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Abstract

Prohibitin 1 (Phb1) is a pleiotropic protein with multiple functions in mammalian cells includ-

ing cell cycle regulation and mitochondrial protein stabilization. It has been proposed as a

potential therapeutic target for a variety of diseases including inflammatory diseases. In this

study, we investigated the potential immune-modulatory functions of Phb1 and anti-inflam-

matory properties of S-adenosylmethionine (SAMe) using macrophages, which play a major

role in the innate immune system. The results showed that expressions of Phb1 mRNA and

protein were reduced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (p<0.05).

Phb1 knockdown further ameliorated the mRNA expression of pro- and anti-inflammatory

cytokines such as TNF-α, IL-1α, IL-1β, IL-6, and IL10 in LPS-stimulated RAW 264.7 cells.

SAMe significantly attenuated LPS-induced inflammatory responses such as IL-1β, IL-10,

Nos2, and NO production in the presence of siPhb1. Luciferase reporter assay was con-

ducted to determine the mechanisms underlying the effects of Phb1 and SAMe on the

immune system. The luciferase activity of nuclear factor kappa-light-chain-enhancer of acti-

vated B cells (NF-κB) was significantly increased in LPS-treated RAW 264.7 cells. In addi-

tion, the luciferase reporter assay showed increased NF-κB activation in Phb1 knockdown

RAW 264.7 cells (p<0.1) and SAMe treatment attenuated the NF-κB luciferase activity in

Phb1 knockdown RAW 264.7 cells. Based on the results, we concluded that Phb1 possibly

modulates the inflammatory response whereas SAMe has an anti-inflammatory effect on

Phb1 knockdown macrophage cells. Furthermore, Phb1 expression level has potential prop-

erties of affecting on innate immune system by modulating the NF-κB signaling pathway.

Introduction

Prohibitin 1 (Phb1) is a ubiquitously expressed protein in eukaryotic cells and exhibits a high

degree of sequence homology among species [1]. Phb1 functions as a chaperone protein that

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241224 November 11, 2020 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jung S, Park J, Ko KS (2020)

Lipopolysaccharide-induced innate immune

responses are exacerbated by Prohibitin 1

deficiency and mitigated by S-adenosylmethionine

in murine macrophages. PLoS ONE 15(11):

e0241224. https://doi.org/10.1371/journal.

pone.0241224

Editor: Partha Mukhopadhyay, National Institutes

of Health, UNITED STATES

Received: March 4, 2020

Accepted: October 9, 2020

Published: November 11, 2020

Copyright: © 2020 Jung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: The National Research Foundation of

Korea provided support for this study in the form

of grants awarded to KK

(2016R1D1A1B04935653, 2020R1A2C1102451).

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-0515-5904
https://doi.org/10.1371/journal.pone.0241224
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241224&domain=pdf&date_stamp=2020-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241224&domain=pdf&date_stamp=2020-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241224&domain=pdf&date_stamp=2020-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241224&domain=pdf&date_stamp=2020-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241224&domain=pdf&date_stamp=2020-11-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0241224&domain=pdf&date_stamp=2020-11-11
https://doi.org/10.1371/journal.pone.0241224
https://doi.org/10.1371/journal.pone.0241224
http://creativecommons.org/licenses/by/4.0/


stabilizes the proteins created in mitochondria [2]. It is also involved in cell cycle control, dif-

ferentiation, apoptosis, senescence, and cell fate determination [2]. Alteration of Phb1 levels

has been associated with pathologies including inflammation, autoimmunity, and cancer [2].

The relationship between Phb1 and immune functions might be in association with IgM

receptor, one of the two major classes of antigen receptors on murine B lymphocytes [3]. How-

ever, the function of Phb1 in IgM receptor immune signaling has barely been explored. More

recently, Phb1 was identified as an important component of antigen-mediated signaling in

mast cells, in the adaptor molecules in B cell receptors, and in the maturation of T cells [4–6].

The levels of Phb1 mRNA and protein were found to be lower in the inflamed mucosa of indi-

viduals with inflammatory bowel disease (IBD) as well as in experimental models of colitis [7,

8]. Tumor necrosis factor alpha (TNF-α), a key cytokine that plays a central role in the

immune response, reduces Phb1 levels in cultured intestinal epithelial cells [9]. Collectively,

these results suggest that Phb1 has a potential to modulate the inflammatory responses.

S-adenosylmethionine (SAMe) is an important molecule in all living cells. It is not only

involved in the de novo synthesis of cellular glutathione (GSH), a strong endogenous antioxi-

dant, which also serves as a fundamental biological methyl donor [10–12]. SAMe is also

known to possess anti-inflammatory properties and exhibits a therapeutic effect in osteoarthri-

tis [13]. Exogenous SAMe supplementation downregulates the expression of pro-inflamma-

tory cytokines induced by lipopolysaccharide (LPS) stimulation such as TNF-α and IL-6 [14].

According to Moon et al, SAMe suppresses the IκB kinase (IKK) / nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB)-mediated inflammatory responses induced by

TNF-α in adipocytes [15]. Therefore, the alteration of Phb1 levels is closely related to the

inflammatory response and SAMe can be a useful supplementary treatment in inflammation.

However, the roles of Phb1 and SAMe as well as their relationship in immune cells such as

macrophages are not well known. Thus, the aim of this study is to investigate the potential

roles of the immune modulatory function of Phb1 and to identify the anti-inflammatory prop-

erties of SAMe using murine macrophages.

Material and methods

Cell culture and treatments

The murine macrophage cell line, RAW 264.7, was purchased from ATCC (Manassas, VA,

USA). The cells were cultured in Dulbecco’s Modified Eagle’s Media (DMEM; HyClone Labo-

ratories INC., Logan, UT, USA) supplemented with 10% (v/v) fetal bovine serum (FBS; Gibco

Inc., Grand Island, NY, USA) and 1.5 g/L sodium bicarbonate (Daejung Chemicals Co.,

Siheung, Korea) at 37˚C in a humidified 5% CO2 incubator. Cells with passage numbers

between 10 and 15 were used for the experiments and seeded into 6-well plates at a density of

0.2 x 106 cells/well for 6 hours before treatments. After 6 hours, the media were changed with

the new media containing 1 mM SAMe (Samoh Pharm Co., LTD, Seoul, Korea), followed by

24 hours of incubation. Afterward, the cells were stimulated with 1 μg/mL LPS (Sigma-Aldrich

Co., St. Louis, MO, UA) for 4 hours.

Small interfering RNA (siRNA) transfection

Pre-designed siRNA targeting mouse Phb1 (sense: AGAGCGAGCGGCAACAUUUTT, antisense:

AAAUGUUGCCGCUCGCUCUGT) and nonspecific scrambled siRNA were purchased from

Ambion Inc. (Austin, TX, USA). RAW 264.7 cells were plated on 6-well plates and transfected

with 13 nM siPhb1 or scramble siRNA using Lipofectamine RNAiMAX (Invitrogen Inc., Carls-

bad, CA, USA) according to the manufacturer’s manual.
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Cell viability

The tetrazolium-based colorimetric assay (MTT assay) was used to measure cell viability. At

the end of treatments, 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT)

solution (Sigma-Aldrich, St. Louis, MO, USA) was added to each well with the cells and incu-

bated for 4 hours. Then the supernatant was removed and 100 μL of dimethyl sulfoxide

(DMSO, Amresco Co Ltd., CITY, Ohio, USA) was added to dissolve the formazan. The absor-

bance was read at 570 nm using a microplate reader (EZ Read 400, Biochrom LTD, Cam-

bridge, UK).

RNA isolation and quantitative real time PCR

Total RNA isolation was performed using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) fol-

lowing the manufacturer’s instructions. For cDNA synthesis, First Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, Waltham, MA, USA) was used following the manufacturer’s guide.

Quantitative real time PCR (qPCR) was performed with the Maxima SYBR Green qPCR Mas-

ter Mix (Thermo Fisher Scientific, Waltham, MA, USA) and PikoReal 96 Real Time PCR Sys-

tem (Thermo Fisher Scientific). The primers used for this experiment are shown in Table 1

and all qPCR reactions were performed in duplicate for each sample. The relative gene expres-

sion levels were analyzed using the Ct method and mouse beta actin was used as an internal

control for normalization of the relative gene expression.

Nitric oxide assay

Nitric oxide (NO) concentration in the cells was measured using the Griess method. Cells

transfected with siPhb1 or scrambled siRNA were seeded on 6-well plates at a density of 0.2 x

106 cells/well. After 24 hours, the cells were stimulated with LPS for 4 hours followed by an

NO assay. The media were transferred to a 96-well plate and an equal volume of prepared

Griess reagent was added to each well. After 10 minutes of incubation, the absorbance was

measured at 562 nm.

Table 1. List of primer sequences for quantitative real time PCR.

Gene name Reference sequence Primer sequence

Actin, beta NM_007393.5 Forward GGTATCCTGACCCTGAAGTA

Reverse CACACGCAGCTCATTGTA

Phb1 NM_008831.4 Forward GTGGTGAACTCTGCTTTGTA

Reverse CCAAGGGATGAGGAAATGAG

TNF-α NM_001278601 Forward CCTATGTCTCAGCCTCTTCT

Reverse GGGAACTTCTCATCCCTTTG

IL-1α NM_010554.4 Forward CCTGTAACAGACCTCAAGAAGG

Reverse CCGTCAAGCTCAGAGGATTT

IL-1β NM_008361.4 Forward TCACAAGCAGAGCACAAG

Reverse GAAACAGTCCAGCCCATAC

IL-6 NM_001314054.1 Forward CTTCCATCCAGTTGCCTTCT

Reverse CTCCGACTTGTGAAGTGGTATAG

Nos2 NM_001313921.1 Forward GTCTGCATGGACCAGTATAAG

Reverse GGTGTGGTTGAGTTCTCTAAG

IL-10 NM_010548.2 Forward TGAATTCCCTGGGTGAGA

Reverse CCACTGCCTTGCTCTTATT

https://doi.org/10.1371/journal.pone.0241224.t001
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Western blot analysis

Total protein was extracted using radioimmunoprecipitation (RIPA) buffer containing 150

mM NaCl, 1% NP-40, 1 mM EDRA, 0.25% deoxycholic acid, and 50 mM Tris (pH 7.4). The

amount of protein (20 μg/well) was separated by 12.5% SDS-polyacrylamide gel electrophore-

sis and transferred to a nitrocellulose membrane, followed by Ponceau S staining to confirm

equal loading of the protein. After blocking with 5% skim milk in 0.1% TBS-Tween 20 for 1

hour at room temperature, the membranes were incubated with the primary Phb1 antibody

(Cell Signaling Technology, Beverly, MA, USA) for 12 hours at 4˚C. The membranes were fur-

ther incubated with horseradish peroxidase-conjugated anti-rabbit immunoglobulin G sec-

ondary antibodies (Cell Signaling Technology, Beverly, MA, USA) for 1 hour at room

temperature. The immunoreactive bands were visualized using enhanced chemiluminescence

(ECL) solution (LPS Solution, Daejeon, Korea) on a Kodak X-OMAT 2000 X-ray film proces-

sor (Kodak, Rochester, NY, USA) and alpha-tubulin was used as an internal control to quan-

tify the relative protein expression.

Reporter assay

To determine the promoter activation of NF-κB with a reporter assay, RAW 264.7 cells were

seeded in 6-well plates at a density of 0.2 x 106 cells/well for 6 hours before treatments. After 6

hours, the media were changed to media containing 1 mM SAMe for 24 hours then stimulated

for 4 hours with 1 μg/mL LPS. At the end of the treatment, the cells were washed three times

with PBS and processed according to the manufacturer’s instructions. The Dual-Glo Luciferase

Reporter Assay System (Promega, Madison, WI, USA) was used to quantify the expression of

the firefly luciferase and the Renilla luciferase. The firefly luciferase was normalized to the

Renilla and presented relative to the controls.

Statistical analysis

All data are expressed as mean standard errors (SEM) and were analyzed using the Statistical

Analysis System package version 9.3 (SAS Institute, Cary, NY, USA). Differences among

groups were determined by one-way analysis of variance (ANOVA) with Duncan’s test. Values

of p< 0.05 were considered statistically significant.

Results

Effect of LPS stimulation on Phb1 expression in RAW 264.7 cells

To determine the effect of LPS stimulation on Phb1 expression in macrophages, we measured

relative mRNA expression level and protein level of Phb1. The relative mRNA expression level

of Phb1 was significantly decreased in LPS-induced RAW 264.7 cells compared to the level in

normal cells (Fig 1A). Western blot analysis also showed a comparable reduction in the PHB1

protein level in LPS-induced cells (Fig 1B). The knockdown efficiency of siPhb1 in this experi-

ment was greater than 80% (Fig 1A and 1B).

Cell viability & proliferation

As shown in Fig 1C, the cell viability was slightly reduced in Phb1- knockdown RAW 264.7

cells (p<0.05). Four hours of LPS stimulation resulted in a significant increase of RAW 264.7

cell proliferation (p<0.05).
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Fig 1. A: Relative mRNA expression level of RAW 264.7 cells stimulated with LPS after siPhb1 RNA transfection.

B: Protein expression of PHB1 by western blots. C: Cell viability of each group of RAW 264.7 cells. Values

represent the means ± SE of three replicate experiments performed with independent cultures. � Indicate significant

differences by one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g001
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Cytokine expression

The relative mRNA expression levels of the pro-inflammatory cytokine genes after LPS stimu-

lation are shown in Fig 2. Pro-inflammatory cytokines such as TNF-α, IL-6, IL-1α, and IL-1β
were highly expressed in LPS-stimulated groups compared with those of the non-stimulated

groups. Interestingly, the mRNA expression levels of pro-inflammatory cytokines were more

elevated in the siPhb1-transfected cells than in the normal cells (p<0.05). The mRNA expres-

sion level of the anti-inflammatory cytokine IL-10 also increased in the LPS-stimulated groups

compared with those of the non-stimulated groups (Fig 2E). However, when the Phb1 mRNA

expression level was downregulated by siPhb1, the mRNA expression level of IL-10 after LPS

stimulation was significantly decreased compared with cells that expressed normal levels of

Phb1 (Fig 4E, p<0.05).

Fig 2. Effects of Phb1 expression level and LPS stimulation on inflammatory cytokines in RAW 264.7 cells with

Phb1 knockdown. A: TNF-α, B: IL-6, C: IL-1α, D: IL-1β, E: IL-10. Values represent means ± SE of three replicate

experiments performed with independent cultures. � Indicate significant differences by one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g002
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Nitric oxide production and Nos2 expression

LPS stimulation increased NO production in RAW 264.7 cells in both normal and

Phb1-knockdown cells. Furthermore, NO production and the relative mRNA expression levels

of Nos2 were significantly increased in siPhb1-transfected RAW 264.7 cells compared with

those of the other groups (Fig 3).

Effects of SAMe on Phb1 expression in LPS-stimulated RAW 264.7 cells

After confirming that LPS induced Phb1 downregulation as shown in Fig 1, we further

attempted to determine the effect of SAMe on Phb1 expression in LPS-stimulated RAW 264.7

Fig 3. Alteration of A: NO production and B: mRNA expression level of Nos2 in LPS-stimulated RAW 264.7 cells

with Phb1 knockdown. Values represent means ± SE of three replicate experiments performed with independent

cultures. � Indicate significant differences by one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g003
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cells. The Phb1 expression in normal RAW 264.7 cells tended to increase in SAMe-treated

cells (Fig 4). However, the results showed that the Phb1 mRNA expression was not altered by

SAMe treatment in the LPS treatment groups (Fig 4A).

SAMe treatment and cell viability

The effects of SAMe on cell viability were shown in Fig 4B. The cell viability of RAW 264.7

cells without SAMe was similar to that shown in Fig 1. The SAMe-treated groups showed no

significant differences in cell viability except for the SAMe-treated Phb1-knockdown group.

This group showed significantly reduced cell viability compared with the other groups

(p<0.05).

Fig 4. Relative mRNA expression level of Phb1 in RAW 264.7 cells (A) treated with SAMe before LPS stimulation

and its cell viability (B). Values represent means ± SE of three replicate experiments performed with independent

cultures. � Indicate significant differences by one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g004
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SAMe treatment and cytokine expression

The mRNA expression levels of inflammatory cytokines were determined in RAW 264.7 cells

with or without SAMe. The mRNA expression levels of TNF-α and IL-6 showed no statistical

differences with and without SAMe treatment. However, the mRNA expression levels of IL-1β
and IL-10 were decreased significantly in the SAMe-treated LPS-induced RAW 264.7 cells

compared with the LPS-induced only cells (Fig 5C and 5D). The extracellular secreted level of

TNF-α was determined by ELISA assay (Fig 5E). The result of ELISA was similar with relative

mRNA expression level of TNF-α in Fig 5A. However, in SAMe treated Phb1 KD group with

LPS stimulation showed significant decreased TNF-α concentration compared with other

SAMe treated LPS stimulation groups (p<0.05).

Effects of SAMe treatment on nitric oxide production and Nos2 expression

The effects of SAMe on NO production and Nos2 expression level in LPS-stimulated RAW

264.7 cells were shown in Fig 6. Pretreatment with SAMe significantly attenuated the LPS-

induced NO production and Nos2 expression (p<0.05). Especially, the reduction of the

Fig 5. Effect of SAMe on mRNA expression levels of inflammatory cytokines in RAW 264.7 cells with Phb1

knockdown and LPS stimulation. A: TNF-α, B: IL-6, C: IL-1β, D: IL-10. Values represent means ± SE of three

replicate experiments performed with independent cultures. � Indicate significant differences by one-way ANOVA

(p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g005
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LPS-induced Nos2 expression by SAMe treatment was lower in the siPhb1 and LPS group than

in the control group (Fig 6B).

NF-κB activation

To determine the effects of Phb1 and SAMe on NF-κB activation, luciferase reporter assay was

conducted. In Fig 7, luciferase activity of NF-κB was observed in the cells stimulated with LPS,

and it was clear that LPS treatment activated the RAW 264.7 cells. In addition, the luciferase

reporter assay showed increased NF-κB-Luc activity in Phb1-knockdown RAW 264.7 cells

Fig 6. The NO production (A) and mRNA expression level of Nos2 (B) in SAMe-treated RAW 264.7 cells. After

SAMe treatment, cells were transfected with or without siPhb1 RNA then stimulated with LPS. Values represent

means ± SE of three replicate experiments performed with independent cultures. � Indicate significant differences by

one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g006
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(p<0.1). However, SAMe treatments showed no statistical attenuation of NF-κB luciferase

activity in LPS stimulated Phb1-knockdown RAW 264.7 cells.

Discussion

The function of the immune system is to protect the host from infection [16]. These immune

systems are divided into innate and adaptive immune system. The innate immune system pro-

vides the early line of a defense barrier against infections caused by a variety of stimuli such as

LPS and the products of injured cells [17].

Prohibitin 1 is a pleiotropic protein that has multiple functions in cells such as regulation of

cell cycle and stabilization of mitochondrial proteins [1, 2]. Despite the several reports impli-

cating Phb1 is involved in immune response, the role of Phb1 in innate immunity remains elu-

sive [2, 18]. Therefore, the main purpose of this study was to investigate the potential immune-

modulatory function of Phb1 using a murine macrophage cell line and to discover the anti-

inflammatory properties of SAMe.

At first, we elucidate the role of Phb1 in the LPS-induced inflammatory responses by using

siPhb1. In this study, we confirmed the high significance of siPhb1 transfection efficiency in

RAW 264.7 cells. Interestingly, the mRNA expression level of Phb1 was significantly decreased

in LPS-treated RAW 264.7 cells (Fig 1A and 1B). Although the mRNA expression level of Phb1
in the LPS-treated control group decreased by about 40%, the protein expression level of

PHB1 was not significantly different between the normal control group and the LPS-treated

control group. This is because PHB1 protein appears to be quite stable, with a half-life that

exceeds 10 hours [19], which results in delayed decrease of the PHB1 protein compared to that

of the mRNA. Several studies have suggested various role of PHB1 protein in immune func-

tions, such as an association with the IgM receptor in murine B cells or PHB1 protein as a host

Fig 7. Modulation of LPS-induced NF-κB activation by SAMe in Phb1-knockdown RAW 264.7 cells. Values

represent means ± SE of three replicate experiments performed with independent cultures. � Indicate significant

differences by one-way ANOVA (p<0.05).

https://doi.org/10.1371/journal.pone.0241224.g007
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target protein for pathogens [3]. For that reason, we can hypothesize the impairment of PHB1

function may affect the inflammatory response.

Previous studies showed that the expression of Phb1 not only decreased the inflammatory

status but also increased the inflammatory response after infection [20]. Similarly, our study

showed that the expression of Phb1 was downregulated by stimulation with LPS in RAW 264.7

cells (Fig 1). Sánchez-Quiles et al (2012) reported that partial global depletion of Phb1 pro-

moted the production of pro-inflammatory cytokines such as TNF-α and IL-1 [21]. Addition-

ally, Theiss et al (2009) reported that Phb1 inhibits TNF-α induced NF-κB activation in

intestinal epithelial cells and prohibitin transgenic mice [20]. Considering these findings, our

results indicate that there may be a relationship between the inflammatory response and Phb1

expression especially in the acute immune responding cells such as macrophages.

Lipopolysaccharide triggers the production of inflammatory mediators such as TNF-α,

interleukins, and inducible nitric oxide synthase (iNOS) by stimulating toll-like receptor 4

(TLR4), which is expressed on the surface of macrophages [22]. TLR4 activates transcription

factors, such as NF-κB and interferon regulatory factor (IRF), and ultimately promotes the

expression of inflammatory cytokines such as TNF-α, IL-1, and IL-6 [23–25]. These cytokines

regulate the level of the immune response and mediate various biological processes. Thus, we

examined the LPS-induced inflammatory mediators after knockdown of Phb1 mRNA. In our

study, the mRNA expression levels of pro- and anti-inflammatory cytokines were increased by

LPS tretments (Fig 3). Intriguingly, the LPS-induced increase in the mRNA expression of

TNF-α, IL-6, IL-1α, and IL-1β was significantly further enhanced in the presence of siPhb1,

while that of IL-10 was significantly attenuated (Fig 2). In the immune system, cytokines are

secreted as a response to inflammation in different immune cells. They modulate the inflam-

matory responses and play key roles in cell survival, growth, and proliferation [26, 27]. TNF-α,

IL-1, and IL-6 are known as pro-inflammatory cytokines mostly secreted during the acute

phase of inflammation [28]. However, excessive production of pro-inflammatory cytokines is

deleterious to the host [29]. For this reason, anti-inflammatory cytokines such as IL-10 and IL-

4 inhibit the pro-inflammatory cytokine [30]. Especially, IL-10 is the most important anti-

inflammatory cytokine, suppressing the production of LPS-induced pro-inflammatory cyto-

kines in macrophages [31]. Our findings indicate that reduced Phb1 expression can contribute

to increased expression of pro-inflammatory cytokines and expansion of the inflammatory

response in LPS-induced RAW 264.7 cells. Nos2 gene produces an inducible nitric oxide

synthase (iNOS) which is a key enzyme in the synthesis of nitric oxide (NO), an inflammatory

mediator that protects the host by removing pathogens [32]. Our results showed that NO pro-

duction and Nos2 mRNA expression were significantly increased by LPS stimulation. In addi-

tion, LPS-induced NO production and Nos2 mRNA expression were further enhanced

significantly in the presence of siPhb1. These results suggest that Phb1 expression level is

involved in the LPS-induced inflammatory response.

S-adenosylmethionine (SAMe) is the principal biological methyl donor and has anti-

inflammatory properties. In the previous study, we reported SAMe as a potent substance in

the regulation of the LPS-induced immune response [32]. Therefore, we next investigated to

identify the function of SAMe on LPS-induced inflammatory response related to Phb1. To our

knowledge, we first confirmed the effect of SAMe on Phb1 mRNA expression in LPS-stimu-

lated RAW 264.7 cells. There was no significant difference in the Phb1 expression level after

SAMe treatment (Fig 4). Li et al reported that SAMe inhibited LPS-induced TNF-α and IL-1

expression in mice [33]. Another report also showed that SAMe attenuated LPS-induced TNF-

α and Nos2 expression and increased IL-10 in a dose-dependent manner. Our results pre-

sented that SAMe attenuated LPS-induced IL-1β, IL-10, and Nos2 expression as well as NO

production (Figs 5 and 6). Interestingly, SAMe treatment had no effect on LPS-induced
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TNF-α and IL-6 expression in Phb1 knockdown RAW 264.7 cells (Fig 5A and 5B). In contrast,

the mRNA expression levels of IL-1β and IL-10 were reduced by SAMe treatment in LPS-stim-

ulated Phb1 knockdown cells (Fig 5C and 5D). Furthermore, we identified that extracellular

secreted TNF-α was significantly decreased in LPS stimulated SAMe treated Phb1 KD group

compared to Phb1 expression groups (Fig 5E). These results demonstrated that SAMe has a

inmmuno-modulatory effects not on transcriptional level, it has effects on post transcriptional

functional property. Based on these results, we concluded that Phb1 modulates the LPS-

induced inflammatory response and that SAMe has an anti-inflammatory effect in Phb1

knockdown macrophage cells.

S-adenosylmethionine has been known as an anti-inflammatory compound through NF-

κB activation. Theiss et al (2009) reported that Phb1 inhibits TNF-α induced NF-κB activation

[20]. Similarly, our results also showed that NF-κB activation is increased by LPS and the acti-

vation of NF-κB was more increased in Phb1 KD group. However, SAMe treatments showed

no anti-inflammatory effect in LPS stimulated RAW 264.7 cells by measuring NF-κB luciferase

activity. These results suggest that without Phb1, NF-κB signaling pathway and its downstream

signaling is upregulated and these effects were more sever in LPS stimulated status. Moreover,

without NF-κB modulatory effects, SAMe downregulated the mRNA expression level of IL-1β
and IL-10 which are downstream signaling of NF-κB. It is well known that NF-κB is present in

cells in an inactive state and do not require new protein synthesis in order to become activated.

This allows NF-κB to be active by several inducers such as reactive oxygen species, TNF-α, and

LPS as a first responder. These results represent that the immune-modulatory effects of SAMe

has effects on downstream pathway of NF-κB which would be independent of NF-κB expres-

sion changes. In addition we may assume there is a possibility that SAMe regulates phosphory-

lation or ubiquitination of NF-κB which results in translocation of NF-κB from cytosol to

nucleus and modulates transcription level of signaling molecules. However, the mechanisms

related to the modulation of the immune response remain unclear.

Taken together, our results show that the level of Phb1 may affect the inflammatory

response induced by LPS in murine macrophages. LPS treatment reduces Phb1 mRNA and

protein expression in RAW 264.7 cells. Phb1 knockdown further ameliorates the mRNA

expression of pro- and anti- inflammatory cytokines such as TNF-α, IL-1α, IL-1β, IL-6, and

IL-10 in LPS-stimulated RAW 264.7 cells. In addition to inflammatory cytokines, Nos2 mRNA

expression and NO production are also increased by LPS-stimulation. SAMe treatment attenu-

ates the mRNA expression of LPS-induced inflammatory genes such as IL-1β, IL-10, and Nos2

as well as NO production in the presence of siPhb1. LPS stimulation increases NF-κB luciferase

activity, which is further increased by Phb1 knockdown. However, SAMe treatment reverts

this increase and the mechanism studies will be needed for understanding the specific target of

its inflammatory regulation effects. These results demonstrate that Phb1 expression level

potentially affects the innate immune system by modulating the NF-κB pathway in RAW

264.7 cells.
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