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Aims Prediction models for outcomes in atrial fibrillation (AF) are used to guide treatment. While regression models
have been the analytic standard for prediction modelling, machine learning (ML) has been promoted as a potentially
superior methodology. We compared the performance of ML and regression models in predicting outcomes in AF
patients.

...................................................................................................................................................................................................
Methods
and results

The Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF) and Global Anticoagulant
Registry in the FIELD (GARFIELD-AF) are population-based registries that include 74 792 AF patients. Models
were generated from potential predictors using stepwise logistic regression (STEP), random forests (RF), gradient
boosting (GB), and two neural networks (NNs). Discriminatory power was highest for death [STEP area under the
curve (AUC) = 0.80 in ORBIT-AF, 0.75 in GARFIELD-AF] and lowest for stroke in all models (STEP AUC = 0.67
in ORBIT-AF, 0.66 in GARFIELD-AF). The discriminatory power of the ML models was similar or lower than the
STEP models for most outcomes. The GB model had a higher AUC than STEP for death in GARFIELD-AF (0.76 vs.
0.75), but only nominally, and both performed similarly in ORBIT-AF. The multilayer NN had the lowest discrimi-
natory power for all outcomes. The calibration of the STEP modelswere more aligned with the observed events
for all outcomes. In the cross-registry models, the discriminatory power of the ML models was similar or lower
than the STEP for most cases.

...................................................................................................................................................................................................
Conclusion When developed from two large, community-based AF registries, ML techniques did not improve prediction

modelling of death, major bleeding, or stroke.
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Introduction

Stroke, bleeding, and death are important outcomes in patients
with atrial fibrillation (AF) and treatment decisions are often de-
pendent upon a given patient’s risk for each ofthese outcomes.1,2

While prediction models for these outcomes have improved
over time, the discriminatory capacities of contemporary models
are modest.3,4 Despite their limitations, these risk models have
become integral to patient care and stroke prevention therapy
guidelines.2,5
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Machine learning (ML) has emerged as a powerful technique for
analysing complex analytic problems. Machine learning algorithms
use non-linear, highly interactive combinations of predictors to un-
cover novel patterns that may improve predictive performance.6

However, ML algorithms are by their very nature more complex and
less easily understood by clinicians. Despite the rapid expansion of
ML techniques being applied to different types of data, to date, there
have been few head-to-head comparisons of ML vs. traditional multi-
variable modelling. A study of hospitalized patients from five hospitals
found that an ML model (random forest) for clinical deterioration
performed better than logistic regression models (using either linear
predictor terms or restricted cubic splines) or the commonly used
Modified Early Warning Score.7 Large outcomes studies have also
shown improved prediction of cardiovascular events with ML models
compared to established risk scores.8,9 Using ML for prediction of
heart failure readmissions has shown mixed results with some studies
showing higher discriminatory power with ML models compared to
logistic regression,10 and others showing largely similar performance
among ML and traditional regression.11 The predictive accuracy of
ML developed prediction models have not yet been directly com-
pared to traditional regression modelling of stroke, bleeding, or
death.

We used data from two very large community-based AF registries
to examine whether ML was superior to traditional regression
modelling for AF outcomes. The Outcomes Registry for Better
Informed Treatment of Atrial Fibrillation (ORBIT-AF)12,13 and the
Global Anticoagulant Registry in the FIELD (GARFIELD-AF)14 regis-
tries capture patient demographics, comorbidities, treatments, and
outcomes. We compared the performance of ML algorithms to tradi-
tional multivariable regression techniques to determine which
method provided better predictive performance in these large, struc-
tured data registries.

Methods

Study population
We analysed patients included in the ORBIT-AF, ORBIT-AF II, and
GARFIELD-AF registries, the details of which have been previously pub-
lished.12,13,15 In brief, ORBIT-AF and ORBIT-II AF enrolled AF patients

followed in outpatient practices and followed prospectively every
6 months for a minimum of 2 years. ORBIT-AF included 10 137 patients
enrolled from 176 US practices between 29 June 2010 and 9 August
2011; ORBIT-AF II included 13 394 patients (unique from the ORBIT-AF
cohort) enrolled from 244 US practices from February 2013 through 12
July 2016. Patients with complete baseline data and at least one follow-up
encounter were included in the present analysis. GARFIELD-AF is a pro-
spective, multicentre, international registry of patients with newly diag-
nosed AF and at least one additional risk factor for stroke. A total of
52 032 prospectively enrolled patients with follow-up provided from 35
countries were enrolled between March 2010 and July 2015. These
patients were followed for a minimum of 2 years with data collection ev-
ery 4 months for the first 2 years. The study protocol was reviewed and
approved by the Duke University Medical Center Institutional Review
Board (IRB) and the IRB at each enrolling centre and this study complies
with the Declaration of Helsinki. The data underlying this article were
provided by Ortho-McNeil Janssen Scientific Affairs, LLC (ORBIT-AF)
and the Thrombosis Research Institute (GARFIELD-AF) by permission.
Data will be shared on request to the corresponding author with permis-
sion of the respective parties.

Predictors and outcomes
Baseline variables as reported on the registries’ case report forms were
used as potential predictors. The final list of variables considered for all
models were: age, sex, race, body mass index, diabetes mellitus (DM),
hyperlipidaemia, hypertension, history of bleeding (gastrointestinal bleed-
ing only for ORBIT-AF), chronic obstructive pulmonary disease (COPD),
cancer, liver disease, peripheral vascular disease, coronary artery disease
(CAD), significant valvular heart disease, heart failure (HF), cognitive im-
pairment/dementia, anaemia, smoking status, drug abuse, alcohol abuse,
frailty, type of AF (new onset, paroxysmal, persistent, permanent), heart
rate, systolic and diastolic blood pressure, haemoglobin, and estimated
glomerular filtration rate. In GARFIELD-AF, region (grouped into Europe,
Latin America, and Asia, with Australia, Egypt and South Africa grouped
together as ‘Rest of the world’) was also considered. In total, 30 variables
were considered in ORBIT-AF and 32 in GARFIELD-AF.

Outcomes of interest included stroke, major bleeding, and death
within 1 year of enrolment. Stroke for ORBIT-AF is defined as a new, sud-
den, focal neurologic deficit persisting for greater than 24 h and is not due
to a readily identifiable, non-vascular cause (e.g. seizure). For GARFIELD-
AF, the endpoint is the combined endpoint of primary ischaemic stroke
or secondary haemorrhagic ischaemic stroke or systemic embolism.
Major bleeding was defined based on the International Society of
Thrombosis and Haemostasis.16 The bleeding event included primary in-
tracerebral Haemorrhage in GARFIELD-AF.

Prediction model
All models considered were fit using either the R (R foundation, Vienna,
Austria) or Python (www.python.org) programming languages. The data
were split 80:20 into training and tests sets, and area under the curves
were calculated for the prediction of the outcomes of stroke, major
bleeding, and death. For the ML methods, we further split the training
dataset to estimate optimal tuning parameters via cross-validation.

The stepwise multivariable logistic regression model (‘stepwise
model’) used a logit link and was estimated using the step function in R to
perform stepwise elimination. The logistic regression models were fit to
the occurrence of each outcome over available follow-up. Missingness
was handled with single imputation.17 The predictive capacity of the re-
gression model was estimated via the mean value and 95% confidence in-
terval for the C-statistic over 75 cross-validation iterations. The ML
methods were fit using the scikit-learn Python library.18 The ML models

What’s new?

• We compared the performance of machine learning (ML) and
traditional regression models in predicting clinical outcomes
using two large outpatient registries of more than 74 000 atrial
fibrillation (AF) patients.

• The discrimination of the ML models was similar or worse
than the stepwise regression models for nearly all outcomes.

• The stepwise regression models had better calibration than
the ML models.

• In cross-registry validation, ML models performed as well or
worse than stepwise regression in the majority of cases.

• When developed from two large, community-based AF regis-
tries, ML techniques did not improve prediction modelling of
death, major bleeding, or stroke.
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tested in this study included random forests (RF), gradient boosting (GB),
and two neural net (NN) structures. The RFs were fit using 500 estima-
tors and a minimum of five samples per leaf. For GB, classification trees
were used with a maximum depth of 3 as the weak base learner, a learn-
ing rate of 0.1. A 15-fold Monte Carlo cross-validation was used to find
the optimal number of estimators (with a maximum set at 100) and 25%
of the training data was subsampled to fit each weak learner. Each NN
used early stopping, RELU activation, the ADAM optimizer, and a maxi-
mum of 200 iterations to fit. Neural net (1) used three layers with 5, 4,
and 3 neurons, respectively, while NN (2) used one layer with only seven
neurons. For a detailed mathematical description of each method, we re-
fer the reader to the references.19,20 After estimating the optimal tuning
parameters on the training data, the model was fit on the whole training
data set, an out-of-sample C-statistic was calculated on the test set. The
predictive capacity of the models was estimated in the same way as the
regression models, via the mean value and 95% confidence interval for
the C-statistic over 75 cross-validation iterations. Additionally, model
performance for both the regression and ML models were evaluated
with calibration plots comparing expected and actual event rates for out-
comes for one of the train/test splits. In order for the ML models to main-
tain stability, event rates were artificially increased via resampling with
replacement. thus, the ML calibration curves may be distorted due to the
models over-estimating event risk.

To assess the external validity of the models, a cross-registry analysis
was performed using only variables that were common to both the
ORBIT-AF and GARFIELD-AF registries. Using this more limited set of
variables, stepwise multivariable logistic regression, RF and GB models
were generated in one population then tested in the other population
(i.e. models developed in the ORBIT-AF registry were tested in the
GARFIELD-AF registry and vice versa). C-statistics for the ML methods
were compared to the stepwise model using the DeLong test.21 The
added value of the ML techniques compared to the stepwise model was
assessed using the net reclassification index (NRI).22 The NRI measures
the number of additional proportion of events that are correctly identi-
fied using one model compared to another (event NRI) as well as the
number of non-events correctly identified (non-event NRI). The overall
NRI is the sum of these two values.

Results

Study population
Baseline characteristics for the patients included in this study from
the ORBIT-AF and GARFIELD-AF registries are shown in Table 1. In
the ORBIT-AF I and II registry patients, the median age was 73 [inter-
quartile range (IQR) 65–80], were 58% male and were predominantly
white (N = 19 903, 87%). The most common comorbidities included
hypertension (N = 18 474, 81%), CAD (N = 6990, 30%), and DM
(N = 6294, 27%) and 1478 (6%) patients were active smokers at base-
line. The majority of patients had paroxysmal or new-onset AF
(N = 16 172, 69%) with 6588 (28%) patients having persistent or per-
manent AF. After a median Follow-up of 540 days (IQR 360–783),
there were 1871 deaths (5.6 per 100 patient-years), 1323 major
bleeding events (3.9 per 100 patient-years), and 178 strokes (0.5 per
100 patient-years).

In the GARFIELD-AF registry, the median age was 71 (63–78),
with 56% of patients being male and were predominantly white
(N = 24 603, 63%). Frequency of comorbid DM, hypertension and
history of stroke as well as tobacco use was similar and the majority
of patients had either new onset or paroxysmal AF (N = 27 937,

72%). Follow-up in this cohort was truncated at 1 year over which
time there were 1567 deaths (3.0 per 100 patient-years), 349 major
bleeding events (0.7 per 100 patient-years), and 473 strokes (0.9 per
100 patient-years).

Model discrimination
Over the 75 iterations of the stepwise regression models, variables
were included in models with varying frequency. The variables that
were most frequently included in the models for each of the three
outcomes for each cohort are shown in Figure 1A and B. Differences
in the registry elements resulted in inclusion of different parameters
for each of the registries. For example, in the prediction models for
death, 100% of the iterations of stepwise regression for both regis-
tries included age, sex, current smoking status, CAD, congestive
heart failure, diabetes, peripheral vascular disease, dementia/cognitive
impairment, heart rate, blood pressure, and renal function. However,
the models generated in the ORBIT-AF population also included for-
mer smoking status, cancer, valvular heart disease, haemoglobin,
COPD, and frailty which were not available in the GARFIELD-AF reg-
istry. The GARFIELD-AF models similarly included history of acute
coronary syndrome and medications that were not available in the
ORBIT-AF registry. Of note, some variables that were present in
both registries were included in one registries model but not the
other. AF type was in 100% of the ORBIT-AF registry models for
death, and none of the GARIFELD AF models. Cirrhosis, gastrointes-
tinal bleeding, history of stroke, and race were included in 100% of
the GARFIELD-AF models but none of the ORBIT-AF models.

The C-statistics for all the models are listed in Table 2 and depicted
in the Figure 2. C-statistics were highest for death and lowest for
stroke in all models. Compared with stepwise regression, all tested
ML models except for the GB model demonstrated lower C-statis-
tics for major bleeding and all except the single-layer NN in the
GARFIELD-AF population underperformed for stroke prediction.
For death, the random forest models had similar discrimination as the
stepwise models. The GB model was similar to the stepwise model in
the ORBIT-AF population and provided slightly better discrimination
than the stepwise model in the GARFIELD-AF population. The multi-
layer NN had the worst discrimination for all outcomes.

Model calibration
The calibration plots for the stepwise regression model as well as the
RF and GB ML models are presented in Figure 3. The calibration of
the stepwise model was best for all endpoints. The RF and GB mod-
els were best calibrated for the outcome of death but underesti-
mated event rates for all outcomes.

Cross-registry analysis
The performance of each modelling technique on the subset of varia-
bles common to both ORBIT-AF and GARFIELD-AF are presented
in Table 3. Due to the poor performance of the NNs, only the step-
wise regression, random forest and GB models were evaluated in this
common data model. Similar to the models developed from the
more complete variable list, C-statistics were highest for death. The
GB model trained in ORBIT-AF and tested in GARFIELD-AF had sta-
tistically significantly better discrimination than the stepwise model
for the outcomes of death and major bleeding (P < 0.001 for both),
though the magnitude of improvement was small. When the GB
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model was trained in GARFIELD-AF and tested in ORBIT-AF, it had
similar discrimination for death and worse discrimination for major
bleeding (P < 0.0001) or stroke (P = 0.02). Calibration curves for the
cross-registry models are presented in the Supplementary material

online, Figures. All the models showed the best calibration for death.
In the ML models trained in ORBIT-AF and tested in GARFIELD-AF
(Supplementary material online, Figure S1), the risk of stroke was
underestimated and risk of major bleeding overestimated. The

....................................................................................................................................................................................................................

Table 1 Baseline characteristics

ORBIT-AF GARFIELD-AF

N 22 760 52 032

Age (years) 73 (65–80) 71 (63–78)

Male 13 208 (58%) 29 042 (56%)

Race

White 19 903 (87%) 32 005 (63%)

Black 1127 (5%) 243 (0.5%)

Hispanic 1073 (5%) 3392 (7%)

Other 657 (3%) 15 108 (30%)

Diabetes mellitus 6294 (27%) 11 546 (22%)

Hypertension 18 474 (81%) 39 610 (76%)

History of bleedinga 1463 (6%) 1416 (3%)

Cirrhosis – 294 (<1%)

COPD 3065 (13%) –

Cancer 4857 (21%) –

Liver disease 470 (2%) –

PVD 2358 (10%) 2859 (6%)

History of stroke 2864 (13%) 3878 (8%)

History of systemic embolism – 335 (<1%)

CAD 6990 (31%) 11 253 (22%)

History of stent placement – 3-550 (7%)

History of CABG 2600 (11%) 1625 (3%)

Cognitive impairment/dementia 489 (2%) 764 (2%)

Obstructive sleep apnoea 4045 (18%) 805 (2%)

Current smoker 1478 (6%) 4201 (11%)

Drug abuse 270 (1%) –

Alcohol abuseb 861 (4%) 1026 (2%)

AF type

New onset 6708 (29%) 23 331 (45%)

Paroxysmal 9464 (42%) 14 307 (28%)

Persistent 3255 (14%) 7758 (15%)

Permanent 3333 (15%) 6630 (13%)

Heart rate 72 (63–81) 84 (70–105)

Systolic BP 126 (116–138) 130 (120–145)

Diastolic BP 74 (67–80) 80 (70–88)

Haemoglobin 13.6 (12.3–14.7) –

BMI 30 (26–24) 27 (24-31)

Estimated GFR 70.55 (56.15–86.29) –

Chronic kidney diseasec 6609 (31%) 5355 (10%)

VKA 8749 (38%) 20 183 (39%)

DOAC 10 214 (45%) 14 123 (28%)

Antiplatelet (with or without OAC) 9006 (40%) 18 104 (35%)

Values reported as median (interquartile range) or N (%) as appropriate.
AF, atrial fibrillation; BMI, body mass index; BP, blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery disease; CKD, chronic kidney disease; COPD,
chronic obstructive pulmonary disease; DOAC, direct-acting oral anticoagulant; GFR, glomerular filtration rate; OAC, oral anticoagulant; PVD, peripheral vascular disease; VKA,
vitamin K antagonist.
aHistory of gastrointestinal bleeding only for ORBIT I and II.
bAlcohol abuse is defined as heavy alcohol use in GARFIELD-AF.
cModerate to severe CKD only for GARFIELD-AF, any CKD for ORBIT-AF.
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Figure 1 Stepwise model parameter frequency. Frequency with which each parameter was included in the 75 iterations of the stepwise regression
model for the ORBIT-AF cohort (A) and GARFIELD-AF cohort (B). ACS, acute coronary syndrome; AF, atrial fibrillation; BMI, body mass index; BP,
blood pressure; CAD, coronary artery disease; CHF, chronic heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary dis-
ease; GFR, glomerular filtration rate; GIB, gastrointestinal bleeding; NOAC, non-vitamin K antagonist oral anticoagulants; PVD, peripheral vascular
disease; TIA, transient ischaemic attack; VTE, venous thromboembolism.
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opposite trend was observed in the models trained in GARFIELD-AF
and tested in ORBIT-AF (Supplementary Figure S2).

We assessed the NRI when using RF and GB models compared to
the stepwise model (Table 4). In the models trained in ORBIT-AF and
tested in GARFIELD-AF, both the RF and GB models correctly identi-
fied fewer events and non-events for death. For major bleeding and

stroke, the RF model correctly identified more events but misclassi-
fied more non-events resulting in an overall NRI only slightly above
zero for both (0.038 for major bleeding, 0.024 for stroke). The GB
model correctly identified 34.0% more bleeding events but misclassi-
fied 32.6% more non-events resulting in an overall NRI slightly
greater than zero (0.014). The GB model identified fewer events and

....................................................................................................................................................................................................................

Table 2 C-statistics for ML models in ORBIT-AF and GARFIELD-AF populations

Outcome Stepwise Random forest Gradient boosting Multi-layer neural

network

Single-layer neural

network

ORBIT-AF population

Death 0.801 (0.798–0.804) 0.797 (0.794–0.800) 0.802 (0.799–0.805) 0.651 (0.643–0.659) 0.788 (0.779–0.797)

Major bleeding 0.711 (0.707–0.715) 0.699 (0.695–0.703) 0.702 (0.698–0.706) 0.584 (0.579–0.589) 0.692 (0.682–0.702)

Stroke 0.671 (0.660–0.682) 0.618 (0.608–0628) 0.639 (0.629–0.649) 0.563 (0.551–0.575) 0.630 (0.613–0.647)

GARFIELD-AF population

Death 0.752 (0.749–0.755) 0.752 (0.749–0.755) 0.762 (0.759–0.765) 0.731 (0.728–0.734) 0.758 (0.755–0.781)

Major bleeding 0.647 (0.641–0.653) 0.630 (0.624–0.636) 0.643 (0.637–0.649) 0.631 (0.624–0.638) 0.632 (0.625–0.639)

Stroke 0.660 (0.656–0.664) 0.638 (0.633–0643) 0.649 (0.645–0.653) 0.522 (0.516–0.528) 0.653 (0.648–0.658)

C-statistics for each model type and outcomes of death, major bleeding and stroke for the ORBIT-AF (upper panel) and GARFIELD-AF (lower panel) populations. Values in
bold indicate C-statistics which are statistically significantly different from the stepwise model with red values less than the stepwise model and green values greater than the
stepwise model.

Figure 2 C-statistics and 95% confidence intervals for prediction models developed using stepwise regression and the best performing machine
learning model for major clinical outcomes in two large atrial fibrillation registries.
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non-events for stroke. In the models trained in GARFIELD-and tested
in ORBIT-AF, both the RF and GB models correctly identified more
death events (3.4% and 16.2%, respectively), but incorrectly identified
non-events more frequently resulting in negative overall NRIs. The
RF model better identified 1.2% more bleeding events and 2.7%
more non-bleeding events (overall NRI 0.039). The GB model for
bleeding and both the GB and RF models for stroke did a poorer job
in identifying both events and non-events.

Discussion

In this study of two, large contemporary AF registries which in-
cluded more than 74 000 patients from more than 1000 practices

across the world, stepwise regression models performed as well
or better than ML for prediction of stroke, major bleeding, or
death. All the models studied performed best at predicting death
and worst for stroke. Of the ML modelling methods studied, the
multilayer neural net had the lowest performance for all end-
points; whereas, GB performed the best for all endpoints. The
stepwise regression model was better calibrated than the ML
models. When evaluated across registries, the stepwise model
demonstrated similar or better discrimination for most endpoints.
The ML methods more frequently misclassified events and non-
events when compared with the stepwise models. These results
suggest that when analysing two real-world registries with struc-
tured data, stepwise regression models perform at least as well if
not better than ML models for predicting outcomes.

Figure 3 Calibration plots. Plots comparing predicted event rates (x-axis) and observed event rates (y-axis) for death (left), bleeding (middle), and
stroke (right). Stepwise (top), random forest (middle), and gradient boosting (bottom) model results presented for both the ORBIT-AF cohort (A)
and GARFIELD-AF cohort (B).

ML vs. regression in predicting AF outcomes 1641



All the evaluated models performed best at predicting the end-
point of all-cause mortality. There is a high degree of overlap among
the risk factors for stroke, bleeding, and death and thus many of the
variables captured in these registries are associated with increased
risk of all three outcomes. However, while models of stroke and
bleeding must account for the competing risk of death from other
causes, models of all-cause mortality do not. Other risk models such
as the GARFIELD-AF risk score and CHA2DS2-VASC score show
higher discriminatory power for all-cause mortality than for embolic
or bleeding events for a similar reason.14

The primary advantage of ML methods over linear models is their
ability to learn complicated relationships and improve out-of-sample
predictions.23 This improvement comes at a cost: ML models are of-
ten difficult to interpret and communicate. Given a set of features, it
can be difficult to understand the reason behind the prediction of an

ML model whereas linear models allow for a decomposition into rel-
evant parts. In this study, the ML methods failed to outperform the
stepwise regression model for the assessment of three different out-
comes in two independent populations of patients with AF.
Other studies have demonstrated mixed results comparing model
performance between ML methods and traditional regression model-
ling.7–11 Two studies evaluating ML and traditional regression for pre-
diction of HF readmission demonstrated conflicting results with one
showing an improved performance with ML and the other no differ-
ence.10,11 While both utilized structured data (clinical trial and regis-
try case report forms) with a large number (>250) of candidate
variables, the study showing similar performance between methodol-
ogies had substantially more patients (56 477 vs. 1004). Additionally,
the discriminatory power of the ML methods in both studies were
similar (C-statistic of 0.628 vs. 0.607 for random forest to predict

.......................................................................... ..........................................................................

.......................................................................... ..........................................................................

....................................................................................................................................................................................................................

Table 4 Net reclassification indices (NRI) for machine learning models compared to stepwise regression in cross-reg-
istry models

Outcome Model Trained in ORBIT-AF Trained in GARFIELD-AF

Tested in GARFIELD-AF Tested in ORBIT-AF

Event NRI Non-event NRI Overall NRI Event NRI Non-event NRI Overall NRI

Death Random forest �0.5% �6.26% �0.068 3.4% �18.5% �0.151

Gradient boosting �8.5% �13.6% �0.220 16.2% �30.7% �0.144

Major bleeding Random forest 25.6% �21.7% 0.038 1.2% 2.7% 0.039

Gradient boosting 34.0% �32.6% 0.014 �12.2% �19.4% �0.315

Stroke Random forest 16.1% �13.7% 0.024 �14.1% �2.9% �0.171

Gradient boosting �6.4% �17.8% �0.242 �8.5% �27.2% �0.357

Event NRI denotes the percent of additional patients correctly predicted to have an event by the ML model, non-event NRI denotes the percent of additional patients correctly
predicted not to have an event by the ML model. Overall NRI is the sum of the event and non-event NRIs and ranges from �2 to 2 with positive values (green) reflecting more
accurate classification and negative values (red) reflecting less accurate classification.

........................................................ ..........................................................

........................................................ ..........................................................

....................................................................................................................................................................................................................

Table 3 C-statistics for cross-registry models

Outcome Model Trained in ORBIT-AF Trained in GARFIELD-AF

Tested in GARFIELD-AF Tested in ORBIT-AF

C-Statistic P-value C-Statistic P-value

Death Stepwise 0.737 0.779

Random forest 0.731 0.03 0.773 0.07

Gradient boosting 0.744 0.0008 0.781 0.40

Major bleeding Stepwise 0.576 0.656

Random forest 0.578 0.85 0.618 <0.0001

Gradient boosting 0.597 0.0009 0.638 <0.0001

Stroke Stepwise 0.650 0.713

Random forest 0.602 <0.0001 0.644 <0.0001

Gradient boosting 0.622 <0.0001 0.696 0.02

C-statistics for models generated with data elements common to both the ORBIT-AF and GARFIELD-AF registries, trained in one then tested in the other. Values in bold indi-
cate C-statistics which are statistically significantly different from the stepwise model with red values less than the stepwise model and green values greater than the stepwise
model.
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30 days HF readmission), but there was substantial differences in the
performance of the logistic regression models (C-statistic of 0.533 vs.
0.624 in the smaller vs. larger study). This suggests that there may be
a benefit to ML over regression in small samples, but these models
perform similarly when derived in larger populations. This study of
two large registries shows that stepwise models have similar discrimi-
nation and better calibration compared to the more difficult to inter-
pret ML techniques. The stepwise model retains its attractiveness
because of its ease of interpretation and use without a corresponding
loss in predictive power.

Our results highlight the effect of the bias-variance tradeoff when
building predictive models. Random forests, GB, and NNs have low
bias and high variance on the training set, which can negatively impact
their out-of-sample performance. On the other hand, the stepwise
model has higher bias and lower variance than ML methods and leads
to more consistent out-of-sample predictive performance. This may
be particularly important in healthcare and biomedical science as pre-
dictive models are often applied in more diverse and heterogeneous
populations than those in which they are derived. This challenge will
likely become more important as prediction models become easier
to embed in electronic medical records. The finding that the stepwise
model was competitive, if not better, than all ML models considered
(and particularly outperformed the multi-layer NN), suggests that
the linear model captures the relationships in clinical variables we
considered, and that non-linear classifiers add little, if anything, in this
analysis.

This study reiterates the value of simple stepwise logistic mod-
els in determining which patients are at risk for death, stroke, and
major bleeding. These models allow for a simple interpretation of
the risk factors, can provide greater stability in out-of-sample pre-
dictions, and are easy to monitor over time. While ML methods
have shown significant progress in incorporating complex data
sources with large feature sets where appropriate data represen-
tations must be learned (e.g. image analysis), in the present analy-
sis, we included a relatively small set of features with a historical
literature showing their clinical relevance. Therefore, our results
reiterate that while ML methods exert impressive utility in some
clinical tasks, the first step in finding a robust predictive model is
building an effective linear model.

Limitations
The stepwise regression and ML models were evaluated on a hetero-
geneous population including both patients on and off anticoagulation
which may have confounded the models, particularly for prediction
of major bleeding. Additionally, a higher proportion of patients in
ORBIT-AF were treated with direct-acting oral anticoagulants
(DOACs) compared to GARFIELD-AF. While both registries
showed an increase in DOAC use over their enrolment period, this
increase was more substantial in the ORBIT-AF group, reflecting the
heterogeneity in treatment patterns across countries.24 Subgroup
analysis was performed on patients by anticoagulation status and
showed similar results to the overall model. Predictor variables were
obtained from case report forms with fixed options for responses.
Using a more unstructured data collection tool may have revealed
non-linear relationships that would be better assessed using ML tech-
niques; however, the goal of the present study was to compare
modelling techniques in a structured database rather than develop

clinically useful prediction models. These databases may not have
captured all relevant risk predictors; however, the goal of the present
study was to compare the performance of different analytic techni-
ques. All analytic techniques would be equally disadvantaged by miss-
ing important risk predictors, thus this should not impact the overall
results. In order to maintain stability in the ML models, outcomes
were resampled with replacement to increase the event rate. This
does not influence the C-statistics for the models, but likely was the
cause for the systemic overestimation of event rates in the calibration
plots for the ML models. The two registries evaluated in this study
evaluated distinct populations and had different assessments of base-
line risk as well as different lengths of follow-up and event rates which
may limit their comparability. However, the consistency of results in
both populations as well as the patterns seen in the cross-registry
analysis using a common data model highlight the generalizability of
the studies main findings.

Conclusions

In conclusion, stepwise regression models performed as well or bet-
ter than ML models for predicting clinical outcomes in large national
and global AF cohorts. This suggests that traditional regression mod-
els may be better suited for developing prediction models in struc-
tured databases as they provide insight into the drivers of risk
without compromising predictive capabilities. Machine learning meth-
ods have yielded impressive predictive performance when applied to
semi-structured data such as electrocardiograms and chest radio-
graphs.25,26 Future work will compare the performance of ML mod-
els based on raw patient data, to existing clinical models. Ultimately,
we hypothesize that ML will allow integration of non-structured data
to existing data repositories to further improve future predictive
models.

Supplementary material

Supplementary material is available at Europace online.
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