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ABSTRACT
Background: Aging is associated with skeletal muscle anabolic
resistance (i.e., reduced muscle protein synthesis during anabolic
conditions such as hyperaminoacidemia). The results from studies
conducted in cell culture systems and animals suggest that both
vitamin D and conjugated linoleic acids (CLAs) stimulate muscle
protein synthesis.
Objectives: To conduct a randomized, double-blind, placebo-
controlled clinical trial to determine the independent and combined
effects of dietary vitamin D and CLA supplementation on myofibril-
lar protein synthesis rates in sedentary older adults.
Methods: Thirty-two sedentary, older adults were randomized to
receive either: 1) 2000 IU vitamin D-3 (Vit D) per day; 2) 4000 mg
CLA per day; 3) both Vit D (2000 IU/d) and CLA (4000 mg/d);
or 4) placebo for 8 wk. Myofibrillar protein synthesis rates were
evaluated by using intravenous [ring-2H5]phenylalanine infusion
in conjunction with muscle biopsies during basal, postabsorptive
conditions and during combined amino acid and insulin infusion
before and after the supplementation period.
Results: Before the intervention, basal myofibrillar protein synthesis
rates were not different among groups (Placebo: 0.033 ± 0.003;
Vit D: 0.034 ± 0.002; CLA: 0.029 ± 0.005; Vit D + CLA:
0.038 ± 0.005 %·h-1), and hyperinsulinemia–hyperaminoacidemia
increased myofibrillar protein synthesis rates by ∼35%. Compared
with placebo, neither Vit D nor CLA nor combined Vit D + CLA
supplementation affected the basal myofibrillar protein synthesis
rates (placebo: 0.040 ± 0.004%/h; Vit D: 0.044 ± 0.006%/h;
CLA: 0.039 ± 0.006%/h; Vit D + CLA: 0.040 ± 0.007%/h)
or the hyperinsulinemia–hyperaminoacidemia–induced increase in
myofibrillar protein synthesis (percentage increase from basal before
and after the interventions: placebo, 30 ± 11 and 36 ± 11; Vit D,
38 ± 8 and 34 ± 10; CLA, 50 ± 14 and 51 ± 16; Vit D + CLA,
29 ± 15 and 35 ± 8).
Conclusions: Vitamin D and/or CLA supplementation, at the doses
provided in our study, does not have muscle anabolic effects in
sedentary older adults. The study was registered at clinicaltrials.gov
(NCT03115775). Am J Clin Nutr 2020;112:1382–1389.
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Introduction
Aging is associated with a progressive decline in muscle mass

(1, 2), which is at least partly due to age-associated anabolic
resistance (i.e., reduced muscle protein synthesis during anabolic
conditions such as hyperaminoacidemia) (3–8). The results from
studies conducted in cell culture systems and animals suggest that
both vitamin D and conjugated linoleic acids (CLAs) can increase
muscle protein synthesis and attenuate or even prevent the age-
associated decline in muscle mass. First, vitamin D enhanced
the stimulating effect of leucine and insulin on protein synthesis
in murine C2C12 myotubes in a dose-dependent manner (9).
Second, mice with deletion of the vitamin D receptor in myocytes
had ∼10% lower muscle mass compared with controls (10),
and dietary vitamin D depletion decreased the rate of muscle
protein synthesis by ∼40% in healthy old rats (11). Third,
adding CLA to the diet of healthy old mice and rats increased
the muscle protein synthesis rate (12) and prevented the age-
associated decline in skeletal muscle mass (13, 14). Although
the mechanisms responsible for the anabolic effects of vitamin
D and CLA are unclear, they are likely different, and therefore
most likely additive, because CLA increased the basal rate of
muscle protein synthesis only (12), whereas vitamin D increased
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the basal rate of muscle protein synthesis and augmented the
amino acid–induced increase in muscle protein synthesis rate
(9, 11). The effects of vitamin D and CLA on muscle protein
turnover in people are unknown, and the results from studies that
evaluated the effect of vitamin D on muscle mass are equivocal,
most likely because they used a cross-sectional study design
and/or short-term interventions (15–28), which makes it difficult
to detect small changes in muscle mass. However, treatment-
induced changes in the rate of muscle protein synthesis that
cause an increase in muscle mass typically occur quickly and
are readily detectable (6, 29–31). To fill this gap, we conducted
a randomized, double-blind, placebo-controlled clinical trial to
determine the independent and combined effects of dietary
vitamin D and CLA supplementation on the rate of muscle
protein synthesis in older adults. Participants received either:1)
2000 IU vitamin D-3 (Vit D)/d; 2) 4000 mg CLA/d; 3) both
Vit D (2000 IU/d) and CLA (4000 mg/d); or 4) placebo for 8
wk. Myofibrillar protein synthesis rates were evaluated by using
an intravenous [ring-2H5]phenylalanine infusion in conjunction
with muscle biopsies during basal, postabsorptive conditions and
during combined amino acid and insulin infusion before and after
8 wk of consuming the supplements.

Methods

Study participants

Participant recruitment and flow is shown in Supplemental
Figure 1. A total of 70 men and women were assessed for
eligibility and 32 completed this randomized, double-blind,
placebo-controlled trial between July 2017 and July 2019. All
participants were considered in good health (i.e., no evidence
of significant cardiovascular disease or organ dysfunction)
after completing a comprehensive medical evaluation, which
included a health history and physical examination and standard
blood tests. Furthermore, all participants fulfilled the following
inclusion criteria: ≥60 and ≤85 y old, BMI ≥18.5 or ≤35
kg/m2, stable body weight, not engaged in an exercise program
for ≥3 consecutive months before starting the study, and
suboptimal serum 25-hydroxyvitamin D concentration, defined
as <35 ng/mL (32–34). None of the participants used tobacco
products, or consumed excessive amounts of alcohol (>1
drink/d), or took dietary supplements or medications that could
affect muscle protein metabolism or were incompatible with
the study procedures (e.g., fish oil, anticoagulants). Partic-
ipants’ total body fat mass and fat-free mass (FFM) were
measured by using DXA (Lunar iDXA; GE Healthcare). Written,
informed consent was obtained from all participants before
their participation in the study, which was approved by the
Human Research Protection Office and the Clinical Research
Unit Advisory Committee at Washington University School of
Medicine in St Louis, MO, and registered on clinicaltrials.gov
(NCT03115775).

Experimental protocol

Each participant completed 2 stable isotope-labeled tracer
infusion studies to determine the effect of the interventions on the
myofibrillar protein synthesis rate during basal, postabsorptive
conditions and during combined amino acid and insulin infusion.

The first study was performed before starting the intervention;
the second took place after 8 wk of dietary supplementation
with either: 1) 2000 IU Vit D/d; 2) 4000 mg CLA (Tonalin
FFA 80) per day; 3) both Vit D (2000 IU/d) and CLA (4000
mg/d); or 4) placebo (corn oil). Participants were randomly
assigned to the groups by the clinical research coordinator using a
computerized centralized randomization scheme before baseline
testing. All key study personnel and participants were blinded
to the treatments. All supplements were packaged in identical-
looking capsules, and were donated by BASF SE. Compliance
was evaluated by pill count; in addition, we assessed changes in
serum vitamin D concentration and plasma triglyceride fatty acid
composition.

Participants were instructed to adhere to their usual diet
and to refrain from vigorous physical activities for ≥3 d
before testing. On the evening before the metabolic study,
participants were admitted to the Clinical Translational Research
Unit at Washington University School of Medicine. At 20:00,
participants’ hand grip strength was measured by using a
Jamar hydraulic dynamometer (Patterson Medical); immediately
thereafter, the participants consumed a standard meal and then
rested in bed and fasted (except for water) until completion of
the study the next day. At ∼06:00 on the following morning,
a cannula was inserted into an antecubital vein for the infusion
of [ring-2H5]phenylalanine (Cambridge Isotope Laboratories
Inc) to measure the rate of myofibrillar protein synthesis;
another cannula was inserted into a vein of the contralateral
hand, which was warmed to 50◦C for blood sampling. At
∼06:45, a primed, constant infusion of [ring-2H5]phenylalanine
(priming dose: 7.9 μmol/kg FFM; infusion rate: 0.07 μmol/kg
FFM/min) was started and maintained for 7 h. Four hours
after the start of the tracer infusion, a hyperaminoacidemic–
hyperinsulinemic clamp was started and maintained for 3 h.
Human insulin (Novolin R; Novo Nordisk) was infused at a
rate of 20 mU/m2 body surface area (BSA)·per minute (initiated
with priming doses of 80 mU/m2 BSA/min for 5 min and then
40 mU/m2 BSA/min for an additional 5 min) and Travasol
10% (Baxter) was infused at a rate of 105 mg amino acids/kg
FFM/h (priming dose: 35 mg amino acids/kg FFM) to raise
plasma insulin and amino acid concentrations to within the range
normally seen after meal consumption (35–37). Euglycemia
(blood glucose concentration of ∼100 mg/dL) was maintained
during the clamp procedure by variable-rate infusion of 20%
dextrose (Baxter). To minimize changes in plasma phenylalanine
isotopic enrichment during the clamp due to the increased amino
acid rate of appearance in plasma, the [ring-2H5]phenylalanine
infusion rate was increased to 0.14 μmol/kg FFM/min during the
clamp.

Blood samples were obtained before beginning the tracer
infusions and at 60, 120, 180, 210, 220, 230, 240, 300, 360,
390, 400, 410, and 420 min to determine the labeling of
phenylalanine in plasma and plasma glucose, amino acid, and
insulin concentrations. Additional blood was obtained every 10
min during the clamp to monitor plasma glucose concentration.
Muscle tissue (∼100 mg) was obtained under local anesthesia
(lidocaine, 2%) from the vastus lateralis portion of the quadriceps
femoris by using a Tilley–Henkel forceps at 60 min and 240
min (to determine the basal myofibrillar protein synthesis rate)
and at 420 min, that is, 3 h after starting the clamp procedure
(to determine the myofibrillar protein synthesis rate during
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hyperaminoacidemia–hyperinsulinemia). The first and second
biopsies were obtained from the same incision but the forceps was
directed in a proximal and distal direction, respectively, so that
the 2 biopsies were collected ∼5–10 cm apart. The third biopsy
was obtained from the contralateral leg. Muscle samples were
immediately washed in ice-cold saline solution (0.9% NaCl),
snap frozen in liquid nitrogen, and stored at –80◦C until further
analysis.

Sample processing and analyses

Plasma glucose concentration was measured on an automated
glucose analyzer (Yellow Spring Instruments). Plasma insulin
concentration was determined by using an immunoassay (Elec-
sys; Roche Diagnostics). Plasma amino acid concentrations,
phenylalanine tracer-to-tracee ratios (TTR), and plasma triglyc-
eride fatty acid composition were determined by using GC-MS
(6, 38, 39). To determine phenylalanine labeling in myofibrillar
proteins, frozen muscle samples (∼50 mg) were homogenized in
10× w/v of cell lysis buffer (Cell Signaling, #9803) containing
1:100× protease and phosphatase inhibitor cocktail (Cell Sig-
naling, #5870 and #5871, respectively); samples were heated to
50◦C with 0.3M NaOH for 30 min and then centrifuged (10,000
× g for 5 min) and the supernatants transferred to glass tubes
containing 1M perchloric acid (PCA) to precipitate myofibrillar
proteins, which were hydrolyzed overnight with 6N HCl. Amino
acids in the protein hydrolysate were purified on cation-exchange
columns (Dowex 50W-X8–200, Millipore/Sigma, #217514),
and the tertiary ButylDiMethylSilyl (t-BDMS) derivative of
phenylalanine prepared to determine its TTR by GC-MS analysis
(38, 40).

Calculations

The muscle protein fractional synthesis rate (FSR) was calcu-
lated from the rate of incorporation of [ring-2H5]phenylalanine
into muscle protein using a standard precursor-product model as
follows: FSR = �Eprotein/Eplasma × 1/t × 100, where �Eprotein is
the change in protein-bound phenylalanine enrichment between
2 consecutive biopsies, Eplasma is the average free phenylalanine
TTR in plasma, and t is the time between biopsies. We used
the average plasma phenylalanine labeling between 60 and 240
min (basal) and 270 and 420 min (clamp) as surrogate for the
phenylalanine labeling in the precursor pool (i.e., aminoacyl-
tRNA) (41, 42).

Statistical analysis

Data analysis.

Statistical analysis was performed by using GraphPad prism
8 (GraphPad Software) and RStudio version 1.2.1335 (RStudio,
Inc). After normal data distribution was confirmed, 1-factor
ANOVA was performed to examine whether differences among
groups existed in subject characteristics at baseline. Repeated
measures ANOVA with group and condition (basal compared
with clamp) as factors were used to compare myofibrillar protein
FSRs, the primary study outcome, and other metabolic outcomes
(e.g., plasma glucose, insulin, and amino acid concentrations)
among groups at baseline (before the intervention). ANCOVA

with the pretreatment value as covariate was used to evaluate
treatment effects on study outcomes (e.g., myofibrillar protein
synthesis rates during basal conditions). A P value ≤0.05
was considered statistically significant. Data are presented as
means ± SEM unless otherwise noted.

Sample size estimation.

In a study we conducted to evaluate the effect of fish oil–
derived n–3 PUFA supplementation on the rate of muscle protein
synthesis in older adults by using the same study design as in the
present study (6), the muscle protein synthesis rates at baseline
in the intervention and control groups were 0.036 ± 0.008
and 0.029 ± 0.013%/h, respectively, during basal conditions,
and 0.051 ± 0.017 and 0.047 ± 0.018%/h, respectively, during
hyperinsulinemia–hyperaminoacidemia. The n–3 PUFA treat-
ment effect during hyperinsulinemia–hyperaminoacidemia was
0.022%/h. Assuming the larger SD during both basal conditions
and during hyperinsulinemia-hyperaminoacidemia (0.013%/h
and 0.018%/h, respectively), a power ≥0.8, and a significance
cut-off value of α ≤ 0.05, we estimated that we could detect
a 0.018%/h increase during basal conditions and a 0.025%/h
increase during insulin and amino acid infusion with 8 subjects
per group. Assuming the smaller SDs (0.008%/h and 0.017%/h),
we estimated that we could detect increases of 0.011%/h and
0.023%/h during basal conditions and during hyperinsulinemia–
hyperaminoacidemia, respectively, with 8 subjects per group.
The power to detect main effects of Vit D or CLA treatment
(i.e., Vit D alone and combined Vit D + CLA compared with
placebo or CLA alone, and combined Vit D + CLA compared
with placebo) exceeds the power to detect treatment effects in
each of the groups because of the larger samples size (n = 8 +
8 = 16).

Results

Subject characteristics

Participants in the 4 groups were matched on age, sex, body
weight, and body composition (Table 1). Basic metabolic health
status and serum vitamin D concentration were not different
among groups (Table 1). The calendar month when participants
started the interventions, which could affect the vitamin D status
due to seasonal differences in exposure to sunlight, was not
different among the 4 groups (Vit D: 6.6 ± 1.1; CLA: 5.7 ± 1.2;
combined Vit D + CLA: 6.5 ± 1.2; placebo: 6.5 ± 1.2, where
January = 1 and December = 12).

Compliance with treatment and biomarkers of supplement
intake

Average compliance, as judged by the leftover pill count, was
96 ± 2% in the Vit D group, 99 ± 1% in the CLA group, 95 ± 4%
in the combined Vit D + CLA group, and 96 ± 5% in the placebo
group. The serum vitamin D concentration increased by ∼25% in
the Vit D alone and combined Vit D + CLA groups and slightly
decreased in the CLA alone and placebo groups (Figure 1). The
contribution of linoleic acid to total plasma triglyceride fatty acid
content increased in the CLA alone and combined Vit D + CLA
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TABLE 1 Subjects’ age, body weight, body composition, and plasma glucose, lipid, and vitamin D concentrations at baseline, before starting the
interventions1

Placebo Vit D CLA Vit D + CLA

Men/women 3/5 3/6 4/3 3/5
Race (C/AA/other) 8/0/0 8/1/0 7/0/0 8/0/0
Age, y 69 ± 1 69 ± 2 67 ± 2 70 ± 2
BMI, kg/m2 28 ± 2 28 ± 1 27 ± 2 28 ± 2
Weight, kg 79 ± 5 78 ± 4 79 ± 4 82 ± 5
Fat-free mass, kg 48 ± 3 46 ± 3 50 ± 3 48 ± 4
Body fat, % 38 ± 4 41 ± 2 36 ± 4 40 ± 2
Glucose, mg/dL 100 ± 4 101 ± 3 98 ± 4 95 ± 3
Triglycerides, mg/dL 95 ± 13 104 ± 11 119 ± 25 107 ± 12
LDL-cholesterol, mg/dL 120 ± 14 121 ± 9 101 ± 14 111 ± 6
HDL-cholesterol, mg/dL 66 ± 6 65 ± 4 54 ± 7 56 ± 5
Vitamin D-3, ng/mL 29 ± 1 23 ± 2 27 ± 2 23 ± 3

1Data are mean ± SEM. One-factor ANOVA was used to compare outcomes among groups. AA, African American; C, Caucasian; CLA, conjugated
linoleic acid; Vit D, vitamin D.

groups but remained unchanged in the Vit D alone and placebo
groups (Figure 1).

Plasma glucose, insulin, and amino acid concentrations and
enrichment

Basal plasma glucose, insulin, and amino acid concentrations
were not different among the groups before starting the
intervention (Table 2). During the hyperinsulinemic–euglycemic
clamp with concomitant amino acid infusion, plasma glucose was
successfully maintained at ∼100 mg/dL, insulin increased from
∼10 to ∼50 mU/L, and amino acids increased from ∼2300 to

FIGURE 1 Treatment-induced changes in serum vitamin D-3 concentra-
tion (top) and contribution of linoleic acid to total plasma triglyceride fatty
acid content (bottom) in the placebo (n = 8), vitamin D (Vit D, n = 9),
conjugated linoleic acid (CLA, n = 7), and combined Vit D + CLA (n = 8)
supplementation groups. Values are means ± SEM.

∼3200 μM with no differences among groups (Table 2). Glucose,
insulin, and amino acid concentrations were not affected by
the treatments (Table 2). Plasma phenylalanine enrichment was
stable from the time of the first muscle biopsy to the time of
the third muscle biopsy, both before and after the interventions
(Supplemental Figure 2).

Myofibrillar protein synthesis rate

Basal myofibrillar protein synthesis rates before the
interventions were not different among groups (placebo:
0.033 ± 0.003%/h; Vit D: 0.034 ± 0.002%/h; CLA:
0.029 ± 0.005%/h; and Vit D + CLA: 0.038 ± 0.005%/h);
hyperinsulinemia–hyperaminoacidemia increased myofibrillar
protein synthesis rates by ∼35% without a difference among the
groups (placebo: 0.042 ± 0.005%/h; Vit D: 0.048 ± 0.006%/h;
CLA: 0.048 ± 0.005%/h; and Vit D + CLA: 0.047 ± 0.005%/h)
(Figure 2). Compared with placebo, the treatments had no
effect on basal myofibrillar protein synthesis rates (placebo:
0.040 ± 0.004%/h; Vit D: 0.044 ± 0.006%/h; CLA:
0.039 ± 0.006%/h; and Vit D + CLA: 0.040 ± 0.007%/h),
myofibrillar protein synthesis rates during hyperinsulinemia–
hyperaminoacidemia (placebo: 0.056 ± 0.007%/h; Vit D:
0.056 ± 0.005%/h; CLA: 0.057 ± 0.009%/h; and Vit
D + CLA: 0.055 ± 0.011%/h), or the hyperinsulinemia–
hyperaminoacidemia–induced increase in myofibrillar protein
synthesis rates (percentage increase from basal before and after
the interventions: placebo, 30 ± 11 and 36 ± 11; Vit D, 38 ± 8
and 34 ± 10; CLA, 50 ± 14 and 51 ± 16; Vit D + CLA,
29 ± 15 and 35 ± 8) (Figure 2). It is unlikely that our study
lacked sufficient statistical power to detect beneficial treatment
effects because there was no trend (neither statistically nor
numerically) for increased myofibrillar protein synthesis rates in
any of the treatment groups compared with the placebo group;
moreover, we did not observe a treatment effect even when
we combined the Vit D alone and the Vit D + CLA groups or
the CLA alone and the Vit D + CLA groups compared with
those that did not receive Vit D or CLA, respectively (data not
shown).
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TABLE 2 Plasma glucose, insulin, and amino acid concentrations during basal conditions and during the hyperinsulinemic euglycemic clamp with
concomitant amino acid infusion before and after the interventions1

Before After

Basal Clamp Basal Clamp

Glucose, mg/dL
Placebo 96 ± 4 99 ± 2 95 ± 4 99 ± 2
Vit D 96 ± 2 99 ± 1 95 ± 3 97 ± 1
CLA 95 ± 3 98 ± 2 95 ± 4 100 ± 3
Vit D + CLA 94 ± 2 96 ± 3 94 ± 3 103 ± 3

Insulin, mU/L
Placebo 8.8 ± 1.7 50 ± 6∗ 7.8 ± 1.1 50 ± 7∗
Vit D 9.2 ± 1.0 46 ± 2∗ 10.0 ± 1.1 48 ± 4∗
CLA 10.4 ± 3.6 47 ± 6∗ 9.8 ± 3.3 45 ± 5∗
Vit D + CLA 9.7 ± 1.2 52 ± 6∗ 9.3 ± 1.2 48 ± 7∗

Total amino acids, μM
Placebo 2400 ± 275 3197 ± 185∗ 2327 ± 172 3188 ± 137∗
Vit D 2242 ± 138 3358 ± 195∗ 2330 ± 141 3313 ± 181∗
CLA 2212 ± 76 3154 ± 110∗ 2347 ± 95 3261 ± 114∗
Vit D + CLA 2329 ± 128 3281 ± 142∗ 2537 ± 230 3380 ± 206∗

Essential amino acids, μM
Placebo 1108 ± 153 1568 ± 96∗ 1086 ± 77 1586 ± 73∗
Vit D 1081 ± 69 1694 ± 113∗ 1127 ± 76 1710 ± 112∗
CLA 1061 ± 40 1600 ± 60∗ 1123 ± 38 1672 ± 64∗
Vit D + CLA 1121 ± 68 1672 ± 85∗ 1158 ± 115 1676 ± 110∗

Phenylalanine, μM
Placebo 113 ± 9 210 ± 11∗ 117 ± 11 211 ± 14∗
Vit D 101 ± 5 190 ± 9∗ 109 ± 5 193 ± 10∗
CLA 104 ± 6 198 ± 12∗ 109 ± 6 206 ± 9∗
Vit D + CLA 109 ± 10 196 ± 10∗ 109 ± 8 201 ± 8∗

1Data are mean ± SEM. ∗Different from corresponding basal value (p<0.05). Repeated measures ANOVA with group and condition (basal and clamp)
as factors were used to evaluate the effect of hyperaminoacidemia–hyperinsulinemia among the groups before and after the interventions. ANCOVA with the
pretreatment value as covariate was used to evaluate treatment effects. No between group differences were observed (all P > 0.05). Sample sizes: placebo,
n = 8; Vit D, n = 9; CLA, n = 7; Vit D + CLA, n = 8. CLA, conjugated linoleic acid; Vit D, vitamin D.

Hand-grip strength

Hand-grip strength was not different among groups at baseline
and did not change during the interventions (Figure 3).

Discussion
The age-associated decline in muscle mass is a significant

public health problem because it can negatively affect activities
of daily living and quality of life (1, 2). Interventions to
prevent and treat the age-associated decline in muscle mass
focus on increasing the stimulatory effect of amino acids on
myofibrillar protein synthesis to overcome the anabolic resistance
of skeletal muscle in older adults (3–8). Studies conducted in
cultured myocytes and in vivo in animals suggest both vitamin
D and CLA stimulate muscle protein synthesis and increase
muscle mass (9–14). We evaluated the independent and combined
effects of dietary vitamin D (2000 IU/d) and CLA (4000 mg/d)
supplementation on myofibrillar protein synthesis rates during
basal, postabsorptive conditions and during combined amino
acid and insulin infusion in sedentary older adults. We found
that, compared with placebo treatment, neither vitamin D nor
CLA treatment alone or combined vitamin D + CLA treatment
increased the myofibrillar protein synthesis rates. Therefore, we
conclude that neither vitamin D nor CLA have muscle anabolic
effects in sedentary older adults at the doses used in our study.

We studied sedentary older adults who did not engage in
any physical activities, except normal activities of daily living,
because the majority of older adults do not regularly engage
in more strenuous physical activities and/or structured exercise
programs. It is possible that a positive treatment effect on
muscle protein synthesis would have been observed in exercising
muscles. It is also possible, but unlikely, that we did not
observe a treatment effect in our study because of the specific
population we studied. Even though none of our participants
had vitamin D deficiency (serum vitamin D concentration <12
ng/mL) and not all had insufficiency (<20 ng/mL) according
to guidelines published by the Institute of Medicine (43),
we studied older adults with serum vitamin D concentrations
(grand mean: 25.6 ± 1.1 ng/mL) that are considered insufficient
according to guidelines published by the American Geriatrics
Society and the Endocrine Society (33, 34). In fact, 42% of our
participants who received vitamin D treatment even had vitamin
D concentrations that are considered insufficient according
to the more stringent (<20 ng/mL) guidelines published by
the Institute of Medicine (43). Furthermore, we found no
differences in baseline (before intervention) rates of muscle
protein synthesis in participants with vitamin D insufficiency
(serum vitamin D <20 ng/mL) compared with those with
serum vitamin D concentrations >20 ng/mL (basal conditions:
0.035 ± 0.001 compared with 0.034 ± 0.002%/h; combined
amino acid and insulin infusion: 0.050 ± 0.001 compared
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FIGURE 2 Myofibrillar protein synthesis rates during basal conditions
(white bars) and during the hyperinsulinemic–euglycemic clamp procedure
with concomitant amino acid infusion (black bars) before (top) and after
(middle) the interventions, and the anabolic response (bottom), assessed as
the ratio of myofibrillar protein synthesis rate during the hyperinsulinemic–
euglycemic clamp to the myofibrillar protein synthesis rate during basal
conditions, before (horizontally striped bars) and after (diagonally striped
bars) the interventions in the placebo (n = 8), vitamin D (Vit D, n = 9),
conjugated linoleic acid (CLA, n = 7), and combined Vit D + CLA
(n = 8) supplementation groups. Values are mean ± SEM. Repeated measures
ANOVA with group and condition (basal and clamp) as factors was used
to evaluate the effect of hyperaminoacidemia–hyperinsulinemia among the
groups before and after the interventions. ∗Different from corresponding
basal value, P < 0.05. ANCOVA with the pretreatment value as covariate
was used to evaluate treatment effects. No differences in treatment responses
were observed among groups.

with 0.046 ± 0.003%/h, respectively). We also found no effect
of treatment with vitamin D in participants with vitamin D
insufficiency (Vit D alone and Vit D + CLA groups combined)
at baseline (basal conditions: 0.034 ± 0.003 compared with
0.036 ± 0.004%/h; combined amino acid and insulin infusion:
0.048 ± 0.006 compared with 0.048 ± 0.005%/h, before and after
treatment, respectively), even though serum vitamin D increased
by 53 ± 14%. It is unlikely that the duration of the interventions
in our study was too short. We chose the 8-wk intervention period
because we (6, 29) and others (30, 31) found known anabolic
treatments, such as resistance exercise, testosterone, and fish oil–
derived n–3 PUFAs, increase the rate of muscle protein synthesis
within ≤8 wk.

FIGURE 3 Hand-grip strength before (white bars) and after (black
bars) the interventions in the placebo (n = 8), vitamin D (Vit D, n = 9),
conjugated linoleic acid (CLA, n = 7), and combined Vit D + CLA (n = 8)
supplementation groups. Values are mean ± SEM. One-factor ANOVA was
used to compare outcomes among groups at baseline. ANCOVA with the
pretreatment value as covariate was used to evaluate treatment effects. No
differences in treatment responses were observed among groups.

The Institute of Medicine’s recommended daily intake for
vitamin D, which is expected to achieve a serum vitamin D
concentration of ≥20 ng/mL in ≥97.5% of the population, is
600 IU/d for 18–70-y-old adults and 800 IU/d for those aged
>70 y (43). The American Geriatrics Society recommends a
daily intake of 4000 IU, including ≥1000 IU/d from dietary
vitamin D supplements (33). The supplements used in our study
provided 2000 IU vitamin D/d and resulted in a ∼45% increase
in serum vitamin D in study participants who received vitamin D
compared with those who did not. The increase in serum vitamin
D we observed is consistent with the increases observed in other
studies that provided similar doses of vitamin D (16, 44). These
findings demonstrate that our participants were compliant with
the treatment, which we also confirmed by pill count, and support
the notion that our participants’ baseline vitamin D status had
not reached a ceiling above which there would be no further
increase in body vitamin D stores or biological effects. There are
no guidelines for CLA intake. We provided 4000 mg CLA, which
is about 10 times as much as typically consumed in the diet and
represents an amount that was found to have biological effects
(i.e., reduce body fat) in randomized clinical trials (45–47).

It is possible, but unlikely, that we did not observe a
treatment effect because our participants did not demonstrate
age-associated anabolic resistance in muscle. We used the same
experimental protocol we had previously used to evaluate the
effect of fish oil–derived n–3 PUFAs on the rate of muscle protein
synthesis (6) and found that the combined amino acid and insulin
infusion in the present study increased the myofibrillar protein
synthesis rate by ∼45% above basal values. This is consistent
with the results from our previous study (6) and demonstrates
anabolic resistance because the same amino acid and insulin
infusion protocol approximately doubled the muscle protein
synthesis rate in healthy young adults (6). We also carefully
considered the amino acid and insulin infusion rate and chose a
dose that submaximally stimulates the muscle protein synthesis
rate (48) to avoid a ceiling effect, which could mask a beneficial
effect of treatment.

The results from our study are consistent with the results from
most randomized controlled trials that evaluated the effect of
vitamin D supplementation on muscle mass. The authors of a
systematic review and meta-analysis published in 2014 found
no effect of vitamin D on muscle mass (15). In more recent
prospective, randomized, controlled trials that lasted 3–6 mo,
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vitamin D in doses that ranged from 400 IU to 2000 IU/d or
40,000 IU/wk, also did not increase muscle mass compared
with placebo (16, 49, 50). In addition, a secondary analysis of
data from a randomized controlled trial found that a monthly
dose of 50,000 IU (equivalent to ∼ 1700 IU/d) of vitamin D
for 12 mo did not affect muscle mass (assessed as thickness
and cross-sectional area by using ultrasound) in 50–79-y-old
men and women with low serum vitamin D (<25 ng/mL) (51).
However, it was found that 10,000 IU of vitamin D consumed 3
times per week (equivalent to ∼4300 IU/d) for 6 mo increased
muscle mass in a subset of lean older adults (17). In addition,
an inverse association between serum vitamin D concentration
and indices of muscle mass was observed in both cross-sectional
and prospective observational studies (18–24, 52). However,
these studies included people with vitamin deficiency (52)
and the associations were often not significant when statistical
adjustments for important confounding variables were made (18–
21, 24). In fact, several studies found no association between
vitamin D status and muscle mass or found that even people
with normal muscle mass had vitamin D insufficiency (22, 25–
28). The results from our study are different from those observed
in animals, most likely because the animal studies compared the
muscle protein synthesis rates in animals with normal vitamin
D status and animals with severe vitamin D deficiency induced
by using a vitamin D–depleted diet (11) or animals with muscle
vitamin D receptor knock-out (10).

In summary, we conducted a double-blind, randomized,
placebo-controlled clinical trial to evaluate the independent and
combined effects of vitamin D and CLA supplementation on
myofibrillar protein synthesis rates during basal, postabsorptive
conditions and during amino acid and insulin infusion in
sedentary older adults. We found neither vitamin D nor CLA
nor their combination affected muscle protein synthesis rates.
Therefore, we conclude that neither vitamin D nor CLA have
muscle anabolic effects in sedentary older adults at the doses
provided in our study.
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