
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Kirk D, Luijckx P, Jones N,
Krichel L, Pencer C, Molnár P, Krkošek M. 2020
Experimental evidence of warming-induced

disease emergence and its prediction by a

trait-based mechanistic model. Proc. R. Soc. B

287: 20201526.
http://dx.doi.org/10.1098/rspb.2020.1526
Received: 27 June 2020

Accepted: 16 September 2020
Subject Category:
Ecology

Subject Areas:
ecology, health and disease and epidemiology

Keywords:
temperature, thermal ecology, parasite,

metabolic theory of ecology, Daphnia magna,

Ordospora colligata
Author for correspondence:
Devin Kirk

e-mail: kirkd@stanford.edu
†Present addresses: Department of Biology,

Stanford University, Stanford, CA, USA;

Department of Zoology, University of British

Columbia, Vancouver, Canada.
‡These authors contributed equally to this

study.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5141998.
© 2020 The Author(s) Published by the Royal Society. All rights reserved.
Experimental evidence of warming-
induced disease emergence and
its prediction by a trait-based
mechanistic model

Devin Kirk1,†,‡, Pepijn Luijckx2,‡, Natalie Jones3, Leila Krichel1, Clara Pencer1,
Péter Molnár1,4 and Martin Krkošek1

1Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
2School of Natural Sciences, Zoology Department, Trinity College Dublin, University of Dublin, Dublin, Republic
of Ireland
3School of Biological Sciences, University of Queensland, Brisbane, Australia
4Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto
Scarborough, Toronto, Canada

DK, 0000-0001-9588-1004; MK, 0000-0001-7591-7954

Predicting the effects of seasonality and climate change on the emergence and
spread of infectious disease remains difficult, in part because of poorly under-
stood connections between warming and the mechanisms driving disease.
Trait-based mechanistic models combined with thermal performance
curves arising from the metabolic theory of ecology (MTE) have been high-
lighted as a promising approach going forward; however, this framework
has not been tested under controlled experimental conditions that isolate
the role of gradual temporal warming on disease dynamics and emergence.
Here, we provide experimental evidence that a slowly warming host–parasite
system can be pushed through a critical transition into an epidemic state. We
then show that a trait-based mechanistic model with MTE functional forms
can predict the critical temperature for disease emergence, subsequent disease
dynamics through time and final infection prevalence in an experimentally
warmed system of Daphnia and a microsporidian parasite. Our results serve
as a proof of principle that trait-based mechanistic models using MTE sub-
functions can predict warming-induced disease emergence in data-rich
systems—a critical step towards generalizing the approach to other systems.
1. Introduction
The emergence and dynamics of infectious disease epidemics often depends on
temperature, including for diseases of humans [1–4], livestock and crops [5,6],
and wildlife populations [7–10]. The impacts of climate change on host–parasite
systems remain difficult to predict, however, as the emergence, severity and
duration of epidemics depend on the interaction of many factors [11], such as
host density [12], the infectivity of a parasite [13] and the balance between
transmission and host exploitation that underlies virulence [14]. Each of these
characteristics can have distinct temperature dependencies, possibly differing
in strength and direction, and it is their interactions that ultimately determine
the net effect of temperature on the course of an epidemic [4,15,16].

Trait-based mechanistic models that explicitly incorporate the effects of
temperature can provide an effective approach for predicting how these differ-
ent interactions shape an epidemic [17]. In this approach, the thermal
dependencies of host and parasite traits are described either discretely or,
more often, continuously using thermal performance curves [18]. These thermal
performance curves are then nested within a mechanistic model of disease
spread, allowing predictions of how temperature affects various metrics of
interest for the host–parasite system. This method has predicted temperature’s
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effects on several host–parasite systems [4,15,16,19–22], but
the equations used to relate trait performance to temperature
are often described by fitting system-specific phenomeno-
logical functions, such as quadratic or Briere functions, to
data-rich experiments (but see [19,23] which use monotonic
Arrhenius functions to model temperature-dependence in
Daphnia–fungal parasite populations). This suggests that
our ability to understand and predict impacts of climate
change on disease dynamics will be restricted to systems
for which data are available and can be fit using thermal per-
formance curves. As most host–parasite systems are data
poor, this impedes our ability to apply trait-based modelling
in many disease systems [24].

The metabolic theory of ecology (MTE) is one area of eco-
logical theory that holds promise for predicting the response
of infectious diseases to climate change or seasonality when
little data are available [25–28]. The MTE is a general frame-
work that characterizes from first (metabolic) principles how
temperature affects physiological rates, how temperature sen-
sitivities may vary among taxa based on macroecological
commonalities as well as how these thermal dependencies
propagate across biological levels of organization [26]. MTE
functions that have their bases in biological reaction rates,
such as the Arrhenius or Sharpe–Schoolfield functions, have
been shown to capture thermal scaling of disease-related
traits such as the mortality and development rates of parasite
larvae [27], the parasite equilibrium abundance within a host
[29] and the contact rate of hosts with parasites [30]. However,
to date, most studies using the MTE to predict infectious dis-
ease dynamics have focused on individual hosts rather than
disease at the population level (but see [19,23]).

Taken together, trait-based mechanistic models provide a
promising approach to predicting how warming will influence
disease emergence, and theMTE offers a potentialway forward
for filling in the thermal performance data requirements in
thesemodels. Using this combination ofmethods, we identified
two key research gaps that must be addressed in order to pre-
dict warming-induced disease emergence and spread at the
host population level. First, while predicted by theory, we still
lack experimental evidence that a slowly warming system can
be pushed from a disease-free or low-disease state (where
R0 < 1) into an epidemic state (where R0 > 1). Second, though
trait-based models have been shown to capture observed pat-
terns of disease across different thermal conditions (e.g.
[4,19,20]), they have not been tested under controlled exper-
imental conditions that isolate the role of gradual temporal
warming on disease dynamics and emergence.

Here, using a combination of models and experiments,
we address these gaps by testing whether it is possible to pre-
dict warming-induced outbreaks of an infectious disease by
using MTE functions to thermally scale the parameters in a
susceptible–infected (SI) type trait-based model for environ-
mentally transmitted disease. The model predicted that
the basic reproduction number R0 for the disease crosses
theR0 = 1 boundary just below 12°C, indicating that epidemics
should only be able to establish once environmental tempera-
tures reach and exceed 12°C. Experimentally, we drove
populations of the host–parasite system Daphnia magna–
Ordospora colligata (a microsporidian parasite) with constant,
low immigration of infected individuals through slowly
warming conditions (10–13.5°C over 120 days) and compared
the course of the resultant epidemics to constant-temperature
controls. In agreement with the independently parametrized
model, experimental epidemics established in the warming
populations once temperatures reached 12°C, but were never
established in populations that remained at 10°C.
2. Material and methods
(a) Host–parasite system
Ordospora colligata is an environmentally transmitted micro-
sporidian parasite of D. magna, a small freshwater invertebrate.
The parasite infects the epithelial cells of its host’s gut after being
inadvertently ingested by the host during filter feeding [31]. The
parasite replicates intracellularly, eventually lysing the cell and
releasing spores that spread to nearby gut cells or are released
into thewater columnwhere they can go on to infect other individ-
uals. All Daphnia individuals in this experiment (and in the
previous experiments used to parametrize our model; [29,30]) are
from a single Finnish clone (FI-OER-3-3), from which the parasite
strain (OC3) we used was originally isolated.
(b) Model
Our mechanistic trait-based model (equations (2.1)–(2.4)) contains
13 parameters (table 1), six of which are temperature dependent
[29,30]. We incorporated the thermal dependency of these par-
ameters using relationships from the MTE that were previously
determined from experimental data on individual hosts (see
[29,30]; figure 1); equations (2.1)–(2.4) describe how susceptibles
(S; (equation (2.1))) transition to infecteds (I; equation (2.2)),
which then transition to dead infecteds (D; equation (2.3)) that
can still shed the parasite into the environment while they decay
(E (environmental spores); equation (2.4)) (see model parametriza-
tion and assumptions in the electronic supplementary material for
a more detailed description of the model and figure 1 for thermal
functions). We note that our model is aimed at tracking disease
dynamics across large, female adult Daphnia in each population,
as we did not inspect juvenile or male Daphnia for infections (see
Experimental methods for more detail and justification):

dS
dt

¼ fS þ c(Sþ I) 1� Sþ I
K

� �� �
� x(T)s(T)SE� m(T)S� hS,

ð2:1Þ
dI
dt

¼ fI þ x(T)s(T)SE� (m(T)þ a(T))I � hI, ð2:2Þ
dD
dt

¼ (m(T)þ a(T))I � uD ð2:3Þ

and
dE
dt

¼ l(T)I þ v(T)uD� gE: ð2:4Þ

In equations (2.1)–(2.4), susceptible adult individuals are
continuously added to each population as per our experimental
methods (ϕS) or by natural density-dependent recruitment (deter-
mined by intrinsic recruitment rate (ψ), adult density and carrying
capacity (K )), and are lost via natural mortality (μ), by being har-
vested out of the experiment (h) or by becoming infected at rate
χσSE. The product of contact rate (χ) and the probability of infec-
tion after contact (σ) is the transmission coefficient that is
classically represented by the parameter β, but separated here to
allow for modelling via the MTE [30]. Infected adult individuals
are added via transmission and by immigration of infected ani-
mals (ϕI) and are lost via natural mortality (μ), parasite-induced
mortality (α) and harvesting (h). Infected individuals that die tran-
sition to the D class and are eventually lost via degradation (θ).
Spores are released into the environment via continuous shedding
by live infected individuals (λ) and also released from dead
infected individuals at rate ωθ, where ω is the number of spores



Table 1. Parameters for equations (2.1)–(2.5). (Our mechanistic susceptible–infected model (equations (2.1)–(2.4)) and corresponding expression for the basic
reproduction number (R0; equation (2.5)) contains 13 parameters, of which six are temperature-dependent arising from four thermal functions (figure 1). We
incorporated the thermal dependency of the temperature-dependent parameters using the MTE relationships that were previously determined from experimental
data on individual hosts in Kirk et al. [29,30].)

temperature-independent parameters

parameter description source value

ϕS input of susceptibles methods used in this study 3.535 day−1

ϕI input of infecteds methods used in this study 0.465 day−1

K adult density-dependent recruitment constraint abundance measured in this study 170

ψ maximum per capita recruitment assumed (such that abundance

remains constant near K )

1.33 day−1

h harvesting methods used in this study 0.0235 day−1

γ environmental spore mortality experimental medium removal

rate used in this study

0.0286 day−1

θ corpse degradation average from degradation experiment 0.1 day−1

temperature-dependent parameters

parameter description source function unit

μ(T ) natural mortality rate [29] Sharpe–Schoolfielda,b day−1

χ(T ) contact rate [30] Sharpe–Schoolfielda day−1

σ(T ) probability of infection [30] Sharpe–Schoolfielda,b

λ(T ) parasite shedding rate [29] Sharpe–Schoolfielda,c day−1

α(T ) parasite-induced mortality rate [29] Sharpe–Schoolfielda,c day−1

ω(T ) parasite intensity at host death [29] Sharpe–Schoolfielda,c

aSee figure 1 for functional forms.
bNatural mortality rate and probability of infection were determined by underlying expressions which use Sharpe–Schoolfield functions (see the electronic
supplementary material for more details).
cThe model parameters shedding rate, parasite-induced mortality rate and parasite intensity at death were each modelled as proportional to within-host
infection intensity, which is modelled using a Sharpe–Schoolfield function.
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in the host when they die. Spores are lost via experimentally
induced mortality rate (γ) when medium is removed.

The basic reproduction number (R0) of the parasite is
formulated from equations (2.1)–(2.4), and is equal to

R0(T) ¼ l(T)
m(T)þ a(T)þ h

þ v(T)� (m(T)þ a(T))
(m(T)þ a(T)þ h)

� �

� x(T)� s(T)� Seq
g

� �
, ð2:5Þ

where all parameters except h, γ and Seq (density of susceptible
adult hosts) depend on temperature, T. Harvesting (h) is temp-
erature-independent because it is experimentally induced; we
also assume that our experimentally induced spore mortality
rate (γ) overwhelms any natural spore mortality rate that may
be temperature-dependent. Our data did not show a signal of
temperature-dependent Seq over our experimental temperature
range (electronic supplementary material, figure S1), although
we consider potential effects of temperature-dependent host
density in the Discussion. When parametrized, equation (2.5)
predicts the host densities and thermal regimes the disease can
(R0 > 1) and cannot (R0 < 1) invade under (figure 2).

Our R0 formulation makes two key assumptions. First, we
assume that spores that are ingested but do not infect the host
are expelled, re-enter the water column and remain viable.
While there has not yet been an experimental test of this assump-
tion in this system, evidence from a similar host–parasite system
(D. magna–Pasteuria ramosa) showed that the parasite was not
killed if it failed to infect the host [32] and there are several reasons
to believe the same holds for our system (electronic supplemen-
tary material). Second, we assume that the rate of spore loss
from the water column owing to ingestion and subsequent infec-
tion is very small compared to spore loss via media removal (i.e.
sxS << g) and can, therefore, be ignored, which is supported in
this system as σ is very small [30]. The electronic supplementary
material contains additional details on the R0 formulation.

The temperature-dependent parameters of the model were
described using thermal relationships arising from the MTE
(table 1). Specifically, we used the Sharpe–Schoolfield equation
([33]; equation (2.6)) and its variants [27,29] to capture: (i) the
Boltzmann–Arrhenius relationship that describes the thermal
dependence of a process’ rate within intermediate temperature
ranges based on the process’ activation energy and Boltzmann’s
constant [26]; and (ii) how reaction rates are altered at high or
low temperatures (T ) when biological processes are impeded

x(T)¼ x0 e

�Ex

k
1
T
� 1
T0
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1
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� 1
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Figure 1. Temperature-dependence of (a) host natural mortality rate, (b) contact rate with environmental parasites, (c) probability of infection after contact and
(d ) average within-host infection intensity from Kirk et al. [29,30]. While contact rate and within-host infection intensity were each modelled as MTE functions
directly, natural mortality rate and probability of infection were determined here by underlying expressions which use MTE functions (see the electronic supplemen-
tary material for more details). The model parameters shedding rate, parasite-induced mortality rate and parasite intensity at death were each modelled as
proportional to within-host infection intensity (d ). The contact rate is the proportion of the entire water volume filtered per day by an individual. The grey
shaded region between the dashed blue lines represents the temperature range over which the experimental warming treatments warmed (10–13.5°C), while
the constant temperature treatments were kept at 10°C. (Online version in colour.)
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The Sharpe–Schoolfield equation can be described by
equation (2.6), where x0 is the rate of a given process x at the
reference temperature T0, Ex is the activation energy, k is Boltz-
mann’s constant (k = 8.62 × 10−5 eV K−1) and EIx and EHx are
the inactivation energies at the low (TLx) and high (THx) tempera-
ture thresholds, respectively. All temperatures are recorded in
degrees Kelvin. For unimodal curves where x decreases past
the temperature thresholds, z is equal to −1, whereas z is equal
to +1 if x increases past the temperature thresholds (e.g. if x is
mortality rate; [27,29]). In some processes x may only have
low- or high-temperature thresholds rather than both.

Previous work has shown that these metabolic models can
accurately capture the thermal dependencies of many host and
parasite traits in theDaphnia–Ordospora system at the scale of indi-
vidual hosts [29,30], andwe used these previously publishedMTE
functions to represent the parameters in equations (2.1)–(2.4) that
were temperature-dependent (table 1 and figure 1). In other
words, the temperature-dependence of our model was parame-
trized using experiments that were completely independent
from the one reported here. While we refer readers to the previous
studies for details on parameter experiments and model fitting,
briefly: contact rate (χ) was modelled using a Sharpe–Schoolfield
function with only an upper-temperature threshold (figure 1b;
[30]); within-host infection intensity was modelled using a
Sharpe–Schoolfield function with upper and lower temperature
thresholds and a negative activation energy, causing infection
intensity to decrease across the intermediate temperature range
(figure 1d; [29]). Natural mortality rate (μ; figure 1a) and prob-
ability of infection (σ; figure 1c) were each composite functions
of other terms (e.g. ageing rate, infection rate) that were rep-
resented by the Sharpe–Schoolfield functions ([29,30]; see the
electronic supplementary material for more details). Additionally,
contact rate (χ) increases with, and the probability of infection (σ)
decreases with, Daphnia size [30]. We, therefore, assumed that
large, female adult Daphnia size was constant in both treatments
at 2700 µm and found that our model predictions were not
strongly impacted by this and other parameter assumptions (elec-
tronic supplementary material, figure S2). The model parameters
shedding rate (λ), parasite-induced mortality (α) and parasite
intensity at death (ω) were each modelled as proportional to
within-host infection intensity.

Finally, to assess the role of demographic stochasticity in
our experiment and model predictions, we conducted 250
stochastic simulations of the model, both under warming and
under constant-temperature conditions, using the GillespieSSA
package [34] in R (R 2018). We refer the reader to the electronic
supplementary material for further discussion of model
parametrization and assumptions.
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(c) Experimental methods
We evaluated our model predictions using eight experimental
host–parasite populations. The experiment was initiated with
eight 35 l tanks that housed populations of uninfected Daphnia.
Prior to the experiment, these populations were maintained
at laboratory conditions (20°C) for 15 days before they were
moved into four environmental growth chambers set to 10°C.
They remained at 10°C for another 15 days to allow for acclimat-
ization, and population abundances stabilized between 150 and
240 large (approx. 2.7 mm in length) individuals in each popu-
lation before the experiment began (electronic supplementary
material, figure S1).

To initiate the experiment, we introduced three large adult
individuals that had previously been exposed to the parasite
into each of the eight experimental populations. Exposed animals
were randomly selected from infected stock cultures that were
kept in multiple 2 l mesocosms. Prevalence in these infected
stock cultures was determined on day 100 by randomly selecting
314 individuals across all stocks and was found to be 46.5%. This
prevalence is similar to that found in a less thorough sampling
event prior to the experiment (55 out of 100 infected), so we
assume that stock prevalence was constant at 46.5% throughout
the experiment (i.e. on average, we introduced 1.4 infected ani-
mals into each experimental population every 3 days).

The infected stock cultures were maintained at 20°C, such
that the individuals introduced from these populations were
not acclimatized to 10°C. We did this to ensure that parasites
were introduced as intended, rather than risk animals losing
their infection during the acclimatization period and prior to
their introduction (within-host parasite abundances are extre-
mely low at 10°C and infections have rarely been reported at
this temperature; [29,30]). An additional experiment revealed
no signs of increased mortality in the first 24 h after a group of
20 individuals was transferred from 20 to 10°C (animals alive
after the temperature shift: 19.6 ± 0.6, animals alive in the control:
19.3 ± 0.6, 3 replicates per treatment; data not shown). Other rates
such as filtration may not be immediately acclimatized to 10°C,
though the acclimatization process for this is generally quite
rapid (less than 48 h; [30]).

On day 3 and subsequently every 3 days for the duration of
the 120 day experiment, we randomly collected 12 large females
from each experimental population. In the model and exper-
iment, we focused on large adult females (rather than males or
juveniles) for three reasons. First, large adult females should be
the primary contributors to the force of infection in the popu-
lation, as they have significantly higher parasite loads
compared to males [35] and have much higher parasite loads
compared to juveniles (i.e. infection has less time to develop in
juveniles) [29]. Second, Daphnia populations are often female
biased (as asexual reproduction is the predominant reproductive
mode), further reducing the role males play in disease trans-
mission. And third, it is methodologically fraught to quantify
O. colligata abundance in juvenile D. magna owing to their
small body size that renders dissections unreliable and makes
it difficult to characterize the typically low parasite abundances
in juveniles, resulting in increased false negatives in juveniles.
Our measures of prevalence and host density should thus be con-
sidered as the prevalence of infection in adult female Daphnia
and the density of adult female Daphnia, respectively.

Sampled individuals were destructively inspected using
phase contrast microscopy to assess (i) whether theywere infected
and (ii) their infection intensity, which is defined here as the
number of parasite spore clusters per individual [29]. To replace
the 12 destructively sampled individuals, we introduced 12 new
individuals—three randomly selected from infected stock popu-
lations at 20°C plus nine from uninfected stock populations that
were acclimatized to their new temperature for 15 days. In sum-
mary, every 3 days, we removed 12 individuals and introduced
12 new individuals, of which on average 1.4 were infected
(i.e. three individuals from infected stocks × 0.465 infection preva-
lence in these stocks), with a minimum of zero and a maximum of
three infected. Each sampling day, we also removed 3 l of Daphnia
growth medium (ADaM; [36]) and replaced it with 3 l of new
ADaM. Assuming thatOrdospora spores are randomly distributed
throughout the medium, our experimental process of removing
3 l of the 35 l every 3 days invoked a mortality rate of γ = 0.0286
days−1. Finally, each population was fed 350 million batch
cultured algae (Monoraphidium minutum) each sampling day.

After the first 15 days (i.e. five sampling events), we raised
the temperature in two of the environmental growth chambers
that were randomly selected on day 0 to be the ‘warming treat-
ment’ (i.e. experimental populations 5–8). The temperature was
raised in these chambers by 0.5 to 10.5°C, while the other two
chambers (i.e. experimental populations 1–4) remained at 10°C.
This process of warming 0.5°C every 15 days continued for a
total of 120 days, resulting in 40 sampling days (480 samples
per population). At the conclusion of the experiment, 15 days
after the last temperature increase to 13.5°C, we sampled an
additional 36 individuals per population (for a total of 48 indi-
viduals per population on day 120) to provide a more accurate
estimate of final disease prevalence. We used a generalized
linear model with random effects (glmer function from the R
package lme4; [37]) with family = binomial and link = logit to
test for significant differences in the final number of infected
individuals in the warming versus constant treatments where
the random effect was replicate population. To test for increases
in infection prevalence over time, we used a similar generalized
linear model with random effects where the response was preva-
lence, the fixed predictors were treatment, day scaled to be
centred on zero, and an interaction between these two predictors,
and the random effect was the replicate population.

On days 0, 15, 30, 45, 60, 75, 90, 105 and 120, we estimated
the number of large adults in each population via visual inspec-
tion (i.e. individuals large enough to be considered for random
sampling of infection status on sampling days). We repeated
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each estimate three times to obtain an estimate of our variation in
counts. Juvenile D. magna were not included in abundance
counts because they were too small and numerous for visual
counting and would also not have been sampled for infection
status. Although at times, especially earlier in the experiment,
there was large variation in the host population sizes, we did
not observe any clear differences in population abundances
in warming versus constant 10°C experimental populations (elec-
tronic supplementary material, figure S1). The mean population
size across all populations throughout the experiment was 169.5,
so we set the density-dependent constraint on adult recruitment
(K ) to be 170 in our model, and set maximum per capita recruit-
ment to the adult class (ψ) at a relatively high value of 1.33 to
keep population-size constant over time at approximately 169
individuals. We note that here the choice of K and ψ are inconse-
quential to the analysis focused on disease invasion so long as
the chosen parameters generate a host abundance equilibrium
that matches the experimental mean.
3. Results
The experiment carried four host–parasite populations
through a 3.5°C warming over 120 days from the predicted
low-disease conditions at 10°C, across the predicted R0 = 1
boundary near 12°C and into disease invasion conditions
up to 13.5°C (figure 2), while four control populations were
held at 10°C where the disease was not expected to establish.
Observations from experimental populations and model
predictions were concordant. At very low host densities, the
model predicted that the disease would be unable to spread
regardless of temperature (figure 2). At sufficiently high
adult host density, however, temperature becomes the pri-
mary determinant of whether an epidemic can occur
(figure 2). Early in the experiment, disease prevalence was
very low across all populations (figure 3a,b), though a low
immigration rate of infected individuals allowed the disease
to persist under unfavourable thermal conditions. As the
experiment neared its mid-point (day 60) and warming
populations reached 12°C, the frequency and number of
infected individuals increased in the warming populations
(figure 3b). This trend of increased disease prevalence contin-
ued as temperature increased in warming populations,
whereas the control populations that remained at 10°C
never experienced a large increase in disease incidence (i.e.
there was a significant interaction between treatment and
day in the glmer model: p = 0.002; figure 3a). The trait-based
mechanistic model predicted both that disease prevalence
rose quickly once temperatures reached 12°C (figure 3b;
prevalence increased from approx. 10% to approx. 30% over
60 days) and that the disease was maintained at less than
10% prevalence when temperatures remained constant at
10°C (figure 3a). The observed versus model predicted
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prevalence values for the warming populations are shown in
the electronic supplementary material, figure S4, with R2

values ranging from 0.297 to 0.533.
On the final day of the experiment, we assessed an

additional 36 individuals per population (12 + 36 = 48 total;
approx. 30% of the total population) to obtain a better estimate
of the disease prevalence in the population. We found that the
warming population prevalence (mean ± s.e. = 0.229 ± 0.043)
had significantly higher disease prevalence (p < 0.0001;
figure 4) at the conclusion of the experiment relative to the
constant 10°C populations (mean ± s.e. = 0.031 ± 0.010).
4. Discussion
We provide experimental evidence that gradually increasing
temperatures over time can push a disease system through
the critical transition (R0 = 1) into an epidemic state, and
that this process can be predicted using trait-based mechanis-
tic models in which thermal performance curves are specified
by MTE functional forms. These MTE models were parame-
trized by previous experiments, and our results serve as a
proof of principle that this framework can predict warming-
induced disease emergence. This is a critical step towards
generalizing this approach for predicting local disease
emergence in other host–parasite systems.

Our trait-based modelling framework, which employed
temperature-sensitive model parameters in a mechanistic
disease model, produced predictions concordant with exper-
imental observations. Indeed, the model predictions are in
qualitative and quantitative agreement with the experimental
data, in terms of the predicted temperature at which disease
outbreaks occur (figure 2), disease dynamics through time
(figure 3; electronic supplementary material, figure S4) and
final disease prevalence (figure 4). Although previous studies
have shown that rising temperatures can exacerbate [19] or
mitigate disease [20], controlled experiments of infectious dis-
ease spread under slowly rising temperatures have rarely been
conducted. Our study not only experimentally shows that
warming owing to climate change may alter disease dynamics,
but also provides a framework by which these changes could
be anticipated. This may assist in mitigating damage done by
disease to ecosystem services [38], biodiversity [39] and human
health [40].

Integrating thermal performance curves within trait-
based mechanistic disease models can be used to predict dis-
ease emergence, but it is a data-intensive approach. We show
here that a well-parametrized trait-based mechanistic model
which isolates the roles and contributions of different charac-
teristics of a host–parasite system (e.g. adult host density,
infection rate) to the dynamics of an epidemic can be capable
of predicting disease emergence. However, the formulation of
such models requires a good understanding of the system as
well as data for parametrizing and testing the thermal func-
tions. The MTE thermal performance curves used here were
parametrized via several large experiments [29,30] that will
not be feasible in most systems. Indeed, if experiments need
to be conducted for each host–parasite system to fit tem-
perature-dependent MTE functions to data, its purported
advantage (using little to no data) would be negated. The
MTE was originally proposed as a means for overcoming
such data gaps [27,28], but to make that vision reality, we
first require an experimental proof of principle that MTE
functions, when parametrized in data-rich systems, can
reasonably predict warming-induced disease dynamics.
This work addresses this knowledge gap by showing that a
combination of trait-based mechanistic modelling and the
MTE can predict warming-induced disease emergence at a
population level.

Moving forward, using theMTE in a trait-basedmechanis-
tic model for data-poor systems will require parameter values
to be input into the MTE functions a priori. A potential starting
point could be to use parameter values near the broad
averages found in other systems (e.g. activation energies in
the 0.60–0.70 eV range; [25,26]), but this approach is unlikely
to have performedwell at predictingR0 in this study, as several
traits in this system differ significantly in their activation ener-
gies and temperature thresholds from one another [29,30].
This highlights that until further meta-analyses, such as the
ones that have shown how activation energy varies among
free-living species with covariates such as taxon, trait function
or habitat [41], are performed for disease systems, accurately
parametrizing the MTE functions a priori will be difficult.
However, as we learn more about the generalities of activation
energies, inactivation energies and temperature thresholds, we
should eventually be able to make predictions about how
these MTE parameters may deviate from means based on
the characteristics of the system or the trait in question [24].
This would allow for the possibility of parametrizing models
for data-poor disease systems.

In addition to predicting awarming-induced epidemic, the
trait-based mechanistic framework may be useful for predict-
ing range shifts of infectious disease aswell as disease fade-out
arising from climate warming. For example, the model pre-
dicts that if we had started the experiment near 23°C,
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epidemics would have initially occurred in both the constant
temperature and warming treatments, and that warming
would subsequently drive disease elimination. For a given
system, knowledge of host density, environmental tem-
perature and magnitude of warming would enable the
application of our modelling framework and allow for predic-
tions related to whether warming could lead to epidemics or
disease elimination.

Whether increases in the mean temperature will generally
lead to more or fewer epidemics will depend on the balance
between the number of host–parasite systems that will be
pushed into R0 > 1 space (i.e. the arrow in figure 2) and those
that will be pushed from epidemics into R0 < 1 space [27,42].
At the same time, warming may alter the ability of parasites
to disperse into new regions that were previously unsuitable
[43]. This suggests that for some systems, it may be insufficient
to predict warming’s effects on epidemics based solely on
changes to R0, and that factors such as dispersal and coloniza-
tionmay need to be incorporated [43]. The breadth of theMTE,
covering thermal relationships from the individual to the eco-
systems level, could provide a means for incorporating the
temperature sensitivities of such phenomena, as has, for
example, been demonstrated in previous work that linked dis-
persal, temperature and metabolic rate in free-living marine
species [44].

Although the model was able to capture the thermal
dependence of disease emergence, it overestimated disease
prevalence in the constant 10°C treatment (figures 3 and 4).
This might be because the model may overestimate within-
host parasite equilibrium abundance at this temperature, as
there is uncertainty at which precise temperature the parasite
equilibrium abundance decreases to zero, though it is
estimated to occur between 9.5 and 11.8°C [29]. Beyond redu-
cing uncertainty in the MTE parameter estimates, there are
additional thermal responses that could be incorporated
into this model or models for other host–parasite systems.
For example, we did not have information to parametrize
the temperature-dependence of environmental spore mor-
tality and microparasite shedding. While these additional
MTE submodels could improve the quantitative match
between predicted and observed dynamics, our results were
generally insensitive to a range of parameter values for
these traits (electronic supplementary material, figure S2
and table S1). Additionally, our model neglects the contri-
bution to transmission from juveniles in the population and
focuses on large, adult female Daphnia only, both because
the latter are the predominant contributors to the force of
infection and because infections in juveniles are hard to
detect. If infections were able to be detected reliably in juven-
iles, a more complicated stage- or age-structured model that
explicitly tracks infections across juveniles and adults may
provide more information on the overall disease dynamics
in the population, but this is unlikely to alter model predic-
tions for R0 owing to the small contribution of juveniles to
the transmission dynamics. Finally, our analyses disregard
shorter-term temperature fluctuations that are probably
important in natural host–parasite systems [9,45–50] and are
predicted by climate models to increase in many regions
[51]; however, the effects of temperature variability on rates
may be incorporated in future efforts via methods such as
nonlinear averaging [52]. When considering temperature fluc-
tuations and the speed of temperature change in a system, it
may also be worthwhile to account for how long-lived the
particular host species is, as different systems can experience
temperature change over a range of temporal scales.

Our results inform on the seasonality of disease dynamics,
as our slowly warming experimental system mimics the onset
of spring. Indeed, many populations living in temperate and
polar climates encounter seasonal variation in temperature
that far exceeds our experimental change of 3.5°C over 120
days. For instance, the water temperature of temperate lakes
can increase from 4°C during the winter to greater than 25°C
during the summer months [53]. In these systems, disease is
typically regulated by temperature, and ecological variables
that are correlated with temperature [28]. Warming can alter
the seasonality of epidemics, potentially causing epidemics
to occur earlier in the season [19], leading to larger trans-
mission peaks in the autumn, or even splitting one annual
transmission period into two distinct seasonal transmission
periods [27]. Understanding the likelihood of these events is
critical to predicting and mitigating future epidemics. Using
mechanistic models of disease transmission with tempera-
ture-dependent parameters is proving an excellent way
forward for describing the seasonality of infectious diseases
[19,20,27,54]. Similarly, it may also prove useful in predicting
the effects of pulse heat stress events on host–parasite systems,
a task of emerging importance [50].

Beyond causing changes in key epidemiological par-
ameters such as contact rate, temperature may also indirectly
or directly affect host population density [55]—typically
another key variable in determiningR0. For example, changing
temperatures may alter the amount of available habitat for a
population [56], indirectly leading to reduced or increased
competition and larger or smaller population densities,
respectively. The MTE suggests that increased temperatures
will result in lower population carrying capacities for ecto-
thermic hosts owing to the increased per capita metabolic
demands of individuals [57], though this effect may be coun-
teracted by potential changes in resource availability with
temperature [58].Wedid not see any evidence of a temperature
effect on adult female Daphnia abundances over our relatively
small temperature range (10–13.5°C; electronic supplementary
material, figure S1), suggesting that differences in population
size were not the driver of higher disease prevalence in the
warming treatments versus in the constant 10°C treatments.
Because of this, we did not allow population densities to
vary with temperature in our model. However, densities will
be influenced by temperature in many other systems, as well
as potentially in this one if a wider temperature range were
considered, and these changes can again be captured by the
MTE, as demonstrated in phytoplankton [59]. In general, the
effects of warming temperatures on disease risk via host
density effects could be positive or negative.

In summary, a general predictive framework for climate
effects on infectious disease is required to advance our under-
standing of how climate change will affect disease emergence,
and a trait-based approach using the MTE has been high-
lighted as a promising way forward [24,27,28,60].
Accumulating evidence has shown that MTE models can cap-
ture the thermal dependence of many host–parasite traits
[27,29,30] and we have shown here that these models can be
scaled up to predict population-level disease dynamics in a
warming or constant environment. Our results do not make
specific predictions for how warming will affect different
host–parasite systems; however, this case study can serve as
amuch-needed experimental verification of warming-induced
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disease emergence and its predictability using trait-based
mechanistic models with MTE thermal performance curves.
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