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Abstract

Development of protein therapeutics for ocular disorders, particularly age-related macular 

degeneration (AMD), is a highly competitive and expanding therapeutic area. However, the 

application of a predictive and translatable ocular PK model to better understand ocular disposition 

of protein therapeutics, such as a physiologically-based pharmacokinetic (PBPK) model, is 

missing from the literature. Here, we present an expansion of an antibody platform PBPK model 

towards rabbit and incorporate a novel anatomical and physiologically relevant ocular component. 

Parameters describing all tissues, flows, and binding events were obtained from existing literature 

and fixed a priori. First, translation of the platform PBPK model to rabbit was confirmed by 

evaluating the model’s ability to predict plasma PK of a systemically administered exogenous 

antibody. Then, the PBPK model with the new ocular component was validated by estimation of 

serum and ocular (i.e. aqueous humor, retina, and vitreous humor) PK of two intravitreally 

administered monoclonal antibodies. We show that the proposed PBPK model is capable of 

accurately (i.e. within 2-fold) predicting ocular exposure of antibody-based drugs. The proposed 

PBPK model can be used for preclinical-to-clinical translation of antibodies developed for ocular 

disorders, and assessment of ocular toxicity for systemically administered antibody-based 

therapeutics.
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Introduction

Diseases of the eye have significant impacts on the lives of patients ranging from transient 

irritation to irreversible vision loss. Of the ocular disorders, age-related macular 

degeneration (AMD) and diabetic retinopathy (DR) are among the leading causes of 
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blindness and are primary indications for protein therapeutics[1,2]. In fact, all four FDA-

approved therapies for AMD and DR are macromolecules: Macugen (pegaptanib, Gilead 

Sciences, Inc), Lucentis (ranibizumab, Genentech, Inc), Eylea (aflibercept, Regeneron 

Pharmaceuticals, Inc.), and Beovu (brolucizumab, Novartis International AG). With AMD 

alone expected to reach a global market of $10.4 billion by 2024, research in eye disease 

remains active and will benefit greatly from new tools that accelerate protein therapeutic 

drug development[3]. One such tool is pharmacokinetic (PK) models, which can help in 

characterization and a priori prediction of the ocular PK of protein therapeutics.

Existing ocular PK models for protein therapeutics take empiric or traditional 

compartmental approaches, although recent efforts incorporate more mechanistic aspects, 

such as tissue permeability and fixed anatomical volumes[4-7]. Currently, there are no 

mathematical models that characterize PK of protein therapeutics in the eye using purely 

physiologic parameters. Moreover, as most preclinical studies (e.g. in rabbits) collect only 

vitreous humor (VH), aqueous humor (AH), and occasionally retina for analysis, the PK in 

the rest of the ocular tissues is neglected. A physiologically-based pharmacokinetic (PBPK) 

model for the eye will help in accurately predicting the PK of a drug in all ocular tissues, 

including the retina and the frequently overlooked cornea, iris-ciliary body (ICB), and 

choroid. Thus, modelling the exposure in all the tissues of the eye will aid in the 

development of protein therapeutics for numerous ocular disorders, not just retinopathies.

Predicting the ocular exposure of protein therapeutics with the PBPK model can also help in 

evaluating the potential of drug induced toxicities in the eye. Antibodies for chemotherapy 

are targeted agents that are meant to be efficacious against cancerous cells that overexpress a 

specific antigen. However, presence of the target in healthy tissue, even at low levels, carries 

the risk of off-target, ocular toxicities, such as corneal microcysts, keratitis, and blurred 

vision [8-11], Several antibodies against various anti-cancer antigens currently used in 

therapy have shown potential ocular toxicities including Herceptin (trastuzumab, Genentech, 

Inc), Kadcyla (trastuzumab emtansine, Genentech, Inc.), Yervoy (ipilimumab, Bristol-Myers 

Squibb), and Erbitux (cetuximab, Eli Lilly). Ideally, the ocular PBPK model predicts 

concentrations in the eye tissues based on systemic exposure and can provide a risk 

assessment for ocular toxicity potential.

Since the 1980s, pharmacometricians have had great interest in the development of PBPK 

models for protein therapeutics[12-16]. In addition to predicting concentrations at the tissue 

level, PBPK models also take into account complex interactions between the drug and the 

proteins in the body, such as FcRn and antigen targets. With a PBPK model, the plasma and 

tissue-specific PK of a therapeutic can be predicted based on drug-specific parameters that 

can be obtained in vitro. Furthermore, PBPK models are easily translated between species. 

Characterization of a drug’s PK in one species can be used to predict the PK in another 

species, simply by changing the physiological parameters of the system.

In 2012, Shah and Betts[16], proposed a platform PBPK model to characterize the plasma 

and tissue PK of several monoclonal antibodies in mice, rats, monkeys, and human. In this 

manuscript we have presented the expansion of this platform PBPK model to include rabbit 

as an additional species. Specifically, rabbits were chosen as they are a predominant species 
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used in ocular research[17,18] and in antivenom research[19-22], both fields that focus on 

the development of immunoglobulin (IgG)-based therapies.

In particular, the capabilities of PBPK modelling are currently underutilized in ocular 

research. Thus, our goal is to expand the platform PBPK model for antibody disposition into 

rabbit and incorporate a novel ocular component in the model. This PBPK model will help 

in preclinical to clinical translation of new therapies for ocular disorders and will help in the 

assessment of potential ocular toxicity for systemically administered antibody-based 

therapies.

Methods

Experimental Data.

We utilized data from several publications investigating the PK of full-size IgG antibodies in 

rabbits. All studies were carried in accordance with the Animal Welfare Act and were 

approved by the applicable Institutional Animal Care and Use Committee.

Data for the systemic PK of antibody comes from two studies in anthrax research. The first, 

is from a subset of data from Malkevich et al. [23]. In the relevant experiments, the authors 

dosed New Zealand White rabbits with Anthrivig (polyclonal human anthrax 

immunoglobulin, AIGIV), by intravenous infusion at 14.2 or 21.3 mg/kg bodyweight. Serial 

plasma samples were collected over 29 days and analyzed by ELISA[23]. In the second 

study, Nagy et al.[24]. investigators dosed New Zealand White rabbits with obiltoxaximab 

(chimeric monoclonal antibody) at 3, 10, or 30 mg/kg. Serum was collected over 28 days 

and analyzed by electrochemiluminescent assay[24].

Four additional sets of data contained intraocular PK of antibody after intravitreal 

administration in rabbits. The first, from Bakri et al.[25], provided the PK of bevacizumab 

(humanized antivascular endothelial growth factor, VEGF) in 20 Dutch-belted rabbits after 

intravitreal injection of 1.25 mg in one eye. On days 1, 3, 8, 15, and 29,terminal samples of 

serum, vitreous humor, and aqueous humor were collected [25]. The second data set comes 

from Nomoto et al.[26], who administered 1.25 mg bevacizumab intravitreally to a single 

eye in each of 24 Dutch-belted rabbits and collected plasma, retina, iris/ciliary body, vitreous 

humor, and aqueous humor at 1, 2, 4, and 12 weeks post-injection. In the third data set, 

Sinapis et al.[27] unilaterally injected 1.25 mg bevacizumab in 20 New Zealand White 

Rabbits and collected serum, vitreous humor, and aqueous humor on days 1, 2, 8, 15, and 29 

after injection. The final data set comes from Gadkar et al. [28] (obtained from publication 

in Hutton-Smith et al.[5]) in which New Zealand White rabbits were administered one of 

several human antibodies or antibody fragments. The current study only utilizes the dataset 

for full-length IgG against glycoprotein D (α-gD). Rabbits received intravitreal injections of 

0.5 mg/eye in both eyes. Terminal samples of serum, vitreous humor, aqueous humor, and 

retina were obtained at 0.25, 2, 8, 14, 21, and 28 days [28]. In all studies, antibody 

concentrations where determined by ELISA [26-28] or chemiluminescent immunoassay 

[25].
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Platform PBPK Model.

The structure of the whole-body PBPK model, originally developed by Shah and Betts[16], 

is described in Figure 1. The model incorporates plasma and blood cell compartments, as 

well as 16 major tissues and an optional tumor compartment (not utilized in the present 

study). The 17th “other” compartment comprises all the remaining tissues not explicitly 

identified in the model. All tissues are connected by anatomical plasma/blood flow and 

lymphatic recirculation through the lymph nodes. Each of the 16 tissue compartments 

(except for the eye) is further sub-divided into the following 6 components: blood cells, 

plasma space, endosomal space, interstitial space, cell membrane, and cellular space (Figure 

2)[16]. In this manner, we describe the flow of plasma (Q) into the tissue and the outward 

flow of plasma (Q-L) and lymph (L). IgG within the plasma space enters the tissue by two 

processes: (1) via paracellular pores using convective lymph flow, where the vascular 

reflection coefficient (σv) represents resistance to IgG convection by the vascular 

endothelial cells, or (2) via pinocytosis (CLup) into the endosomal space, where IgG may 

bind to FcRn and be recycled back into the plasma space (FR) or into the interstitial space 

(1-FR) via exocytosis. Unbound IgG in the endosomal space is degraded by a first-order 

process (Kdeg) in the lysosome. Once in the interstitial space, IgG is cleared by the flow of 

lymph where the interstitial reflection coefficient (σi) represents resistance to IgG 

convection by the lymphatic openings. Should the antibody in the interstitial space have a 

cellular target, it is tree to bind to antigen (Ag) expressed on the cell surface and be 

internalized (Kint_Ag-IgG). However, the antibodies selected as part of this study do not 

have targets expressed in rabbits. Therefore, parameters associated with antigen binding and 

internalization are set to zero.

The physiological parameters related to tissue volumes and fluid flows in the PBPK model 

were obtained from a variety of sources[29-32]. The values and descriptions for 

physiological parameters of the platform model are shown in Tables 1 and 2. The lymph 

flow for all tissues was set to 0.2% of plasma flow and the endosomal volume was set to 

0.5% of the total tissue volume[33,15]. The fraction of IgG bound to FcRn that recycles 

back to the plasma space (FR) was set to 0.715[34]. The vascular reflection coefficients (σv) 

for each tissue were set a priori and are as follows: 0.85 for spleen, liver, and bone; 0.9 for 

kidney, thymus, small intestine, and pancreas; 0.95 for lung, heart, muscle, skin, adipose, 

large intestine, and other; and 0.99 for brain[35]. The interstitial reflection coefficient (σi) 

was set to 0.2 in all tissues[15]. The association (Kon) and dissociation (Koff) rates for 

human/humanized IgG binding to rabbit FcRn are 2.85x107 M−1h−1 and 1.4 h−1, 

respectively[36], Pinocytosis and exocytosis rate (CLup), lysosomal degradation rate (Kdeg), 

and FcRn concentration were set to 0.55 L/h, 32.2 h−1, and 4.98x10−5 M, as reported 

previously [37,16], The proportionality constant (CLNLF) between the rate at which IgG 

transfers into the plasma from the lymph node and the plasma flow itself was set to 9.1, as 

determined by Shah and Betts[16]. Equations for the platform PBPK model are provided 

below.

Bussing and Shah Page 4

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Blood Compartment

Plasma Space

d
dtCplasma = (PLQHeart − LFHeart) ∗ CHeartV + (PLQKidney − LFKidney) ∗ CKidneyV

+ (PLQMuscle − LFMuscle) ∗ CMuscleV + (PLQSkin − LFSkin)
∗ CSkinV

+ (PLQBrain − LFBrain) ∗ CBrainV + (PLQAdipose − LFAdipose)
∗ CAdiposeV

+ (PLQTℎymus − LFTℎymus) ∗ CTℎymusV
+ (PLQLiver − LFLiver) + (PLQS . Intestine − LFS . Intestine)
+ (PLQL . Intestine − LFL . Intestine) + (PLQSpleen − LFSpleen)
+(PLQPancreas − LFPancreas) ∗ CLiverV + (PLQBone − LFBone)

∗ CBoneV
+ (PLQOtℎer − LFOtℎer) ∗ COtℎerV

+ 2 (PLQEye − LFEye) ∗ fcℎo ∗ CEyeV
+ 2 (PLQEye − LFEye) ∗ fret ∗ CEyeV
+ 2 (PLQEye − LFEye) ∗ (1 − fcℎo − fret) ∗ CEyeV −

(PLQLung + LFLung)
∗ CPlasma + LFLympℎ Node ∗ CLympℎ NodeV ∗

1
V Plasma

(1)

Blood Cell Space

d
dtCBC = BCQHeart ∗ CHeartBC + BCQKidney) ∗ CKidneyBC + BCQMuscle ∗
CMuscleBC

+ BCQSkin ∗ CSkinBC + BCQBrain ∗ CBrainBC + BCQAdipose ∗ CAdiposeBC
+ BCQTℎymus ∗ CTℎymusBC
+ (BCQLiver + BCQS . Intestine + BCQL . Intestine + BCQSpleen

+ BCQPancreas)
∗ CLiverBC + BCQBone ∗ CBoneBC + BCQOtℎer ∗ COtℎerBC
+ 2(BCQEye ∗ fcℎo ∗ CEyeBC) + 2(BCQEye ∗ fret ∗ CEyeBC)
+2(BCQEye ∗ (1 − fcℎo − fret) ∗ CEyeBC) − BCQLung ∗ CBC

∗ 1
V BC

(2)
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Lymph Node Compartment

d
dtCLympℎ Node

= (1 − ISRCHeart) ∗ LFHeart ∗ CHeartI + (1 − ISRCKidney)
∗ LFKidney

∗ CKidneyI + (1 − ISRCMuscle) ∗ LFMuscle ∗ CMuscleI + (1
− ISRCSkin) ∗ LFSkin

∗ CSkin + (1 − ISRCBrain) ∗ LFBrain ∗ CBrainI + (1
− ISRCAdipose) ∗ LFAdipose

∗ CAdiposeI + (1 − ISRCTℎymus) ∗ LFTℎymus ∗ CTℎymusI + (1
− ISRCLiver)

∗ LFLiver ∗ CLiverI + (1 − ISRCS . Intestine) ∗ LFS . Intestine ∗ CS . IntestineI
+ (1 − ISRCL . Intestine) ∗ LFL . Intestine ∗ CL . IntestineI + (1

− ISRCSpleen)
∗ LFSpleen ∗ CSpleenI + (1 − ISRCPancreas) ∗ LFPancreas ∗ CPancreasI
+ (1 − ISRCBone) ∗ LFBone ∗ CBoneI + (1 − ISRCOtℎer) ∗

LFOtℎer ∗ COtℎerI
+ 2(1 − ISRCEye) ∗ LFEye ∗ (1 − fCℎo − fRet) ∗ CICBI + 2(1

− ISRCEye)
∗ LFEye ∗ fRet ∗ CRetI + 2(1 − ISRCEye) ∗ LFEye ∗ fCℎo ∗ CCℎoI
+(1 − ISRCLung) ∗ LFLung ∗ CLungI − LFLympℎ Node ∗

CLympℎ Node
∗

1
V Lympℎ Node

(3)

Typical Tissue Compartment

Vascular Space

d
dtCTissueV = (PLQTissue ∗ CLungV − (PLQTissue − LFTissue) ∗ CTissueV − (1
− V RCTissue)

∗ LFTissue ∗ CTissueV − CLupTissue ∗ CTissueV + CLupTissue ∗
FR ∗ CTissueEB)

∗ 1
V TissueV

(4)

Endosomal Space mAb unbound to FcRn

d
dtCTissueEU =

CLupTissue ∗ (CTissueV + CTissueI)
V TissueE

− KonFcRn ∗ CTissueEU ∗

(FcRnTissue + FcRn)
+ KoffFcRn ∗ CTissueEB − KdegIgG
∗ CTissueEU

(5)
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Endosomal Space mAb bound to FcRn

d
dtCTissueEB = KonFcRn ∗ CTissueEU ∗ (FcRnTissue + FcRn) − KoffFcRn ∗ CTissueEB

−
CLupTissue ∗ CTissueEB

V TissueE

(6)

Endosomal space FcRn

d
dtFcRnTissue = KoffFcRn ∗ CTissueEB − KonFcRn ∗ CTissueEU ∗ (FcRnTissue
+ FcRn)

+
CLupTissue ∗ CTissueEB

V TissueE

(7)

Interstitial Space

d
dtCTissueI = (1 − V RCTissue) ∗ LFTissue ∗ CTissueV − (1 − ISRCTissue) ∗
LFTissue ∗ CTissueI

+CLupTissue ∗ (1 − FR) ∗ CTissueEB − CLupTissue ∗ CTissueI ∗
1

V TissueI

(8)

Blood Cell Space

d
dtCTissueBC =

BCQTissue ∗ (CLungBC − CTissueBC)
V TissueBC

(9)

Lung Compartment

Vascular Space

d
dtCLungV = (PLQLung + LFLung) ∗ CLungV − PLQLung ∗ CLungV − (1
− V RCLung) ∗ LFLung

∗ CLungV − CLupLung ∗ CLungV + CLupLung ∗ FR ∗ CLungEB

∗ 1
V LungV

(10)
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Liver Compartment

Vascular Space

d
dtCLiverV = (PLQLiver ∗ CLungV − (PLQLiver − LFLiver) + (PLQS . Intestine
− LFS . Intestine)

+ (PLQL . Intestine − LFL . Intestine) + (PLQSpleen − LFSpleen)
+ (PLQPancreas − LFPancreas) ∗ CLiverV + (PLQS . Intestine

− LFS . Intestine)
∗ CS . IntestineV + (PLQL . Intestine − LFL . Intestine) ∗ CL . IntestineV
+ (PLQSpleen − LFSpleen) ∗ CSpleenV + (PLQPancreas

− LFPancreas) ∗ CPancreasV
− (1 − V RCLiver) ∗ LFLiver ∗ CLiverV − CLupLiver ∗ CLiverV

+ CLupLiver ∗ FR
∗ CLiverEB)
∗

1
V LiverV

(11)

Blood Cell Space

d
dtCTissueBC = (BCQLiver ∗ CLungBC + BCQS . Intestine ∗ CS . IntestineBC + BCQL . Intestine

∗ CL . IntestineBC + BCQSpleen ∗ CSpleenBC + BCQPancreas ∗ CPancreasBC
− (BCQLiver + BCQS . Intestine + BCQL . Intestine + BCQSpleen

+ BCQPancreas)
∗ CLiverBC)
∗

1
V LiverBC

(12)

Lung and liver compartments not explicitly shown, share the same equations as a typical 

tissue.

Physiologically-Based Ocular Compartment.

As a novel expansion to the platform PBPK model, we have incorporated an anatomically 

and physiologically relevant ocular compartment. The overall structure of the new 

compartment is shown in Figure 3, and the physiologic parameters are provided in Tables 3, 

4 and 5. The major tissues of the eye are represented, which include cornea, iris-ciliary body 

(ICB), aqueous humor (AH), lens, vitreous humor (VH), retina, and choroid. Plasma flow to 

the eye is fractionally divided into the ICB, choroid, and retina, and equal flow exits these 

tissues by both plasma and lymph flow.

Convection of fluid within the ocular humor compartments is also incorporated in the model. 

Aqueous humor produced by the ICB enters the aqueous chamber (QPtA) and exits via 

Schlemm’s canal (QAH) or flows into the vitreous chamber (QBF). Fluid entering the 

vitreous chamber recirculates back into the aqueous chamber (QVA), undergoing anterior 

elimination, or undergoes bulk flow (QBF) to the retina and subsequently the choroid, 
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undergoing posterior elimination. Furthermore, the model allows for permeation of IgG at 

several major intraocular tissue interfaces.

As with the tissues in the platform PBPK model, the vascularized tissues of the eye are 

subdivided into smaller spaces (Figure 4), and the major mechanisms of antibody disposition 

described above are present. However, each intraocular tissue also contains components 

representing the unique fluid flows and interfaces found in the eye. As with the systemic 

reflection coefficients, reflection coefficients within the eye represent the level of resistance 

to IgG convection by the blood-aqueous barrier (σaq), the inner limiting membrane of the 

retina (σret), and the retinal pigment epithelium (σcho). These values are assumed to be high 

(i.e. 0.95, 0.99, and 0.99, respectively). Similar to the brain, the eye is known to be shielded 

from systemic circulation by the blood-aqueous barrier and the blood-retina barrier, thus the 

vascular reflection coefficient in the ocular tissues was set to 0.99 (the interstitial reflection 

coefficient remains 0.2). Equations for the ocular PBPK model are included below.

Cornea Compartment

d
dtCCor = (CAq − CCor) ∗ PSCor (13)

Aqueous Humor Compartment

d
dtCAq = (CCor − CAq) ∗ PSCor + (CLens − CAq) ∗ PSLens + CV it ∗ QV A

V Aq

+
CICBV ∗ QPtA ∗ (1 − RCAq)

V Aq

− CAq ∗ (CLAH + QBF + QV A)
V Aq

(14)

Iris-Ciliary Body Compartment

Vascular Space

d
dtCICBV = (PLQEye ∗ (1 − fcℎo − fret) ∗ CLungV − (PLQEye − LFEye) ∗
(1 − fcℎo − fret)

∗ CICBV − (1 − V RCEye) ∗ LFEye ∗ (1 − fcℎo − fret) ∗
CICBV − CLupICB ∗ CICBV

∗ 1
V ICBV

(15)
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Endosomal Space mAb unbound to FcRn

d
dt CICBEU =

CLupICB ∗ (CICBV + CICBI)
V ICBE

− KonFcRn ∗ CICBEU ∗

(FcRnICB + FcRn) + KoffFcRn
∗ CICBEB − KdegIgG ∗ CICBEU

(16)

Endosomal Space mAb bound to FcRn

d
dtCICBEB = KonFcRn ∗ CICBEU ∗ (FcRnICB + FcRn) − KoffFcRn ∗

CICBEB −
CLupICB ∗ CICBEB

V ICBE

(17)

Endosomal Space FcRn

d
dtFcRnICB = KoffFcRn ∗ CICBEB − KonFcRn ∗ CICBEU ∗ (FcRnICB
+ FcRn)

+
CLupICB ∗ CICBEB

V ICBE

(18)

Interstitial Space

d
dtCICBI = (1 − V RCEye) ∗ LFEye ∗ (1 − fCℎo − fRet) ∗ CICBV − (1
− ISRCEye) ∗ LFEye

∗ (1 − fCℎo − fRet) ∗ CICBI + CLUpICB ∗ (1 − FR) ∗
CICBEB − CLUpICB ∗ CICBI

+CAq ∗ CLAH − CICBI ∗ CLAH ∗ 1
V ICBI

(19)

Blood Cell Space

d
dtCICBBC =

BCQEye ∗ (1 − fCℎo − fRet) ∗ (CLungBC − CICBBC)
V ICBBC

(20)

Lens Compartment

d
dtCLens = (CAQ − CLens) ∗ PSLens + (CV it − CLens) ∗ PSLens (21)
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Vitreous Humor Compartment

d
dtCV it = (CRetI − CV it) ∗ PSRet + (CLens − CV it) ∗ PSLens − CV it ∗ QV A

V V it

− CV it ∗ QBF ∗ (1 − RCRet)
V V it

+ CAq ∗ (QBF + QV A)
V vit

(22)

Retina Compartment

Vascular Space

d
dtCRetV = (PLQEye ∗ fRet ∗ CLungV − (PLQEye − LFEye) ∗ fRet ∗ CRetV
− (1 − V RCEye)

∗ LFEye ∗ fRet ∗ CRetV − CLupRet ∗ CRetV + CLupRet ∗ FR

∗ CRetEB) ∗ 1
V RetV

(23)

Endosomal Space mAb unbound to FcRn

d
dtCRetEU =

CLupRet ∗ (CRetV + CRetI)
V RetE

− KonFcRn ∗ CRetEU ∗ (FcRnRet

+ FcRn) + KoffFcRn
∗ CRetEB − KdegIgG ∗ CRetEU

(24)

Endosomal Space mAb bound to FcRn

d
dtCRetEB = KonFcRn ∗ CRetEU ∗ (FcRnRet + FcRn) − KoffFcRn ∗ CRetEB

−
CLupRet ∗ CRetEB

V RetE

(25)

Endosomal Space FcRn

d
dtFcRnRet = KoffFcRn ∗ CRetEB − KonFcRn ∗ CRetEU ∗ (FcRnRet + FcRn)

+
CLupRet ∗ CRetEB

V RetE

(26)
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Interstitial Space

d
dtCRetI = (1 − V RCEye) ∗ LFEye ∗ fRet ∗ CRetV − (1 − ISRCEye) ∗
LFEye ∗ fRet ∗ CRetI

+CLUpRet ∗ (1 − FR) ∗ CRetEB − CLUpRet ∗ CRetI ∗ 1
V RetI

+ (CV it − CRetI)

∗ PSRet + (CCℎoI − CRetI) ∗ PSCℎo + CV it ∗ QBF ∗ (1 − RCRet)
V RetI

−
CRetI ∗ QBF ∗ (1 − RCCℎo)

V RetI

(27)

Blood Cell Space

d
dtCRetBC =

BCQEye ∗ fRet ∗ (CLungBC − CRetBC)
V RetBC

(28)

Choroid Compartment

Vascular Space

d
dtCCℎoV = (PLQEye ∗ fCℎo ∗ CLungV − (PLQEye − LFEye) ∗ fCℎo ∗
CCℎoV − (1 − V RCEye)

∗ LFEye ∗ fCℎo ∗ CCℎoV − CLupCℎo ∗ CCℎoV + CLupCℎo ∗
FR ∗ CCℎoEB + CCℎoI

∗ QBF) ∗ 1
V CℎoV

(29)

Endosomal Space mAb unbound to FcRn

d
dtCCℎoEU =

CLupCℎo ∗ (CCℎoV + CCℎoI)
V CℎoE

− KonFcRn ∗ CCℎoEU ∗ (FcRnCℎo

+ FcRn) + KoffFcRn
∗ CCℎoEB − KdegIgG ∗ CCℎoEU

(30)

Endosomal Space mAb bound to FcRn

d
dtCCℎoEB = KonFcRn ∗ CCℎoEU ∗ (FcRnCℎo + FcRn) − KoffFcRn ∗ CCℎoEB

−
CLupCℎo ∗ CCℎoEB

V CℎoE

(31)
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Endosomal Space FcRn

d
dtFcRnCℎo = KoffFcRn ∗ CCℎoEB − KonFcRn ∗ CCℎoEU ∗ (FcRnCℎo + FcRn)

+
CLupCℎo ∗ CCℎoEB

V CℎoE

(32)

Interstitial Space

d
dtCCℎoI = (1 − V RCEye) ∗ LFEye ∗ fCℎo ∗ CCℎoV − (1 − ISR CEye) ∗
LFEye ∗ fCℎo ∗ CCℎoI

+CLUpCℎo ∗ (1 − FR) ∗ CCℎoEB − CLUpCℎo ∗ CCℎoI ∗
1

V CℎoI
+ (CRetI − CCℎoI)

∗ PSCℎo +
CRetI ∗ QBF ∗ (1 − RCCℎo)

V CℎoI
−

CCℎoI ∗ QBF
V CℎoI

(33)

Blood Cell Space

d
dtCCℎoBC =

BCQEye ∗ fcℎo ∗ (CLungBC − CCℎoBC)
V CℎoBC

(34)

PBPK Model Estimation and Simulation.

Model fitting was carried out in ADAPT 5 [38] with the intravitreal dose parameter being 

estimated. Data from collected tissues were fit simultaneously to estimate the dose in each 

study utilizing intravitreal dosing. Model simulations were carried out in Berkeley Madonna 

(version 8.3.23.0) software[39]. All values for parameters in the PBPK model are 

ascertained from previously published literature sources and the intravitreal dose amount 

estimated using ADAPT 5. Initially, performance of the platform PBPK model was 

evaluated by simulation of plasma PK of exogenous antibody after intravenous 

administration. After addition of the novel ocular component, the model was validated by 

estimation of PK in the serum, aqueous humor, vitreous humor, and retina after intravitreal 

administration of antibody. Predictive capability of the model was assessed quantitatively by 

calculation of symmetric mean absolute percentage error (SMAPE) (Equation 1) between 

the AUC of the simulated PK profile (AUCsim) and the average AUC of the observed PK 

profiles for indicated niAbs (AUCobs). Using this method, a 2-fold overprediction or a 2-fold 

under-prediction would give an SMAPE of 33%.

SMAPE = ∣ AUCsim − AUCobs ∣
1
2 ( ∣ AUCsim ∣ + ∣ AUCobs ∣ )

∗ 100 % (35)
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Results

In general, all plasma and tissue PK datasets in rabbit were well characterized by the PBPK 

model. The simulated AUC of the concentration vs time curve was within 2-fold of the 

average observed AUC in almost all cases as determined by SMAPE.

Dose Estimation with the PBPK Model.

As outlined in the “Experimental Data” section above, three of the four studies administered 

bevacizumab to one eye at a dose of 1.25 mg. However, the PK profiles for each study 

showed variability in the observed concentration vs. time course. Moreover, in the Sinapis et 

al. [27] study, serum was collected by allowing blood to clot at room temperature for 1 hr 

before centrifugation rather than immediate centrifugation, potentially resulting in 

bevacizumab loss and low observed serum concentrations of the antibody. Therefore, serum 

data was not used when estimating the dose parameter for the Sinapis et al. [27] dataset. The 

dose parameters for each intravitreal dose study was estimated with confidence and are 

shown in Table 6.

Performance of the Platform PBPK Model.

Figure 5 shows the simulated and observed concentration vs. time profile of AIGIV and 

obiltoxaximab after an intravenous infusion. Both the simulated and observed data are dose 

normalized. In general, the simulation captures the observed profiles, with some discrepancy 

at earlier time points, but minimal deviation from most of the data. The average SMAPE of 

the prediction was 5.34%. The excellent performance of the model validates the successful 

translation of the platform model to rabbits.

Performance of the Ocular PBPK Model.

Figure 6 shows the simulated and observed concentration vs. time profiles of all α-gD and 

bevacizumab data sets after intravitreal injection. In plasma, the slow appearance of antibody 

is recapitulated, although the terminal phase shows large variability between the two 

molecules. Furthermore, rapid appearance of antibody in the aqueous humor, iris/ciliary 

body, and retina are simulated in accordance with observed effects. Lastly, pharmacokinetics 

in the vitreous humor are simulated appropriately with the terminal decline parallel in all the 

ocular tissues. The SMAPE of the predictions in in all ocular tissues are in Table 6. Despite 

slight variation in the PK of α-gD and the three bevacizumab data sets, the model performs 

very well showing no systematic over- or under-prediction.

Discussion

PBPK models are an important tool in translating preclinical pharmacology of antibodies to 

the clinic. An important objective of PBPK modelling is to characterize the system with 

physiologically relevant parameters so that the plasma and tissue PK of a drug can be 

accurately characterized simply with the knowledge of drug specific parameters obtained in 
vitro (e.g. affinity with FcRn). While PBPK models of antibody disposition have been well 

established in many species, such as mice, rats, monkeys, and human, to date, there is no 

validated PBPK model for antibody disposition in rabbits. In this manuscript, we sought to 
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develop a PBPK model for rabbit because is a widely used species, particularly in 

development of antibody therapeutics for ocular disorders.

The platform PBPK model proposed by Shah and Betts[16] and presented in Figures 1 and 2 

provides a basis for developing PBPK models for new species, as we have done here with 

rabbits. As an important validation step, the rabbit PBPK model accurately simulates the 

time course of antibody concentration in plasma after intravenous dosing with minimal 

predictive error (Figure 5). A key attribute of these simulations is that all parameters, both 

related to the system and to the drug, were fixed a priori. However, rabbits are rarely used 

with the intention of measuring whole body tissue pharmacokinetics. Therefore, tissue-level 

data for antibody PK is not readily available, with reported studies having few collection 

times or unclear dosing regimens, which is unsuitable to use for our modeling 

endeavors[40,41]. Nevertheless, reliable data in rabbit is available from the literature 

regarding ocular disposition of antibodies.

Rabbits are the most common species used in assessing ocular pharmacokinetics and 

toxicity[18,17]. Thus, a rabbit PBPK model including a detailed eye component would be a 

valuable tool in ocular drug development. As a frequently used species, the ocular anatomy 

and physiology of the rabbit is well known and has been incorporated into the PBPK model. 

While maintaining the whole-body and drug parameters, the ocular model accurately 

simulates the pharmacokinetics of IgG in both the serum and several individual ocular 

tissues: aqueous humor, iris/ciliary body, vitreous humor, and retina (figure 6). Such 

prediction across tissues is extremely advantageous in ocular research where some 

individual tissues, such as retina or iris-ciliary body, are difficult to isolate and analyze. For 

example, taps of the aqueous and/or vitreous chamber (i.e. direct sampling) can be used for 

data collection in a single animal over time, and the concentration in the hard-to-reach 

tissues can then be simulated using the ocular PBPK model. This predictive capability is of 

even greater importance in the clinical setting, where aqueous taps are the only samples 

typically available.

While our proposed model focuses on full-length IgG therapies (150 kDa), smaller 

molecular weight biologics are of more interest for treating ocular disease. Indeed, all FDA-

approved macromolecules for ocular disorders have molecular weights below 150 kDa: 

aflibercept (115 kDa), pegaptanib (50 kDa), ranibizumab (48 kDa), ocriplasmin (27.2 kDa), 

and brolucizumab (26 kDa). The current iteration of the platform PBPK model is unsuited to 

model smaller biologics as it assumes a single pore exists in the vascular endothelium 

through which a therapeutic antibody enters tissues. For lower molecular weight protein 

therapeutics, a model incorporating the “two pore hypotheses” of extravasation would be 

more appropriate[42,43]. Recently, our lab has applied the “two pore hypothesis” to the 

platform PBPK model[37]. The next step is to integrate the “two pore hypotheses” with the 

ocular PBPK model to predict the PK of smaller compounds after intravitreal administration.

Although ocular therapy currently centers on lower molecular weight protein therapeutics, 

modelling full-length IgG exposure in the eye is critical in assessing ocular toxicities. 

Targeted cancer therapies carry a risk of toxicity in healthy tissues that express the target 

antigen even at low levels. In phase I and phase II trials of the anti-HER2 ADC trastuzumab 
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emtansine, between 31.3 and 46.4% of patients had ocular adverse events[44,45]. For 

ipilimumab, Maker et al. [46] observed severe ocular toxicities in 35% of patients treated 

with the anti-CTLA-4 antibody. For cetuximab, the anti-EGFR antibody has been associated 

with several ocular adverse events including dry eye, blepharitis, and trichomegaly[47,48]. 

Our ocular PBPK model has the potential to predict drug concentrations in various tissues of 

the eye after systemic administration, and, when combined with knowledge of antigen 

expression, it provides a tool to assess potential risk of ocular toxicity.

Conclusions

In summary, we have presented a new platform PBPK model for antibody disposition in 

rabbits. Additionally, we have incorporated a novel physiologically relevant ocular 

compartment to the whole-body model, which incorporates the unique anatomy of the eye. 

Our ocular PBPK model successfully predicts the PK of an exogenous antibody in the 

plasma and the ocular tissues after intravitreal administration. Prediction of ocular PK with 

our model will aid in the preclinical to clinical translation of novel ocular therapeutics, and 

assessment of potential drug-induced ocular toxicities. In the future, the capabilities of the 

ocular PBPK model can be expanded by incorporating the “two pore hypothesis” to 

accurately predict the PK of smaller molecular weight protein therapeutics.
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Fig. 1. 
Schematic of the whole body PBPK model for antibody distribution. Rectangular 

compartments represent organs and solid and dashed arrows represent blood and lymph 

flow, respectively. Each tissue contains several sub-compartments as shown in Figure 2.
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Fig. 2. 
Schematic of tissue-level structure of the PBPK model. Please refer to the text for 

description of the processes involved in antibody disposition.
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Fig. 3. 
Structural schematic of the physiologically-based ocular compartment. The compartments 

are connected in an anatomical manner including blood, lymph, and intraocular fluid flows, 

and accounts for permeation at interfaces between tissues. The vascularized tissues are 

further divided in sub compartments as shown in Figure 5.
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Fig. 4. 
Schematic of tissue-level model for vascularized tissues in the ocular compartment, 

including (A) Iris-Ciliary Body, (B) Retina, and (C) Choroid.
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Fig. 5. 
Observed (icons) and simulated (line) pharmacokinetics of intravenously-dosed monoclonal 

antibodies in rabbits. Data and simulation are dose normalized.
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Fig. 6. 
Observed (circles) and simulated (line) pharmacokinetics of intravitreally-dosed monoclonal 

antibodies that are non-targeting in rabbits.
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Table 1.

Physiological model parameters for rabbit.

Total
Volume (L)

Plasma
Volume (L)

Blood Cell
Volume (L)

Interstitial
Volume (L)

Endosomal
Volume (L)

Cellular
Volume (L)

Plasma
Flow (L/h)

Blood Cell
Flow (L/h)

Lung 0.0170 0.00247 0.00123 0.00320 0.0000850 0.0100 21.2 10.6

Heart 0.00600 0.000231 0.000116 0.000600 0.0000300 0.00502 0.768 0.384

Kidney 0.0150 0.00158 0.000788 0.00300 0.0000750 0.0103 3.69 1.85

Muscle 1.35 0.0351 0.0176 0.162 0.00675 1.13 6.21 3.11

Skin 0.110 0.00209 0.00105 0.0332 0.000550 0.0711 1.63 0.813

Brain 0.0140 0.000518 0.000259 5.60E-06 0.0000700 0.0134 0.380 0.190

Adipose 0.120 0.00120 0.000600 0.0162 0.000600 0.10128 1.28 0.641

Thymus S. 0.00410 0.000228 0.000114 0.000697 2.05E-05 0.00374 0.0224 0.0112

Intestine L. 0.0600 0.00144 0.000720 0.00564 0.000300 0.0524 2.21 1.10

Intestine 0.0300 0.000720 0.000360 0.00282 0.000150 0.0262 0.564 0.282

Spleen 0.00100 0.000282 0.000141 0.000150 0.00000500 0.000583 0.360 0.180

Pancreas 0.00360 0.000648 0.000324 0.000432 0.0000180 0.00263 0.144 0.0720

Liver 0.100 0.0115 0.00575 0.0163 0.000500 0.0690 0.163 0.0815

Bone 0.310 0.0127 0.00636 0.0310 0.00155 0.264 1.86 0.930

Ly. Node 0.0103 -- -- -- -- 0.0103 -- --

Other 0.2493 0.0103 0.00517 0.0422 0.00123 0.230 1.89 0.943

Plasma 0.110 -- -- -- -- -- 21.2 --

Blood Cells 0.055 -- -- -- -- -- -- 10.6
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Table 2.

Glossary of parameters used in the PBPK model

Parameter Units Definition

PLQi L /h Plasma flow to the tissue “i”

BCQi L /h Blood cell flow to the tissue “i”

Li L /h Lymph flow from the tissue “i”

VPlasma, VBC, VLymphNode L Volumes of the central plasma, central blood cell, and lymph node compartments

V i
V , V i

BC, V i
E, V i

IS, V i
C L Volumes of the vascular, blood cell, endosomal, interstitial, and cellular compartments for 

the tissue “i”

CPlasma, CBC, CLymphNode nM Concentrations in the central plasma, central blood cell, and lymph node compartments

Ci
V , Ci

BC, Ci
EUnbound, 

Ci
EBound, Ci

IS, Ci
CBound

nM Concentrations in the vascular, blood cell, endosomal (Unbound and Bound), interstitial, 
and cellular (Bound) compartments for the tissue “i”

FcRn M Concentration of FcRn in the endosomal space

σi
V , σiIS – Vascular and lymph reflection coefficients

Kon
FcRn, Kon

Ag 1 /M/h Association rate constants between mAb and FcRn and mAb and Antigen

Koff
FcRn

, Koff
Ag 1/h Dissociation rate constants between mAb and FcRn and mAb and Antigen

FR – Fraction of FcRn bound mAb that recycles to the vascular space

CLup L/h/L Rate of pinocytosis and exocytosis per unit endosomal space of the vascular endothelium

Kdeg 1/h First-order degradation rate constant of FcRn-unbound mAb in the endosomal space
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Table 3.

Physiological parameters for the ocular component of the rabbit PBPK model.

Parameter Value Source

VCornea (mL) 0.0887 [49]

VAH (mL) 0.306 Struble et al. [49]

VVH (mL) 1.41 [49]

Qeye (L/h) 0.0483 [50]

Leye (L/h) Q_eye*0.002 Calculated

  ficb 0.131 [51]

  fret 0.00911 [51]

  fcho 0.860 [51]

QBF (L/h) 0.00003 [52]

QVA (L/h) 0.000008 [53]

QPtA (L/h) QAH – QVA + QBF Calculated

QAH (L/h) 0.000212 [50]

  σret 0.95 Fixed

  σcho 0.99 Fixed

  σaq 0.99 Fixed

PScor (L/h) 1.19 x 10−8 [54]

PSlens (L/h) 0 Fixed

PSret (L/h) 2.64 x 10−6 [5]

PScho (L/h) 2.88 x 10−6 [5]

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2021 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bussing and Shah Page 29

Table 4.

Physiological parameters for tissue sub-compartments in the ocular model.

Fraction of Total Volume comprising

Total Volume
(μL)

Plasma
Volume

Blood Cell
Volume

Interstitial
Volume

Endosomal
Volume

Cellular
Volume

Retina 42.0 0.287[55] 0.1435 0.32[56] 0.005 0.245

Choroid 28.4 0.23[57] 0.115 0.4[58] 0.005 0.25

ICB
a 87.8 0.23 0.115 0.4 0.005 0.25

a
ICB was assumed to have the same composition as choroid due to structural similarity
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Table 5.

Glossary of parameters used in the ocular compartment of the PBPK model.

Parameter Units Definition

VCornea, VAH, VVH L Volumes of the cornea, aqueous humor, and vitreous humor compartments

Qeye L /h Blood flow to the eye

Leye L /h Lymph flow from the eye

ficb, fret, fcho – Fraction of total blood and total lymph flow entering and exiting the iris-ciliary body, retina, and choroid

QBF L /h Bulk flow of fluid from the anterior eye to the posterior eye

QVA L /h Flow of fluid from vitreous chamber to aqueous chamber

QPtA L /h Flow of fluid from plasma to aqueous humor (i.e. rate of aqueous humor production)

QAH L /h Flow of fluid from aqueous humor returning to plasma (i.e. rate of aqueous humor drainage)

σret, σcho – Bulk flow reflection coefficients in the retina and choroid

σaq – Plasma-to-aqueous humor reflection coefficient

PScor, PSlens, PSret, PScho L/h Permeability Surface Area products for mAb in cornea, lens, retina, and choroid
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Table 6.

Estimated dose amount administered in intravitreal dosing studies and SMAPE of the PBPK model in 

prediction of AUC in ocular tissues.

SMAPE

Estimated
Dose (mg)

CV% Study Vitreous
Humor

Aqueous
Humor Retina Plasma

Iris/Ciliary
Body

0.754 8.03 Gadkar[28] 11.0 4.19 9.43 19.3

0.926 14.1 Bakri[25] 23.4 30.5 23.4

0.696 2.39 Sinapis[27] 15.4 14.7 72.7

0.343 15.6 Nomoto[26] 5.09 89.6 11.2 12.5 15.1
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