistics and selected upregulated and down-
regulated probe sets as gene signatures (see Doc. S1 for
details).
Hierarchical clustering. Probe sets for hierarchical cluster-

ing were composed of the collection of all gene signatures.
We carried out hierarchical clustering using the logarithm of
the ratio statistics of 55 treatment samples and the probe set.
We used Ward’s method for linkage and Pearson’s correlation
for distance metric.
Connectivity map analysis. For the C-map analysis, we pre-

pared the up- and down-signature as input query, which con-
sists of the HG-U133A probe sets. For each treatment sample,
up-signature (ratio >3) and down-signature (ratio <1 ⁄3) were
selected from the HG-U133 Plus 2.0 array data. The probe sets
not included in the HG-U133A array were deleted. We used
the online application in the C-map website developed by
Lamb et al.(3) (http://www.broadinstitute.org/cmap/).
Ranking gene expression changes. We adopted the connec-

tivity score based on the Kolmogorov–Smirnov statistic as
developed by Lamb et al.(3) to investigate the relationship
between gene signature and compound. In order to calculate
the Kolmogorov–Smirnov statistic faster, it was effective to
rank the probe sets in descending order of the treatment-
to-control ratio and save as a database. For each treatment
sample, ranking was calculated as described in the support-
ing online material for Lamb et al.(1) We developed a
program for calculating connectivity scores. The source code
of this program is available on our website (http://scads.jfcr.
or.jp/db/cs/).
Finding significant pathways from the KEGG PATHWAY

database. The KEGG PATHWAY is a service of KEGG,(5)

which is a collection of manually drawn pathway maps that
represent knowledge on biological networks. We carried out
an analysis to identify significant pathways from the KEGG
database. For each pathway, probe sets included in the path-
way were extracted using the packages hgu133plus2.db and
KEGG.db in Bioconductor. Next, gene signatures and probe
sets in the pathway were converted to gene symbols. For each
pathway, a 2 9 2 contingency table was created for statistical
testing (see Doc. S1). We carried out Fisher’s exact test for all
pathways and extracted significant pathways. According to the
multiple testing theory, significance was defined using the
criterion that the false discovery rate(6) equals 0.15. The
pathways were called significant when the values were <0.15.
We developed an R program for the analysis in which the
package qvalue in Bioconductor was used for the calculation

of q-values.(7,8) The source code of the program is available
on our website.

Results

Development of a gene expression database of antitumor
agents. For our analyses, we chose 35 compounds consisting of
clinically-used standard anticancer agents and related drugs
(Table 1). The p53-mutant human colon cancer HT-29 cell line
was used in this study because it represents a typical type of solid
tumor and is relatively resistant to cell cycle arrest and apoptosis.
We examined the growth inhibitory effect of these agents on the
cells and determined effective dosages of the drugs (Fig. S1). We
used a concentration of drug that was 3–10-fold greater than the
GI50 value and caused >80% growth inhibition after 48 h of
treatment (Table 1). Drug treatment conditions were carefully
chosen to enable primary changes in gene expression to be moni-
tored before a secondary cellular response had emerged. Cells
were treated for a relatively short time (6 h) for acquisition of
gene expression data. As shown in Table 2, the majority of agents
caused significant gene expression changes after treatment. How-
ever, for the agents that did not show a dramatic effect on gene
expression after 6 h of treatment, we also analyzed the gene
expression data after a longer exposure time (16 h) (Table 2).

Hierarchical clustering and C-map analysis. With the data that
we obtained, we first used hierarchical cluster analysis. The
analysis revealed that the drugs were divided into two major
clusters, one containing conventional genotoxic drugs and the
other including tubulin binding agents (paclitaxel, docetaxel,
and vincristine), proteasome inhibitors (bortezomib and
MG-132) and Hsp90 inhibitors (geldanamycin and 17-AAG)
(Fig. 1). Moreover, we found that drugs with similar mecha-
nisms of action were clustered together. As shown in Figure 1,
DNA topoisomerase I inhibitors (camptothecin and SN-38),
HDAC inhibitors (vorinostat and trichostatin A), mammalian
target of rapamycin (mTOR) inhibitors (everolimus, temsiroli-
mus, and PP242), the tubulin binding agents (paclitaxel, docet-
axel, and vincristine), the proteasome inhibitors (bortezomib
and MG-132), the Hsp90 inhibitors (geldanamycin and 17-
AAG), and ER stress inducers (thapsigargin, 2-deoxyglucose,
tunicamycin, and A23187) each formed a mechanism-specific
cluster. Further analysis revealed that each cluster of compounds
modulates a cluster-specific signature gene set (Table S1). How-
ever, the 16-h treatment data tended to cluster together. Next we
carried out the C-map analyses for further validation. This anal-
ysis used a collection of genome-wide transcriptional expression
data from cells treated with chemical compounds and is useful
in finding functional connections between compounds. When
we used our gene signatures for HDAC inhibitors (trichostatin A
and vorinostat) as “queries”, we were able to obtain output data
that contained compounds with the same mode of action
(Table 3). Similarly, when we entered the signature of the pro-
teasome inhibitors, our output results contained proteasome
inhibitors, MG-262 and MG-132, as hit compounds (Table S2).
To validate the applicability of our gene signature data to other

types of cancer, we carried out an additional study on bortezo-
mib. This agent is used for myeloma treatment. Therefore, we
treated a human myeloma RPMI8226 cells with bortezomib and
obtained gene expression data. Our clustering analysis revealed
that the bortezomib signature data of RPMI8226 cells was clus-
tered together with the proteasome inhibitors’ data of HT-29
cells. Similarly, when RPMI8226 cells were treated with SN-38
or doxorubicin, the signature data were clustered with DNA dam-
aging agents’ data of HT-29 cells. (Fig. S2). These results con-
firmed that our signature data are applicable to other cancer cells.
Collectively, these analyses showed that our gene expression

data were reliable enough to analyze modes of action of the
anticancer drugs.
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Application of our database for analysis of the mode of
action. Currently, there is no gene expression database open to
the public that is specialized in anticancer agents. Based
on the obtained gene expression data of anticancer agents,
we developed our calculation program (connectivity scoring

analysis) to compare gene signatures of test compounds to
those of antitumor agents in our database for prediction of
their likely modes of action. Basically, we adapted the algo-
rithms of C-map to our datasets. The C-map contains data for
a large number of compounds, but lacks information for

Table 2. Number of upregulated and downregulated gene signatures for 35 anticancer compounds (55 treatment samples)

Treatment sample ID Compound Upregulated 9 3† (92‡) Downregulated 9 3† (92‡)

GR001 Cisplatin 19 (256) 52 (697)

GR002 Trichostatin A 232 (1427) 181 (1238)

GR003 Vorinostat 233 (1389) 173 (1245)

GR004 Bortezomib 94 (494) 68 (659)

GR005 MG-132 63 (428) 51 (583)

GR006 Geldanamycin 0 (29) 0 (32)

GR007 17-AAG 7 (68) 0 (41)

GR008 Vincristine 0 (45) 0 (6)

GR009 Paclitaxel 0 (41) 0 (9)

GR010 Docetaxel 1 (37) 0 (8)

GR011 5-FU 3 (131) 14 (154)

GR012 Gemcitabine 2 (26) 5 (49)

GR013 Melphalan 85 (716) 242 (1553)

GR014 Mitomycin C 3 (69) 9 (252)

GR015 Oxaliplatin 0 (11) 9 (81)

GR016 Bleomycin 0 (6) 1 (5)

GR017 Actinomycin D 26 (294) 188 (1384)

GR018 Neocarzinostatin 0 (57) 2 (138)

GR019 Methotrexate 1 (28) 8 (62)

GR020 6-Mercaptopurine 2 (38) 2 (52)

GR021 Temsirolimus 10 (132) 0 (24)

GR022 Everolimus 16 (162) 0 (13)

GR023 PP242 98 (788) 37 (530)

GR024 Nimustine 7 (131) 13 (318)

GR025 SN38 (Irinotecan) 75 (602) 512 (2445)

GR026 Camptothecin 102 (735) 809 (3151)

GR027 Topotecan 28 (576) 190 (1268)

GR028 Doxorubicin 49 (459) 184 (1323)

GR029 Etoposide 2 (41) 7 (133)

GR030 Mitoxantrone 47 (312) 179 (1408)

GR031 Pemetrexed 2 (16) 5 (34)

GR032 2-Deoxyglucose 130 (586) 16 (439)

GR033 Tunicamycin 209 (768) 63 (673)

GR034 Thapsigargin 69 (323) 3 (119)

GR035 A23187 266 (986) 86 (931)

GR036 Vorinostat (16 h) 434 (2142) 478 (2057)

GR037 Bortezomib (16 h) 268 (1379) 299 (1882)

GR038 Vincristine (16 h) 28 (293) 77 (335)

GR039 Paclitaxel (16 h) 21 (263) 60 (281)

GR040 Docetaxel (16 h) 18 (221) 57 (270)

GR041 5-FU (16 h) 26 (543) 39 (556)

GR042 Mitomycin C (16 h) 25 (404) 57 (605)

GR043 Vorinostat (16 h) 297 (1543) 229 (1444)

GR044 Bortezomib (16 h) 118 (596) 97 (904)

GR045 Vorinostat (16 h) 462 (2266) 465 (2106)

GR046 Bortezomib (16 h) 307 (1551) 373 (1893)

GR047 Gemcitabine (16 h) 15 (339) 8 (186)

GR048 Oxaliplatin (16 h) 7 (167) 53 (410)

GR049 Bleomycin (16 h) 3 (23) 7 (29)

GR050 Neocarzinostatin (16 h) 13 (255) 9 (180)

GR051 Methotrexate (16 h) 67 (692) 53 (507)

GR052 6-Mercaptopurine (16 h) 35 (388) 9 (273)

GR053 PP242 (16 h) 192 (1206) 106 (924)

GR054 Etoposide (16 h) 33 (456) 31 (405)

GR055 Pemetrexed (16 h) 24 (400) 8 (186)

†Number of probe sets such that the treatment-to-control ratio is more than 3 or <1 ⁄ 3 and the larger signal intensity of treatment or control is
300 is shown. ‡Results when the threshold values are changed (2 or 1 ⁄ 2 for ratio, 100 for signal intensity). 17-AAG, 17-N-allylamino-
17-demethoxygeldanamycin; 5-FU, 5-fluorouracil.
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several anticancer agents such as bortezomib. This makes it
difficult to simply focus on a comparison of gene expression
signatures for test compounds and standard anticancer agents.
When we entered the signature gene set of the HDAC inhibi-
tors as a “query” in our established system, we were able to
obtain output data containing HDAC inhibitors, trichostatin A,
or vorinostat (Table 4). Similarly, when we entered the signa-
tures of the proteasome inhibitors, we obtained output data
containing proteasome inhibitors (Table S3). These results
indicate that our system can accurately predict the mode of
action of an anticancer compound. Using this system, we were
able to generate simpler results because our database specifi-
cally focuses on anticancer agents.
Recently, several reports have shown that ER stress is

induced by a wide variety of chemotherapeutic agents.(9–20)

However, to what extent ER stress is involved in the effect of
these agents on cancer cells is still unclear. Because the protea-
some inhibitors (bortezomib and MG-132) and the Hsp90
inhibitors (geldanamycin and 17-AAG), but not other agents,
were closely clustered together with the four ER stress-inducer
agents (thapsigargin, 2-deoxyglucose, tunicamycin, and
A23187) (Fig. 1), we examined whether our connectivity scor-
ing analysis could predict these agents as ER stress inducers.
We first extracted the ER stress signature gene set, consisting
of 58 probe sets whose expressions were all changed by treat-
ment with the four ER stress-inducing agents. Then we entered
the ER signature gene set in our calculation program.
As expected, we obtained a result containing the proteasome
inhibitors (bortezomib and MG-132) as “hit compounds”
(Table 5). By contrast, the output result did not contain the

Hsp90 inhibitors (geldanamycin and 17-AAG). We examined
expression changes of the ER stress genes by these agents in
more detail. Our analysis revealed that the proteasome inhibi-
tors strongly induced the ER stress-related genes, but the
Hsp90 inhibitors did not (Fig. 2). This finding is consistent with
our connectivity scoring analysis. We further found that the
proteasome inhibitors preferentially induced a subset of the ER
stress-related genes (class 1 genes in Fig. 2) and marginally
induced the others (class 2 genes). We carried out the mapping
of class 1 and 2 genes to the KEGG pathway of “protein pro-
cessing in endoplasmic reticulum” and found the class 2 genes
were mainly involved in the core protein processing machinery
in the ER (Fig. S3). By contrast, most of the class 1 genes were
not included in the core protein processing machinery in the
ER, and many of them were known downstream effectors of
main ER stress signaling pathways, including PERK-eIF2alpha-
ATF4, ATF6, and IRE1-XBP1.(21–31) These results show that
the proteasome inhibitors induce atypical ER stress. Thus, our
database and its application program constitute an efficient tool
for predicting the likely modes of action of anticancer agents.

Discussion

Novel free-access platform for evaluating antitumor
agents. Several previous analyses, including the C-map, have
shown that genome-wide gene expression analysis is effective
in predicting modes of action of chemical compounds.(3,4,32–34)

In the present report, we describe the development of a com-
prehensive gene expression dataset specializing in the analysis
of standard antitumor agents. This open-to-the-public database

Fig. 1. Hierarchical cluster analysis based on the collection of gene signatures of 35 anticancer compounds (55 treatment samples). In total,
3237 probe sets were used for clustering. The values in the heatmap are the logarithm of sample-to-control ratio of intensity values. Neither nor-
malizing nor scaling was carried out. 17-AAG, 17-N-allylamino-17-demethoxygeldanamycin; 5-FU, 5-fluorouracil. Green, downregulated genes;
red, upregulated genes.
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is available for evaluating the likely mechanisms of action of
new anticancer compounds.
In our clustering analysis, drugs with similar mechanisms of

action such as genotoxic drugs, proteasome inhibitors, HDAC
inhibitors, and ER stress inducers were clustered together
(Fig. 1). These results strongly suggest that our gene expres-
sion data accurately reflect the mode of action of the agents.
The KEGG pathway analysis confirmed that the ER stress-
related gene set was actually induced by the ER stressors
(Table S4), which is consistent with our clustering results.
We acquired our gene expression data using human colon

cancer HT-29 cells, whereas the C-map data mainly consisted
of data that were obtained using human breast cancer MCF7
cells or human prostate cancer PC3 cells. It is noteworthy that
our signature data of compounds in HT-29 cells were closely
related to those in the C-map (Table 3). Moreover, we
obtained gene expression data in human myeloma RPMI8226

cells and found that the data were closely related with the data
obtained in HT-29 cells (Fig. S2). These results indicate that
our signature data could be applicable to data that are obtained
in other types of cancer.
To obtain gene expression data that reflect the mode of

action of agents, the exposure time of cells to drugs is an
important issue. We basically chose a short exposure time
(6 h) and, in most of the agents, significant gene expression
changes were observed (Table 2) and the data were clustered
in a mechanism of action-dependent manner (Fig. 1). These
results indicate that the exposure time would be basically suit-
able for many agents. By contrast, for some agents that did not
show dramatic effects on gene expression in the 6-h treatment,
we tested a longer exposure time (16 h) (Table 1). However,
we found that the 16-h treatment data tended to cluster
together, even though the agents had different modes of action
(Fig. 1). These observations suggest that longer exposure time
might not necessarily be better than shorter exposure time even
though gene expression changes are increasingly dramatic.
Thus, the drug treatment regime must be carefully chosen for
gene signature acquisition and subsequent mechanism analysis.

Mining cryptic linkages and gaps between ER stress and
related agents. As reported previously, ER stress is closely
related with tumor microenvironment conditions as well as the
effect of several antitumor agents.(32) Therefore, we included
well-known ER stress-inducing agents in our compound panel.
We found that the tubulin binding agents, proteasome inhibi-
tors, and Hsp90 inhibitors were clustered together with the ER
stress inducers in a group different from classical genotoxic
agents (Fig. 1). This observation indicates that these drugs
could have unique modes of action.
It has been reported that proteasome inhibitors induce ER

stress as well as suppressing nuclear factor-jB activation by
interfering with the degradation of I-jB.(12) In our clustering
analysis, the protease inhibitors formed a cluster with the
ER stress inducers (Fig. 1) and the analysis with our pro-
gram predicted that the inhibitors induce ER stress (Table S3).

Table 3. Results of the Connectivity map for HDAC inhibitors, showing

list of ‘hit compounds’ as related compounds to the input gene

signatures

Rank C-map name Dose Cell Score Up Down

(a) Trichostatin A (up, 164; down, 123)

1 Trichostatin A 100 nM MCF7 1.000 0.829 �0.731

2 Trichostatin A 1 lM MCF7 0.990 0.818 �0.727

3 Trichostatin A 100 nM MCF7 0.989 0.811 �0.732

4 Trichostatin A 1 lM MCF7 0.987 0.810 �0.731

5 Trichostatin A 100 nM MCF7 0.983 0.814 �0.720

6 Trichostatin A 100 nM MCF7 0.977 0.820 �0.705

7 Trichostatin A 1 lM MCF7 0.977 0.802 �0.722

8 Trichostatin A 100 nM MCF7 0.974 0.826 �0.695

9 Vorinostat 10 lM MCF7 0.972 0.802 �0.716

10 Trichostatin A 100 nM MCF7 0.970 0.807 �0.707

11 Trichostatin A 100 nM MCF7 0.970 0.806 �0.708

12 Trichostatin A 100 nM MCF7 0.970 0.792 �0.722

13 Trichostatin A 100 nM MCF7 0.969 0.821 �0.691

14 Vorinostat 10 lM MCF7 0.969 0.803 �0.709

15 Trichostatin A 1 lM MCF7 0.968 0.799 �0.711

16 Vorinostat 10 lM MCF7 0.967 0.783 �0.727

17 Trichostatin A 100 nM MCF7 0.967 0.770 �0.738

18 Trichostatin A 1 lM MCF7 0.965 0.784 �0.723

19 Trichostatin A 100 nM MCF7 0.965 0.803 �0.703

20 Trichostatin A 100 nM MCF7 0.963 0.787 �0.716

(b) Vorinostat (up, 157; down, 119)

1 Trichostatin A 1 lM MCF7 1.000 0.818 �0.729

2 Trichostatin A 100 nM MCF7 0.997 0.807 �0.735

3 Trichostatin A 100 nM MCF7 0.992 0.817 �0.716

4 Trichostatin A 1 lM MCF7 0.986 0.800 �0.725

5 Trichostatin A 100 nM MCF7 0.981 0.811 �0.707

6 Trichostatin A 1 lM MCF7 0.980 0.799 �0.716

7 Trichostatin A 100 nM MCF7 0.976 0.812 �0.697

8 Trichostatin A 100 nM MCF7 0.975 0.801 �0.706

9 Trichostatin A 1 lM MCF7 0.970 0.778 �0.721

10 Trichostatin A 100 nM MCF7 0.969 0.814 �0.684

11 Trichostatin A 100 nM MCF7 0.968 0.816 �0.681

12 Trichostatin A 100 nM MCF7 0.967 0.767 �0.729

13 Vorinostat 10 lM MCF7 0.966 0.781 �0.714

14 Vorinostat 10 lM MCF7 0.964 0.803 �0.688

15 Vorinostat 10 lM MCF7 0.963 0.791 �0.698

16 Trichostatin A 1 lM MCF7 0.963 0.801 �0.688

17 Vorinostat 10 lM MCF7 0.963 0.789 �0.700

18 Trichostatin A 1 lM MCF7 0.963 0.784 �0.705

19 Trichostatin A 100 nM MCF7 0.962 0.795 �0.693

20 Vorinostat 10 lM MCF7 0.961 0.799 �0.686

The number of up- and down-signatures are shown in parenthesis.

Table 4. Results of the connectivity scoring analysis using our

database

Rank Compound name
Connectivity

score
Up score Down score

(a) Trichostatin A (up, 232; down, 181)

1 Trichostatin A 1.000 0.992 �0.994

2 Vorinostat 0.992 0.987 �0.984

3 Vorinostat 0.976 0.976 �0.964

4 Vorinostat (16 h) 0.921 0.924 �0.906

5 Vorinostat (16 h) 0.906 0.905 �0.893

6 PP242 0.672 0.693 �0.642

7 Doxorubicin 0.667 0.552 �0.773

8 Etoposide (16 h) 0.661 0.732 �0.581

9 Gemicitabine (16 h) 0.658 0.717 �0.591

10 Neocarzinostatin (16 h) 0.647 0.688 �0.597

(b) Vorinostat (up, 233; down, 173)

1 Vorinostat 1.000 0.992 �0.994

2 Trichostatin A 0.988 0.981 �0.982

3 Vorinostat 0.970 0.963 �0.963

4 Vorinostat (16 h) 0.925 0.925 �0.912

5 Vorinostat (16 h) 0.916 0.918 �0.900

6 PP242 0.684 0.698 �0.660

7 Etoposide (16 h) 0.675 0.745 �0.597

8 Doxorubicin 0.658 0.555 �0.752

9 Neocarzinostatin (16 h) 0.658 0.715 �0.591

10 Gemicitabine (16 h) 0.654 0.726 �0.573

The number of up- and down-signatures are shown in parentheses.
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Moreover, KEGG pathway analysis revealed that these agents
modulate the expression of ER stress-related genes (indicated
as “protein processing in endoplasmic reticulum” in Table S4).

These data support the notion that ER stress could play an
essential role in the mode of action of proteasome inhibitors.
Our gene signature analysis further revealed that the

proteasome inhibitors induce an atypical type of ER stress. In
particular, we found that the inhibitors induce a subset of ER
stress-related genes (class 1 genes) while only marginally
inducing the other genes (class 2 genes) (Figs. 2, S3). It is still
unclear what causes this atypical gene expression pattern. Pre-
sumably there is a negative feedback mechanism that selec-
tively suppresses class 2 gene expression. It is noteworthy that
the analysis with our program was able to detect the mechanis-
tic difference between the proteasome inhibitors and the well-
known ER stress-inducing agents. Namely, when we entered
the ER signature gene set in our program, the ER stress induc-
ers ranked significantly higher than the proteasome inhibitors
(Table 5). Thus, our program could potentially predict detailed
mechanisms of action of anticancer drugs.
The Hsp90 inhibitors did not typically induce the ER stress-

related genes (Fig. 2, Table 5), although they were clustered
with the ER stress inducers (Fig. 1). To determine the connec-

Table 5. Results of the connectivity scoring analysis using our

database. Endoplasmic reticulum stress-related genes (58 probe sets)

were used as input queries

Rank Compound name Connectivity score Up score Down score

1 Tunicamycin 1.000 0.993 �0.994

2 A23187 0.999 0.989 �0.997

3 2-Deoxyglucose 0.956 0.972 �0.927

4 Thapsigargin 0.884 0.915 �0.841

5 Bortezomib 0.757 0.766 �0.738

6 MG-132 0.757 0.771 �0.733

7 Bortezomib 0.746 0.770 �0.712

8 Everolimus 0.711 0.790 �0.622

9 Temsirolimus 0.704 0.734 �0.664

10 Bortezomib (16 h) 0.700 0.729 �0.661

Class 1

Class 2

Fig. 2. Heatmap of subcluster using endoplasmic reticulum stress-related genes (58 probe sets), whose expressions were all changed by treat-
ment with the four stress-inducing agents. The row names are gene symbols of 58 probe sets, which were converted using the NetAffx database,
NA32, supplied by Affymetrix. Two main clusters of upregulated genes were named “class 1” and “class 2” genes. 17-AAG, 17-N-allylamino-17-
demethoxygeldanamycin.
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tion between the inhibitors and ER stress, we carried out our
connectivity scoring analysis. We found that the signature of
the Hsp90 inhibitors weakly correlated with those of some ER
stress inducers, such as thapsigargin or tunicamycin (Table
S5), suggesting that the inhibitors would not be typical ER
stressors but could marginally induce ER stress. It was
reported that some Hsp90 inhibitors induce ER stress, but the
level of ER stress induction differs among the inhibitors.(20)

These data suggest that ER stress induction by Hsp90 inhibi-
tors could depend both on compound types and on cell types.
As described above, we developed in-house R programs for

calculating scores for ranking gene expression changes, and
for searching statistically significant pathways from the KEGG
database. The program for searching pathways enables us to
easily produce simple charts for each pathway analyzed and
give graphical information of the location of genes in each
pathway. The programs and database developed in this study
will be made available on our website. Our database included
some compounds that are not present in the C-map database.
Therefore, unanticipated characteristics of a novel compound
might be obtained by using our database.
In summary, we have developed a publicly available gene

expression database of standard anticancer agents as well as
some related application programs. Our gene expression data-
base is specialized in antitumor agents, and our datasets
include some anticancer agents not contained in other data-
bases, such as C-map. To establish a more comprehensive
database, we plan to add new antitumor agents and update
our database. Thus, our database would be suitable for
primary characterization of new candidate compounds in
comparison with known anticancer agents. We have also

acquired data concerning differential sensitivity of human
cancer cell lines to anticancer agents and established a “sen-
sitivity-based” signature database.(33–36) Further trials are
planned to develop an integrated database of antitumor agents
that include both gene expression-based and sensitivity-based
signatures. Our public database and related programs will be
helpful for evaluating candidate compounds as novel antitumor
agents.
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