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Many studies have examined the impact of long-chain per- and pol-
yfluoroalkyl substances (PFAS) on human health,' but few have
looked at short-chain PFAS.> A recent study in Environmental
Health Perspectives estimated half-lives of both long- and short-
chain PFAS in a small group of people immediately after exposure
to PFAS-contaminated drinking water ended.?

The terms “long” and “short” refer to the length of the carbon
(C) backbone of each molecule; long-chain is defined as perfluor-
oalkyl sulfonic acids with 6 or more C atoms, and perfluoroalkyl
carboxylic acids with 7 or more C atoms.* Most long-chain PFAS
have been phased out and replaced by short-chain varieties. Thus,
long-chain varieties are sometimes called legacy PFAS.

It is generally believed that the shorter the chain, the shorter
the half-life for PFAS.? However, this rapid excretion also makes
it difficult to assess the health impacts of short-chain varieties
because studies may start weeks or months after exposure has
ceased.

“For an observational study of half-life in humans, itis crucial to
find a proper population with a defined end of external exposure,”

says lead author Yiyi Xu, a research associate at the University of
Gothenburg in Sweden. “Due to faster elimination of short-chain
PFAS, researchers need to start the observation as soon as the exter-
nal exposure stops, to capture reasonable serum levels for half-life
estimation.” Only a handful of previous studies have quantified the
half-lives of short-chain PFAS in human populations.>®7%

The new study took place at Sweden’s Arvidsjaur regional air-
port, which has its own drinking water supply, separate from the
municipality of Arvidsjaur. The airport water source was contami-
nated with PFAS, presumably from aqueous film-forming foam
used at an on-site fire drill area. Some firefighting foams contain
fluorinated surfactants and are a known source of both long- and
short-chain PFAS pollution.’

When authorities discovered the water contamination at the air-
port in August 2018, they immediately provided clean water to
employees and then contacted the authors of the new paper to quan-
tify exposure levels. The researchers sampled serum and urine for
17 airport employees starting 11-14 days after exposure ended.
The municipal supply had very low levels of PFAS, which enabled

film over the fire, smothering the flames and cooling the fuel. Image: © Dushlik/Shutterstock.
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the researchers to confirm that employees had no substantial expo-
sures at home after August 2018. They used a reference popula-
tion'® from Karlshamn, a city with uncontaminated water, as a
basis of comparison.

“The exposure scenario was unique in that a significant expo-
sure source existed, and then the exposure abruptly ceased. This
allowed refinement of existing half-life determinations to be more
accurate,” says Dana Boyd Barr, a research professor of exposure
science and environmental health at Emory University who was
not involved in the study. “Previous human half-life determina-
tions haven’t had this clean demarcation between exposure and ex-
posure cessation, thus introducing more error into the calculation.”

Over a period of 5 months, the team collected 4-5 blood sam-
ples and 14 urine samples from each participating airport em-
ployee. Long-chain PFAS accounted for 90% of total serum PFAS
and 50% of the contamination in water, suggesting more bioaccu-
mulation in the employees’ bodies. At initial sampling, the highest
serum PFAS was found for perfluorohexane sulfonic acid (PFHxS,
C6), with concentrations 102-225 times higher than in the
Karlshamn reference population. Short-chain perfluoropentane
sulfonic acid (PFPeS, C5) was 175-380 times higher than in the
reference population.

All serum PFAS concentrations declined over time. As expected,
the half-lives of long-chain PFAS were longer than those of short-
chain compounds, reaching almost 3 years in some cases. For exam-
ple, the researchers estimated the average half-lives for PFHxS at
2.86 years and L-PFOS (a specific form of perfluorooctane sulfonic
acid, C8) at 2.91 years. In comparison, the short-chain PFPeS had an
estimated average half-life of 0.63 years, and perfluoroheptane sul-
fonic acid (PFHpS, C7) concentrations were 1.46 years. The shortest
estimated half-lives were for perfluorobutanoic acid (PFBA, C4) at
0.12 years and perfluoroheptanoic acid (PFHpA, C7) at 0.17 years.

The investigators noted that the estimated half-lives of PFOA
and PFOS were shorter than previously published estimates.'?
They also found that some isomers of PFOS had shorter half-lives
than others. One possible explanation is that elimination may slow
down over time once exposure ceases—a phenomenon that would
be uniquely captured in this study, which started almost immedi-
ately after exposure stopped.

“The findings and toxicokinetic estimates for the PFAS ana-
lyzed were in good agreement with previous analysis and lend sup-
port for the very long biological half-lives defined for most PFAS,”
says Scott Belcher, a research professor of toxicology at North
Carolina State University who was not involved in the study. “It is
important to recognize that even the short-chain PFAS are elimi-
nated slowly, on the order of many weeks.”
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Belcher adds, “The slow rates of elimination for shorter-
chained PFAS, which have toxicity profiles similar to long-chain
PFAS, are concerning because of the increased use of short-chain
PFAS as replacements for many applications.”

Xu agrees. “Although short-chain PFAS are less bioaccumula-
tive, these PFAS with the same structure of fluorine-carrying car-
bon chains will not degrade easily,” she says. “Therefore, high
short-chain PFAS contamination of drinking water is a serious
environmental health problem that should be taken into account in
the future.”

Wendee Nicole is an award-winning science writer and editor based in Houston,
Texas. She has written for Discover, Nature, Scientific American, and other publications.
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