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Abstract

Background: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous. Previous studies have 

found associations between PFAS and thyroid hormones in maternal and cord sera, but the results 
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are inconsistent. To further address this research question, we used mixture modeling to assess the 

associations with individual PFAS, interactions among PFAS chemicals, and the overall mixture.

Methods: We collected data through the Health Outcomes and Measures of the Environment 

(HOME) Study, a prospective cohort study that between 2003 and 2006 enrolled 468 pregnant 

women and their children in the greater Cincinnati, Ohio region. We assessed the associations of 

maternal serum PFAS concentrations measured during pregnancy with maternal (n = 185) and 

cord (n = 256) sera thyroid stimulating hormone (TSH), total thyroxine (TT4), total 

triiodothyronine (TT3), free thyroxine (FT4), and free triiodothyronine (FT3) using two mixture 

modeling approaches (Bayesian kernel machine regression (BKMR) and quantile g-computation) 

and multivariable linear regression. Additional models considered thyroid autoantibodies, other 

non-PFAS chemicals, and iodine deficiency as potential confounders or effect measure modifiers.

Results: PFAS, considered individually or as mixtures, were generally not associated with any 

thyroid hormones. A doubling of perfluorooctanesulfonic acid (PFOS) had a positive association 

with cord serum TSH in BKMR models but the 95% CI included the null (β = 0.09; 95% credible 

interval: −0.08, 0.27). Using BKMR and multivariable models, we found that among children born 

to mothers with higher thyroid peroxidase antibody (TPOAb), perfluorooctanoic acid (PFOA), 

PFOS, and perfluorohexanesulfonic acid (PFHxS) were associated with decreased cord FT4 

suggesting modification by maternal TPOAb status.

Conclusions: These findings suggest that maternal serum PFAS concentrations measured in the 

second trimester of pregnancy are not strongly associated with thyroid hormones in maternal and 

cord sera. Further analyses using robust mixture models in other cohorts are required to 

corroborate these findings.
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1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent synthetic 

chemicals detected in air, dust, soil, drinking water, and consumer products (Blum et al., 

2015). Widely produced in industrialized countries beginning in the 1940s and 1950s 

(Lindstrom et al., 2011), more than 4,700 fluorine-containing compounds are now estimated 

to exist, although not all are currently used in consumer products (Birnbaum, 2018). PFAS, 

including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), 

perfluorononanoic acid (PFNA), and perfluorohexanesulfonic acid (PFHxS), readily cross 

the placenta and are detected in the blood of virtually all pregnant women, children, and 

neonates (Ballesteros et al., 2017; Braun, 2016). Due to some of these chemicals’ long half-

lives (ranging from 2.5–7.3 years) (Caron-Beaudoin et al., 2019) and bioaccumulative 

properties and toxicity in animal studies (Lindstrom et al., 2011), research quantifying 

associations between PFAS and health outcomes during sensitive windows of development 

is imperative.
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PFAS are potential thyroid disruptors. In animal studies, individual PFAS have been shown 

to alter circulating levels of thyroid hormone (Ramhøj et al., 2018; Stahl et al., 2011; Yu et 

al., 2009). Epidemiological studies have assessed the relationship between various PFAS and 

thyroid hormones of mothers, neonates, and children (Berg et al., 2015; Chan et al., 2011; 

Kim et al., 2011; Lopez-Espinosa et al., 2012; Preston et al., 2018; Reardon et al., 2019; 

Wang et al., 2013, 2014; Webster et al., 2014), but the findings are conflicting (Ballesteros et 

al., 2017). Effect measure modification by autoantibody and iodine status contribute to the 

“multiple hit hypothesis” (Webster et al., 2014); a theory that thyroid function may be more 

susceptible to disruption by chemicals such as PFAS if the system is already impacted by 

multiple stressors. Consequently, some authors have suggested that TPOAb, TgAb, and 

iodine status are effect measure modifiers of PFAS’ association with thyroid hormones, but 

observations vary by study (Itoh et al., 2019; Preston et al., 2018; Reardon et al., 2019; 

Webster et al., 2014, 2016). However, another reason for inconsistent findings could be the 

mixture of PFAS in the population. To our knowledge, no study has assessed associations of 

PFAS mixtures with maternal or cord serum thyroid hormones. Further, our study will be 

one of very few studies that has assessed effect measure modification by autoantibody and 

iodine status as an additional exploratory analyses. Disentangling the contributions of 

individual elements of PFAS mixtures and quantifying the effect of the overall mixture is 

necessary to understand the impact of PFAS on thyroid hormones.

This issue is important because of the role of thyroid hormone in brain development, growth, 

depression, and obesity (Boelaert and Franklyn J A, 2005; Tanm, 2011). In the brain and 

nervous system, thyroid hormones regulate cell migration and differentiation, 

synaptogenesis, and myelination (Bernal, 2007). Among younger individuals, thyroid 

hormone deficiencies can cause growth delays, intellectual disabilities, and precocious 

puberty (Papi et al., 2007). Low thyroid hormone during pregnancy may cause neurological 

impairment (Bernal, 2007) and lowered IQ (Chang and Pearce, 2013) in children.

The objective of this study was to quantify the association of individual and mixtures of 

PFOA, PFOS, PFNA, and PFHxS measured in maternal serum with thyroid stimulating 

hormone (TSH), total thyroxine (TT4), total triiodothyronine (TT3), free thyroxine (FT4), 

and free triiodothyronine (FT3) measured during pregnancy and in cord serum. Additionally, 

we explored potential effect measure modification of the association of PFAS with thyroid 

hormones by maternal TPOAb, TgAb, and iodine deficiency status.

2. Methods

2.1 Study Design and Participants

We enrolled 468 pregnant women in the Health Outcomes and Measures of the Environment 

(HOME) Study from the greater Cincinnati area between March 2003 and January 2006 and 

389 delivered singleton infants. Detailed information on the HOME Study have been 

described elsewhere (Braun et al., 2017). Of the 389 eligible mother-child dyads, 355 had 

PFAS measurements. At least one cord or maternal thyroid hormone was measured in 305 of 

the 355 dyads. Both thyroid hormone measurements and PFAS serum measurements were 

available for 256 cord and 185 maternal sera samples (Figure S1). The Institutional Review 

Boards (IRBs) of Cincinnati Children’s Hospital Medical Center (CCHMC) and all delivery 
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hospitals approved the study protocol. The Centers for Disease Control and Prevention 

(CDC) deferred to the CCHMC IRB as the IRB of record.

2.2 Maternal Serum Collection and PFAS Quantification

Maternal blood samples were collected at approximately 16 weeks’ gestation, 26 weeks’ 

gestation, and at delivery. Serum was separated from whole blood samples after clotting at 

the study site and maintained at −80°C until it could be analyzed. Of the 305 mother-infant 

dyads with at least one PFAS and thyroid hormone measured, most mothers (n=258; 85%) 

had a sufficient volume of serum available to quantify PFAS in the 16 week sample (16.0 ± 

1.9 weeks). We used samples collected at 26 weeks (26.5 ± 1.8 weeks) for 32 (10%) 

participants or delivery (39.1 ± 0.9 weeks) for 15 (5%) participants if they had insufficient 

serum volume available in the 16 week sample (Figure S1). Samples collected around 16 

weeks were prioritized to minimize the impact of changing serum volumes due to pregnancy 

(Braun et al., 2016a). PFOA, PFOS, PFNA, and PFHxS concentrations were measured at the 

CDC using on-line solid phase extraction coupled with high performance liquid 

chromatography-isotope dilution tandem mass spectrometry (Kato et al., 2011). We detected 

all four PFAS in all samples with limits of detection (LODs) ranging between 0.082–0.2 

ng/mL (Braun et al., 2016a). Quality control materials and reagent blanks were included in 

each analytic batch with coefficients of variation in repeated quality control materials of 

approximately 6%.

2.3 Thyroid Hormone and Autoantibody Sample Collection

We measured TSH (μIU/mL), TT4 (μg/dL), TT3 (ng/dL), FT4 (ng/dL), and FT3 (pg/mL) in 

maternal serum at 16 weeks’ gestation and cord serum at delivery. In total, 305 mother-

infant dyads had at least one thyroid hormone measured (Figure S1). We also measured 

TPOAb (IU/mL) and TgAb (IU/mL) in maternal serum at 16 weeks’ gestation. The 

Department of Laboratory Medicine of the University of Washington measured all thyroid 

hormones and autoantibodies. Upon arrival, thyroid hormone specimens were kept at −70°C 

and analyzed using an Access2 automated clinical immunoassay analyzer by Beckman 

Coulter, Inc (Fullerton, CA). To ensure quality control, two daily quality control materials 

[BioRad Liquicheck or BioRad Immunoassay Plus (Hercules, CA)] were run with each 

assay (n = 22). Results were reviewed by a second technologist for accuracy. Coefficients of 

variation for all thyroid hormones and autoantibodies ranged between <1.0 to 11%. In our 

study, only 15 women had clinically significant TPOAb [≥ 9.0 IU/mL (NHANES, 2007a); 

8.2%] and 7 [≥ 4.0 IU/mL (NHANES, 2007b, 2011); 3.8%] had clinically significant TgAb 

levels.

2.4 Covariates and Additional Exposures

We collected information on covariates using standardized questionnaires and interviews. 

We abstracted obstetric history and delivery information after delivery. We calculated the 

average of serum cotinine measured in samples collected at 16 and 26 gestational weeks 

(Bernert et al., 2009). We examined polybrominated diphenyl ethers (PBDEs) and 

polychlorinated biphenyls (PCBs), namely BDE-28, BDE-47, and PCB-153, as potential 

confounders because previous research in this cohort and others has suggested they may 

influence thyroid hormone levels in pregnant women or neonates (Caron-Beaudoin et al., 
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2019; Chevrier et al., 2007; Longnecker et al., 2003; Vuong et al., 2015; Webster et al., 

2014). We measured PBDEs and PCBs in maternal serum at the CDC using gas 

chromatography/isotope dilution high-resolution mass spectrometry (Jones et al., 2012; 

Sjödin et al., 2004). Serum samples were pretreated and extracted by solid phase extraction. 

To ensure consistency between each batch of samples (n = 24), 3 quality control and method 

blank samples were included in each batch. PBDE and PCB concentrations were 

standardized on a serum lipid basis (ng/g) and total lipids were established using standard 

enzymatic methods (Phillips et al., 1989). Using the blank as the baseline, the LOD was 

classified as three times the standard deviation of the method blank samples in the batch or if 

no blank was detectable as 5 pg/μL. If the sample had a value less than the LOD, the value 

was replaced by the LOD divided by the square root of 2 (Hornung and Reed, 1990). Iodine 

was measured in a single maternal urine sample, collected predominantly at 26 weeks (mean 

= 26.6, SD = 2.1), using an Agilent 7500x Inductively Coupled Plasma-Mass Spectrometer 

(Caldwell et al., 2003) for 292 (95.7%) of the mother-infant dyads in the analytic population. 

The LOD was 0.5 μg I/L with an average cross validation for all quality-controlled 

specimens less than or equal to 10%. Urinary creatinine was measured using enzymatic 

methods, and based on maternal creatinine-standardized urinary iodine, women were 

categorized as iodine deficient (<150 μg I/g creatinine) or sufficient ( ≥150 μg I/g) 

(Ghassabian et al., 2014).

2.5 Statistical Analyses

2.5.1 Descriptive—We calculated summary statistics among participants with cord (n = 

256) or maternal serum (n = 185), with complete PFAS information, and with data for at 

least one thyroid hormone. Median (IQR) values were calculated for each PFAS and thyroid 

hormone for both maternal and cord sera for relevant covariate groupings.

2.5.2 Bayesian kernel machine regression (BKMR)—Bayesian kernel machine 

regression (BKMR) (Bobb et al., 2015) and the R package ‘bkmr’ (Bobb et al., 2018) were 

used to estimate individual and overall effects of PFAS within a mixture on TSH, TT4, TT3, 

FT4, and FT3 in cord and maternal sera. BKMR is a semi-parametric statistical method that 

can be used to estimate the effects of individual mixture components, the overall mixture 

effect, and interactions between mixture components. It can be represented by the equation 

Y i = ℎ(zi) + xiTβ + ϵi, where Yi represents the outcome variable, h(zi) is the Gaussian kernel 

containing the exposures of interest, xi is a matrix of covariates, and β is a vector of 

corresponding coefficients. We used a Gaussian kernel, which can support flexible exposure-

response shapes. Posterior inclusion probabilities (PIPs) were derived to help determine 

which chemicals were important variables for the association between PFAS mixtures and 

thyroid hormones (Bobb et al., 2018). Predictors with a PIP greater than or equal to 0.5 were 

considered meaningful (Barbieri and Berger, 2004).

Covariate-adjusted BKMR models were used to simultaneously regress all PFAS against 

each of cord and maternal TSH, TT4, TT3, FT4, and FT3. For all BKMR analyses, PFAS and 

thyroid hormones were log2-transformed to account for skewness and to reduce the 

influence of extreme values in the distribution. Shapiro-Wilkes tests were used to assess that 

log2-transformations reduced deviation from normality for a majority of the thyroid 
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hormone models (Vuong et al., 2015). PFAS were first log2-transformed before being 

centered to a mean of 0 and scaled to a standard deviation of 1 (Deyssenroth et al., 2018). 

Based on a priori observations from the literature of covariates with the exposures and 

outcomes of interest, we adjusted for maternal age at delivery (linear), race/ethnicity 

(dichotomous for White and non-Hispanic or Other), marital status at baseline (unmarried 

and living alone, unmarried and cohabitating, or married), maternal education level (less 

than Bachelor’s or equal to or higher than Bachelor’s), household income (linear), mean 

log10-transformed cotinine (a sensitive and specific marker of tobacco smoke exposure) 

(Braun et al., 2010), nulliparity, maternal alcohol usage during pregnancy (never or ever 

usage), maternal pre-pregnancy body mass index (BMI) (kg/m2), the infant’s sex (male or 

female), and gestational week at blood draw for PFAS measurement (linear). Thyroid 

hormone cord serum models also included delivery mode (vaginal or cesarean section) as a 

covariate. Gestational age at delivery was not included as a covariate in cord serum models 

as it is potentially on the causal pathway between PFAS and newborn thyroid hormones. 

Continuous covariates were centered to 0 and scaled to a standard deviation of 1. Requiring 

complete covariate data, analyses of cord serum thyroid hormones included 231–236 

participants. Adjusted models for maternal serum had 171 participants (Figure S1). All 

models were fit by running 20,000 iterations using the Markov Chain Monte Carlo (MCMC) 

sampler.

Overall mixture effects were estimated by taking the mean value of the outcome when all the 

PFAS concentrations were at the 75th percentile and subtracting the mean value of the 

outcome when the PFAS concentrations were at the 25th percentile while keeping the 

covariates constant (Bobb et al., 2018). Plots were used to evaluate the overall association of 

the PFAS mixture with each thyroid hormone by comparing each quantile of the PFAS 

mixture to the median. Individual effects of each PFAS mixture component were estimated 

by taking the mean value of the outcome when one PFAS was at the 75th percentile and 

subtracting the mean outcome value if the PFAS was at the 25th percentile, while keeping 

the other PFAS fixed at their medians and all covariates held constant (Bobb et al., 2018). 

Univariate plots were used to visualize the exposure-response relationship for each PFAS in 

the mixture while holding the other exposures to their 50th percentile and covariates 

constant. Potential interactions among the PFAS in the mixture were visualized by assessing 

the effect on the outcome given by different fixed quantiles of each possible pair of PFAS 

within the mixture.

Additional adjusted BKMR models were created to explore potential effect measure 

modification of the association of the PFAS mixture with thyroid hormones in cord or 

maternal serum by TPOAb, TgAb, and iodine deficiency status by including these variables 

in the exposure matrix (zi). Two distinct exploratory analyses were conducted; one for the 

autoantibodies together and the other for iodine deficiency status. TPOAb was dichotomized 

at less than or equal to or above the median. TgAb was dichotomized by detectable or not 

detectable. Maternal urinary iodine was used to characterize women as iodine sufficient or 

deficient as described above.

Further BKMR models were run as sensitivity analyses to assess if robust associations 

remained in the cord TSH model. A BKMR was run which included PFOA, PFOS, PFNA, 
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PFHxS, BDE-28, BDE-47, and PCB-153 (n = 202). As with PFAS, BDE-28, BDE-47, and 

PCB-153 were first log2-transformed then centered to a mean of 0 and scaled to a standard 

deviation of 1 and included as exposures (zi) in the model. We further explored the PFOA, 

PFOS, PFNA, and PFHxS mixture within this restricted sample to assess any possible 

selection effect within the reduced analytic sample. Finally, to assess the potential influence 

of gestational age at PFAS measurement, which has varied widely across previous studies 

(Ballesteros et al., 2017), on cord TSH models we ran a BKMR with PFOA, PFOS, PFNA, 

PFHxS, BDE-28, BDE-47, and PCB-153 in participants with a gestational age < 22 weeks 

(n = 186).

2.5.3 Quantile-based g-computation—Quantile-based g-computation (Keil et al., 

2019) was used to corroborate that the overall effect and contributions of each PFAS in the 

mixture were approximately consistent across two mixture model techniques. Quantile-

based g-computation is an adaptation of weighted quantile sum regression (WQSR), a 

mixture modeling method used in environmental epidemiology (Carrico et al., 2014). 

Quantile g-computation has certain advantages over traditional WQSR, including that 

directional homogeneity of effect estimates is not required. This method is applied in three 

main steps. The first step transforms all the exposures into quantiles. Next, a linear model is 

fit between the exposures, covariates, and outcome. Finally, weights are defined for each 

exposure, corresponding to the strength of the association between the exposure and the 

outcome. The overall mixture effect can be interpreted as the change in outcome per one 

quantile of change in all exposures while controlling for covariates. Utilizing the R package 

‘qgcomp’ (Keil et al., 2019), quantile-based g-computation models were created to compare 

with results from the BKMR models. Like with the BKMR models, serum thyroid hormones 

and the continuous exposures were log2-transformed, and the exposures and covariates were 

centered to a mean of 0 and scaled to a standard deviation of 1.

2.5.4 Multivariable Linear Models—We used generalized linear models to further 

describe exposure-response relationships and to compare the findings from our mixture 

models to a more common analytic approach. We ran crude and adjusted models with and 

without log2-transformed BDE-28, BDE-47, and PCB-153 individually for each log2-

transformed thyroid hormone with the PFAS also log2-transformed. We adjusted 

multivariable models for the same covariates as the BKMR and quantile g-computation 

models. Interaction terms for median dichotomized TPOAb, detectable versus non-

detectable TgAb, and iodine deficiency status were also evaluated in separate models.

We conducted statistical analyses using SAS version 9.4 (SAS Institute Inc., Cary, NC, 

USA) or R version 3.5.1 (R Core Team, 2013).

3. Results

Mother-infant dyads included in at least one of our cord or maternal serum models had 

similar demographic characteristics (Table 1 and Table S1). The majority of women in our 

study were between 25 and 35 years old (mean age of 30), non-Hispanic White, married or 

cohabitating, and had a bachelor’s degree or higher. Serum PFAS concentrations were 

generally lower among women who identified as non-Hispanic Black, had less educational 
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attainment, and were unmarried. Median (IQR) concentrations were highest for PFOS in 

both the cord [14.3 (8.1) ng/mL] and maternal [14.3 (8.9) ng/mL] sera (Table 2). Those who 

had PFAS measured at delivery were of lower income status and a greater proportion were 

classified as a race other than White and non-Hispanic (Table S2). Additionally, PFAS were 

strongly correlated with the other PFAS (Figure S2).

3.1 Primary Statistical Analyses

We observed limited evidence of an influence of the PFAS-mixture on maternal or cord 

thyroid hormones by either mixture method, or of individual PFAS with maternal or cord 

thyroid hormones in mixture or multivariable linear regression models. Most adjusted 

models suggested that no individual PFAS was a main driver of an association between 

PFAS mixtures and thyroid hormones. Likewise, we observed no strong evidence of 

interactions between PFAS. The exception to this occurred in the log2-transformed cord 

TSH model and the cord FT3 model. Cord TSH had the most consistent association across 

modeling types. In the BKMR model for cord TSH, log2-transformed PFOS was positively 

associated with TSH with a PIP value of 0.84 and appeared to have a U-shaped association 

with log2-transformed TSH when all other PFAS were held at their median value (Figure 1). 

The quantile g-computation model also predicted that log2-transformed PFOS would have 

the largest influence on the association with cord serum TSH compared to the other PFAS. 

With log2-transformed cord FT3 models, all predictors had PIPs between 0.56 and 0.59, but 

the overall effect of the mixture was null (Figure S3). Multivariable linear regression models 

did not suggest associations of individual log2-transformed PFAS with any of the maternal 

or cord thyroid hormones (Table S3).

In general, the BKMR and quantile g-computation models agreed in that the overall effect 

estimates of the log2-transformed PFAS mixtures were associations in the same direction 

(i.e. both models supported either a positive or negative association with each thyroid 

hormone) across models (Table 3). Both mixture models suggested that log2-transformed 

PFAS had a positive trending association with increasing log2-transformed cord TSH 

[BKMR estimate: 0.11 (95% CrI: −0.08, 0.31), quantile g-computation: 0.10 (95% CI: 

−0.03, 0.23), p-value = 0.14].

3.2 Exploratory and Sensitivity Analyses

There was little indication of effect measure modification by TPOAb, TgAb, or iodine 

deficiency status across BKMR models. However, among newborns born to women with 

higher TPOAb, we observed a weak positive association between PFNA and cord FT4; 

whereas we observed no association among newborns of mothers with low TPOAb. PFOA, 

PFOS, and PFHxS were inversely associated with cord FT4 among newborns of mothers 

with higher TPOAb levels (> 0.6 IU/mL) (Figure S4). The multivariable linear regression 

models suggested a similar trend in which log2-transformed PFOA, PFOS, and PFHxS were 

each associated with decreased levels of cord FT4 among infants of mother with TPOAb 

above the median (Table S4). Across multivariable models considering effect measure 

modification by iodine deficiency status for cord serum, log2-transformed PFHxS was 

positively associated with the thyroid hormone among those with sufficient iodine status and 

negatively associated among those classified as iodine deficient (Table S5). This 
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observation, along with some additional evidence of effect measure modification of certain 

individual PFAS on cord or maternal thyroid hormone associations according to maternal 

thyroid antibody or iodine deficiency status from the multivariable linear regression models, 

were not consistent with the BKMR models.

To better assess if associations between mixtures and thyroid hormones were a result of 

PFAS and not co-exposure to other known thyroid disruptors, we added BDE-28, BDE-47, 

and PCB-153 to the mixture. We evaluated whether the slightly positive association between 

adjusted log2-transformed PFAS elements and cord TSH in our BKMR model was robust to 

inclusion of additional co-exposures. While the PFAS mixture without PBDEs and PCB-153 

indicated an overall positive effect of the mixture (Figure 2a), a mixture modeled with the 

additional co-exposures indicated that the expanded mixture may be associated with 

decreasing levels of cord serum TSH (Figure 2b). This was validated in the quantile g-

computation model which also estimated that the expanded model’s mixture effect was 

below 0. Both models indicated that BDE-47 was the major negative predictor of the 

association (Figure S5). The U-shaped association noted in the PFAS-only mixture of log2-

transformed PFOS was no longer apparent within the mixture with the additional exposures. 

Finally, the BKMR model that assessed PFAS in only the 202 individuals that had PBDE 

and PCB measures had an overall effect estimate that was also attenuated (Figure S6a). 

Overall effects of the PFAS mixture on cord TSH were also attenuated in the model 

restricting to gestational age <22 weeks (Figure S6b).

4. Discussion

We found little evidence to suggest that individual or mixtures of PFAS measured during 

pregnancy were associated with thyroid hormones measured in maternal or cord sera in this 

cohort. This was consistent across BKMR, quantile g-computation, and multivariable linear 

regression models. Across all models we expected effect estimates would be in the same 

direction (e.g. the association between PFOS and cord serum TSH would be positive in the 

BKMR, quantile g-computation, and multivariable models). This trend generally occurred 

for overall PFAS mixtures and individual PFAS effects. Deviations from this trend occurred 

mainly when effect estimates were close to 0. We believe that consistency across multiple 

modeling types strengthens our results.

Although we are unaware of prior studies assessing the overall effect of PFAS mixtures on 

thyroid hormones in maternal or cord sera, many previous studies have found that a variety 

of PFAS measured in maternal blood were associated with neonatal and maternal thyroid 

hormones (Berg et al., 2015; Itoh et al., 2019; Kim et al., 2011; Preston et al., 2018; Reardon 

et al., 2019; Wang et al., 2013, 2014; Webster et al., 2014). Our study participants also had 

PFAS concentrations comparable to other studies that assessed PFAS during pregnancy 

(Ballesteros et al., 2017; Preston et al., 2018; Reardon et al., 2019).

Our results align with other studies that measured PFAS around the same time during 

pregnancy and mainly found non-statistically significant results between PFAS and maternal 

thyroid hormones (Ballesteros et al., 2017; Berg et al., 2015; Chan et al., 2011; Preston et 

al., 2018; Reardon et al., 2019; Wang et al., 2013; Webster et al., 2014). Sampling time is 
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likely an important factor for thyroid hormones as their levels change over the course of 

pregnancy (Alexander et al., 2017). Mixed results were observed in a study (Reardon et al., 

2019) assessing multiple isomers of PFOS across trimesters. In this study, branched isomers 

∑Br-PFOS and 5m-PFOS were statistically significantly associated with TSH during the first 

trimester and overall but not in the second trimester. However, the major isomer (Linear-

PFOS) was not associated with TSH during the first or second trimester. Two previous 

epidemiological studies observed positive associations between PFOS and maternal TSH 

measured during the second trimester of pregnancy (Berg et al., 2015; Wang et al., 2013), 

while other studies found nearly null associations of TSH measured in the first (Preston et 

al., 2018) and second trimester (Webster et al., 2014). We did not identify evidence of a 

positive association between maternal serum PFAS and maternal thyroid hormones. 

Discrepancies across studies may be due to the time of measurement of maternal serum 

TSH, as TSH dips substantially in the first trimester and generally remains below pre-

pregnancy levels through pregnancy (Alexander et al., 2017), differences between study 

populations, or variation in model covariates.

We found that there was a positive-trending but statistically non-significant association 

between PFAS and cord serum TSH with PFOS as the major contributor to the mixture. Two 

studies have looked at PFAS collected in the third trimester of pregnancy and cord TSH. One 

found that cord TSH decreased 0.083 μIU/mL (95% CI: −0.292, 0.127) with each 1 ng/mL 

change in PFOS adjusting for maternal age, maternal education level, gravidity, neonatal 

sex, and delivery mode (Wang et al., 2014). Whereas, the other study found a Pearson 

correlation coefficient of 0.109 between PFOS and cord TSH after adjusting for maternal 

age, gestation age, and maternal BMI (Kim et al., 2011). Our results indicated a U-shaped 

association between log2-transformed PFOS and cord TSH which may explain differences in 

the directionality of the associations. While PFOS concentrations were similar on average 

between our study and the study by Wang et al. (2014), participants in the Kim et al. study 

(2011) tended to have lower concentrations of PFOS on average than our study participants, 

which may also partially explain discrepant results. Through restricting our model to those 

less than 22 weeks gestation, we no longer found this U-shaped distribution in our PFOS-

cord TSH association. This attenuation of the association may have been due to the 

reduction in sample size in this analysis. However, recent research has suggested that it may 

be important to measure PFAS early in pregnancy when considering birth size as an outcome 

in order to avoid potential confounding by changes in maternal plasma volume expansion 

and glomerular filtration rate (GFR) (Steenland et al., 2018). Though cord thyroid hormones 

are less likely to be strongly influenced by maternal GFR as compared to offspring size at 

birth, future studies may consider measuring PFAS early in pregnancy to avoid this potential 

source of confounding.

Previous epidemiologic studies have assessed the association between prenatal exposure to 

PBDEs (Chevrier et al., 2010; Herbstman et al., 2008; Vuong et al., 2015) or PCBs (Chevrier 

et al., 2007; Herbstman et al., 2008) and cord and neonatal thyroid hormone levels. Although 

these studies found an association between one or more PBDEs or PCBs and thyroid 

hormones, the results are inconsistent and often not assessed in conjunction with other 

thyroid-disrupting hormones such as PFAS. Although our results were modest and not 

statistically significant, we did find that adding BDE-28, BDE-47, and PCB-153 changed the 
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direction of the mixture’s association with cord TSH. We believe this change in direction is 

potentially due to the participants that remained in our sensitivity analysis after also 

adjusting for BDE-28, BDE-47, and PCB-153 and due to the combined effects of the 

persistent organic pollutants themselves. We assessed these additional endocrine-disrupting 

chemicals (EDCs) in adjusted multivariable models and did not identify evidence of an 

association which agreed in statistical significance to our BKMR model for cord TSH. As 

our BKMR and quantile g-computation model results suggested that BDE-47 was negatively 

associated with log2-transformed cord TSH in mixtures of PFAS, further research that 

combines multiple types of EDCs should be emphasized in order to fully illuminate 

mixtures’ impacts on human health.

Overall, our study found limited evidence of effect measure modification by TPOAb, TgAb, 

or iodine deficiency status when considering associations between PFAS mixtures and 

thyroid hormones. However, some indication of effect measure modification by maternal 

TPOAb status was identified for the associations of PFAS with cord FT4 in the present study. 

Although we did not observe evidence of effect measure modification of the association of 

PFAS with maternal thyroid hormones in our study, multiple previous studies (Itoh et al., 

2019; Preston et al., 2018; Reardon et al., 2019; Webster et al., 2014, 2016), have suggested 

effect measure modification of adult or maternal FT4 by autoantibody status. In a nationally 

representative cross-sectional analysis among adults in the United States, PFOA, PFOS, 

PFNA, and PFHxS were individually associated with lower FT4 among those with both high 

TPOAb and low iodine (Webster et al., 2016). Another study suggested that among mothers 

with clinically high TPOAb, PFOA, PFOS, PFNA, and PFHxS were inversely associated 

with maternal FT4 (Webster et al., 2014). Three prior studies did not observe associations 

with maternal FT4 or FT4 index by TPOAb status, but specific individual PFAS were 

inversely associated with maternal or cord TSH among autoantibody-positive mothers (Itoh 

et al., 2019; Preston et al., 2018; Reardon et al., 2019). In our multivariable linear regression 

models, among newborns of mothers with urinary iodine <150μg I/g Cr, PFHxS was 

inversely associated with cord thyroid hormones; however, the mixture models did not 

suggest effect modification of the association of PFAS with cord thyroid hormones by iodine 

status. Our results may differ due to small sample sizes of individuals with clinically 

significant autoantibody and iodine deficiency status across many of the studies or 

differences in gestational age of sample collection. Per the “multiple hit hypothesis”, the 

thyroid gland may be more susceptible to PFAS if other stressors are already present 

(Webster et al., 2014). Collectively, these observations suggest that future studies should 

consider the combined effect of multiple stressors (e.g. high TPOAb and low iodine) with 

associations of potential endocrine-disrupting chemicals on thyroid hormones.

4.1 Strengths and Limitations

This study had several strengths and limitations. To the best of our knowledge, this is the 

first study to assess associations between PFAS mixtures and thyroid hormones and consider 

effect measure modification by thyroid autoantibodies in cord serum. Our prospective study 

design and mixture modeling approaches enabled us to evaluate individual and joint effects 

of exposures on maternal and cord thyroid hormones. While we were able to consider four 

PFAS in a mixture, we recognize that there are many more we did not consider. 
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Nevertheless, for the time period of the study, these four PFAS were the most prevalent 

compounds in the biospecimens. We cannot dismiss the possibility of reverse causality for 

the associations of PFAS with maternal thyroid hormones due to the cross-sectional nature 

of the measurements. However, the four PFAS evaluated have long biological half-lives 

(Lindstrom et al., 2011) and thus measurement at one time point is likely representative of 

PFAS exposures throughout the course of pregnancy (Ballesteros et al., 2017; Preston et al., 

2018). Due to variability of adult iodine levels (Busnardo et al., 2006), our measurement at 

26 weeks may not be representative of the entire course of pregnancy and may have led to 

some misclassification. We also cannot rule out residual confounding by other unmeasured 

thyroid disruptors or other confounders. However, we were able to assess several PBDEs, 

PCB-153, and had rich covariate data. There is no clear consensus demonstrating which type 

of mixture model is superior as this is ultimately context-dependent (Braun et al., 2016b; 

Hamra and Buckley, 2018; Lazarevic et al., 2019). We also could not identify any clear 

criteria to quantitatively compare elements within the BKMR model, BKMR model fit, or 

quantitative metrics to compare modeling types. To address these concerns, we used two 

different mixture modeling approaches, BKMR and quantile g-computation, which were 

appropriate for identifying which PFAS were most predictive of thyroid hormones and were 

able to calculate the overall effect of the mixture. Both approaches largely corroborated each 

other and were generally similar to more traditional multivariable modeling results, 

strengthening our internal validity. Mixture methods are evolving, and future analyses 

should help develop ways to better compare results across modeling techniques and set 

distinct best practices for building these models.

5. Conclusion

This study assessed the individual, overall, and joint exposure effects of maternal PFAS on a 

variety of maternal and cord sera thyroid hormones using multiple robust statistical 

techniques in a prospective cohort. Our results showed limited associations between PFAS 

and the thyroid hormones studied in this cohort. Our results may be generalizable to cohorts 

of pregnant women and children with comparable PFAS exposures who have similar 

demographics to the participants of the HOME Study. This study illustrates how multiple 

modeling techniques can be used for assessing associations between chemical mixtures and 

thyroid hormones during sensitive windows of development.
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CDC Centers for Disease Control and Prevention
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EDCs endocrine-disrupting chemicals

FT3 free triiodothyronine

FT4 free thyroxine

HOME Health Outcomes and Measures of the Environment

LOD limit of detection

PBDEs polybrominated diphenyl ethers

PCBs polychlorinated biphenyls

PFAS Per- and polyfluoroalkyl substances

PFHxS perfluorohexanesulfonic acid

PFNA perfluorononanoic acid

PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid

PIP posterior inclusion probability

SD standard deviation

TgAb thyroglobulin antibody

TSH thyroid stimulating hormone

TPOAb thyroid peroxidase antibody

TT3 total triiodothyronine

TT4 total thyroxine
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Highlights:

PFAS mixtures were not strongly associated with maternal or cord thyroid hormones.

Mixture models assessed maternal PFAS with maternal and cord thyroid hormones.

PFOS had a positive trending association with thyroid stimulating hormone.

Associations between PFAS and thyroid hormones may be modified by TPOAb status.
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Figure 1: 
Univariate plot of log2-transformed PFAS and cord TSH (n = 236). The plot assesses the 

association between each exposure and the estimate of log2-transformed TSH while fixing 

the other exposures to their 50th percentile. 95% CrI are shown in grey to depict variability. 

The model has been adjusted for maternal age at delivery, race/ethnicity, marital status at 

baseline, maternal education level, household income, mean log10-transformed cotinine, 

maternal alcohol usage during pregnancy, nulliparity, maternal body mass index based on 

pre-pregnancy weight in pounds, the child’s sex, gestational week at blood draw for PFAS 

measurement, and delivery mode. All predictors and continuous covariates were centered to 

0 and scaled to a standard deviation of 1.
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Figure 2: 
Adjusted association of the overall PFAS mixture on log2-transformed cord TSH from 

BKMR. The plots compare the value of the estimate when all the log2-transformed PFAS are 

at the respective quantile compared to when they are at the median. Variation is expressed 

using 95% credible intervals. Models include log2-transformed (a) PFOA, PFOS, PFNA, and 

PFHxS (n = 236) and (b) PFOA, PFOS, PFNA, PFHxS, BDE-28, BDE-47, and PCB-153 (n 
= 202). The models have been adjusted for maternal age at delivery, race/ethnicity, marital 

status at baseline, maternal education level, household income, mean log10-transformed 

cotinine, maternal alcohol usage during pregnancy, nulliparity, maternal body mass index 

based on pre-pregnancy weight in pounds, the child’s sex, gestational week at blood draw 

for PFAS measurement, and delivery mode. All predictors and continuous covariates were 

also centered to 0 and scaled to a standard deviation of 1.
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Table 1:

Demographic characteristics of study participants in cord and maternal sera analyses.

Cord Serum Maternal Serum

n (%) n (%)

Overall 256 (100) 185 (100)

Maternal Age (years)

 <25 51 (20) 37 (20)

 25–35 165 (65) 114 (62)

 >35 40 (16) 34 (18)

Race/Ethnicity

 Non-Hispanic White 165 (65) 116 (63)

 Black 70 (27) 51 (28)

 Other 20 (8) 17 (9)

 Missing 1 (0) 1 (1)

Marital Status

 Married 185 (72) 128 (69)

 Unmarried, cohabiting 26 (10) 19 (10)

 Unmarried, living alone 44 (17) 37 (20)

 Missing 1 (0) 1 (1)

Household Income ($/year)

 <20,000 48 (19) 38 (21)

 20-<40,000 43 (17) 35 (19)

 40-<80,000 87 (34) 57 (31)

 >80,000 77 (30) 54 (29)

 Missing 1 (0) 1 (1)

Education

 Less than high school 54 (21) 43 (23)

 High school or some college 64 (25) 38 (21)

 Bachelor’s or more 137 (54) 103 (56)

 Missing 1 (0) 1 (1)

Alcohol consumption

 Any 100 (39) 73 (40)

 None 147 (57) 108 (58)

 Missing 9 (4) 4 (2)

Serum cotinine (ng/mL)

 <0.015 (Unexposed) 110 (43) 73 (40)

 0.015–3 (Secondhand) 120 (47) 90 (49)

 >3 (Active smoker) 26 (10) 22 (12)

Maternal BMI (kg/m2)

 <24.9 (Underweight-normal) 131 (51) 102 (55)

 25–29.9 (Overweight) 67 (26) 44 (24)

 ≥30 (Obese) 49 (19) 31 (17)
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Cord Serum Maternal Serum

n (%) n (%)

 Missing 9 (4) 8 (4)

Mode of delivery

 Vaginal delivery 187 (73) 128 (69)

 Cesarean section 66 (26) 56 (30)

 Missing 3 (1) 1 (1)

Parity

 Nulliparous 108 (42) 83 (45)

 Primiparous 77 (30) 50 (27)

 Multiparous 65 (25) 48 (26)

 Missing 6 (2) 4 (2)

Newborn Sex

 Female 135 (53) 101 (55)

 Male 121 (47) 84 (45)
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Table 2:

Median (IQR) of PFAS and thyroid hormones across all HOME study participants (2003–2006)

Cord Serum Analysis Maternal Analysis

n Median (IQR) n Median (IQR)

Thyroid Hormone

TSH (μIU/L) 256 7.1 (4.8) 185 1.3 (1.2)

TT4 (μg/dL) 251 9.6 (2.2) 185 10.3 (2.5)

TT3 (ng/dL) 256 49 (17.3) 185 158.0 (36.0)

FT4 (ng/dL) 256 1.0 (0.2) 185 0.7 (0.1)

FT3 (pg/mL) 254 1.6 (0.4) 185 3.2 (0.4)

PFAS

PFOA (ng/mL) 256 5.6 (4.1) 185 5.5 (4.5)

PFOS (ng/mL) 256 14.3 (8.1) 185 14.3 (8.9)

PFNA (ng/mL) 256 0.9 (0.5) 185 0.9 (0.4)

PFHxS (ng/mL) 256 1.6 (1.5) 185 1.6 (1.5)
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