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Summary

Although enhancers play critical roles in cancer, quantifying enhancer activities in clinical samples 

remains challenging, especially for super-enhancers. Enhancer activities can be inferred from 

enhancer RNA (eRNA) signals, which requires enhancer transcription loci definition. Only a small 

proportion of human eRNA loci has been precisely identified, limiting investigations of enhancer-

mediated oncogenic mechanisms. Here we characterize super-enhancer regions using aggregated 

RNA-seq data from large cohorts. Super-enhancers usually contain discrete loci featuring sharp 

eRNA expression peaks. We identify >300,000 eRNA loci in ~377 Mb super-enhancer regions that 

are regulated by evolutionarily conserved, well-positioned nucleosomes and are frequently 

dysregulated in cancer. The eRNAs provide explanatory power for cancer phenotypes beyond that 

provided by mRNA expression through resolving intratumoral heterogeneity with enhancer cell-

type specificity. Our study provides a high-resolution map of eRNA loci through which super-

enhancer activities can be quantified by RNA-seq and a user-friendly data portal, enabling a broad 

range of biomedical investigations.

eTOC Blurb

Chen and Liang provide a high-resolution map of eRNA loci through which super-enhancer 

activities can be conveniently quantified by RNA-seq. The eRNA signals in cancer samples are 

clinically relevant and provide additional explanatory power for cancer phenotypes beyond those 

provided by mRNAs through resolving intra-tumor heterogeneity with enhancer cell-type 

specificity.

Graphical Abstract

*Corresponding author: H.L. hliang1@mdanderson.org (lead contact).
Author Contributions
H.C. and H.L. conceived and designed the study, performed data analysis, and wrote the manuscript.

Declaration of Interests
H.L. is a shareholder and scientific advisor to Precision Scientific Ltd.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cancer Cell. Author manuscript; available in PMC 2021 November 09.

Published in final edited form as:
Cancer Cell. 2020 November 09; 38(5): 701–715.e5. doi:10.1016/j.ccell.2020.08.020.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Enhancers are key non-coding DNA sequences regulating their target genes (Pennacchio et 

al., 2013). It has been an evolving concept since the early identification of the Simian virus 

40 (SV40) DNA sequence enhancing local gene expression in the 1980s (Banerji et al., 

1981), followed by the discovery of endogenous locus control regions (LCRs) (Levings and 

Bungert, 2002). The chromatin modification of H3K4me1 and H3K27ac are known to be 

effective markers for enhancer identification (Creyghton et al., 2010; Heintzman et al., 

2007), and later more epigenetic markers, such as H3.3 and H2A.Z, were reported to be 

associated with enhancer functions (Goldberg et al., 2010; Jin et al., 2009; Lawrence et al., 

2016). With many more enhancer elements characterized in the human genome (ENOCDE 

Consortium, 2012), the concepts of “stretch-enhancer” and “super-enhancer” were then 

proposed to refer to large genomic domains with enriched enhancer activity (Parker et al., 

2013; Whyte et al., 2013). Identified by highly enriched ChIP-seq signals (Hnisz et al., 

2013), super-enhancers are typically over 10 kb and characterized by the extensive intensity 

or strength of given enhancer markers, such as H3K27ac (Hnisz et al., 2013; Loven et al., 

2013; Whyte et al., 2013). They tend to be bound by a large panel of transcription factors 

(TFs) related to cell fate determination (Pott and Lieb, 2015). Using a combination of high-

throughput assays, the ENCODE project has identified the genome-wide DNA regions with 

enhancer-like features in >100 cell types (ENODE Consortium, 2012). On activation, 

enhancers open the local chromatin and expose the DNA motifs to attract TFs that can 
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further recruit RNA polymerases (usually RNA Pol II) to generate enhancer RNAs (eRNAs) 

(Heinz et al., 2015; Murakawa et al., 2016). First identified in neuronal tissues (De Santa et 

al., 2010; Kim et al., 2010), expressed enhancers were systematically annotated (~65,000 

ones) by the FANTOM project in ~400 human tissues and cell types using the CAGE-seq 

technique targeting the molecules with 5′-cap (Andersson et al., 2014). While some studies 

show strong evidence that eRNAs are functional in gene regulation by some master TFs and 

repressors such as p53, estrogen receptors, and Rev-Erbs (Lam et al., 2013; Li et al., 2013; 

Melo et al., 2013), what proportion of the eRNAs are functional or merely the byproducts of 

enhancer activation (Catarino and Stark, 2018; Kim et al., 2015) is still an open question.

The critical roles of enhancers in cancer development and tumor response have been 

increasingly recognized (Bahr et al., 2018; Mack et al., 2018; Takeda et al., 2018). But 

quantifying enhancer activities in clinical tumor samples remains challenging in practice. 

RNA-seq data are a convenient, rich information resource for eRNA quantification and 

enhancer activity approximation (Buenrostro et al., 2013; Chen et al., 2018a; Murakawa et 

al., 2016). In particular, it works well based on the CAGE-defined enhancers because of 

their precise eRNA location annotation (Chen et al., 2018a; Chen et al., 2018b; De Santa et 

al., 2010). Based on CAGE-defined enhancers annotated by FANTOM, using RNA-seq data 

from The Cancer Genome Atlas (TCGA), we recently demonstrated the utility of the eRNA 

signals in predicting patient survival and regulation of therapeutic targets (Chen et al., 

2018a). However, the CAGE-defined enhancer annotation only covers a small fraction of 

eRNA loci (~15,000) (Andersson et al., 2014; ENODE Consortium, 2012). Moreover, unlike 

RNA-seq, CAGE-seq cannot be easily applied to large cohorts of tumor samples such as 

TCGA, thereby limiting the power of connecting eRNAs with clinical phenotypes. 

Therefore, it is highly valuable to systematically identify the precise eRNA loci that can be 

measured by routine RNA-seq data.

To depict a more comprehensive set of eRNA loci beyond those already annotated by 

FANTOM, we focused on the super-enhancer regions defined by Hnisz et al. (Hnisz et al., 

2013). Although the concept of “super-enhancers” is still open to discussion (Pott and Lieb, 

2015), we investigated them for the following scientific and technical reasons. First, these 

super-enhancer regions cover >370 Mb DNA sequence in length and represent regions with 

the most enriched regulatory signals in the human genome. Dysregulation of super-

enhancers is frequently associated with various developmental diseases, including cancer 

(Alam et al., 2020; Hnisz et al., 2013; Loven et al., 2013; Whyte et al., 2013), indicating 

their potential biomedical significance (Shin, 2018). Second, compared with typical 

enhancers, super-enhancers show much stronger signals of RNA Pol II binding (Hnisz et al., 

2013), implying that their eRNAs may be more actively transcribed and could potentially be 

detected by TCGA mRNA-seq data even without CAGE-seq based annotation (Chen et al., 

2018a). Third, compared to typical enhancers (~200 bp), super-enhancers are much longer 

(usually >10 kb) (Pott and Lieb, 2015). Thus, background transcription noise across the 

super-enhancer bodies substantially confounds the real enhancer activation signals (Berretta 

and Morillon, 2009; Nagalakshmi et al., 2008; Thompson and Parker, 2007), necessitating 

the precise separation of the eRNAs from nearby genomic regions (Pott and Lieb, 2015). 

Finally, unlike other super-enhancers proposed later, these super-enhancer regions have been 

systematically annotated in a variety of tissues and cell types (86 in total) using consistent 
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H3K27ac ChIP-seq profiles (Hnisz et al., 2013), thereby providing a reliable recurrent 

frequency of super-enhancer activation across tissues.

We hypothesize that the precise eRNA loci within super-enhancers can be resolved by 

analyzing aggregated RNA-seq profiles that combine the RNA-seq data of many individual 

samples. This is because eRNA reads associated with real enhancer activity recurrently 

accumulate, whereas background transcription noise tends to occur stochastically. The large 

number of RNA-seq reads obtained would compensate for the statistical power 

compromised by the low eRNA expression level typically observed in a single sample. 

Further, the large sample size would help distinguish differential activation of neighbor 

eRNA loci within a super-enhancer. With the precise eRNA loci thus defined, it would then 

be possible to quantify the sample-specific eRNA levels using routine RNA-seq data, 

thereby enabling a broad range of biomedical investigations of super-enhancer activities, 

especially in clinical samples.

Results

Recurrent eRNA expression peaks in super-enhancers

Figure 1 shows an overview of our study. Since super-enhancers are tissue-specific and 

collectively constitute up to ~377 Mb of mappable non-coding DNA sequences (Table S1) 

(Hnisz et al., 2013), we first focused on a subset of 1,531 (out of ~58,000) core super-

enhancers (~5 Mb) that were consistently identified and activated in >20 (out of 86) tissue/

cell types (Hnisz et al., 2013) (Table S2) for exploratory analysis. To confirm their RNA Pol 

II binding activities, we examined the association of their eRNAs with H3K27ac in 140 cell 

lines and observed a positive correlation in the vast majority (>80%) of these core super-

enhancers (Figure S1A-E). Using TCGA RNA-seq data (>10,000 samples of 32 cancer 

types), we generated the aggregated RNA-seq profile for each cancer type to elucidate the 

eRNA transcriptional landscape in super-enhancers, integrated them with the nucleosome 

profiling data of 29 tissue/cell types, validated the patterns using GTEx RNA-seq data 

(~10,000 samples of 31 normal tissues) and FANTOM CAGE-seq enhancer data (>250 

human cell lines), and inferred the underlying principles for identifying precise eRNA loci. 

Second, we applied the rules discerned from this core set to the whole super-enhancer set 

(~377 Mb) to construct a fine map of >300,000 eRNA loci. Third, through a case study of 

tumor response to immunotherapy, we demonstrated the power of such a map for eRNA 

analysis in explaining complex genotype-phenotype relationships. Finally, we performed a 

pan-cancer analysis of these eRNA loci by integrating other TCGA molecular data and built 

a user-friendly data portal, The Cancer eRNA Atlas (TCeA), for the scientific community to 

use all the resources generated in this study.

To learn the rules for pinpointing eRNA loci, we calculated the eRNA expression levels for 

all tandem 10 bp windows of DNA in the 5 Mb core super-enhancer set using an aggregated 

RNA-seq dataset for each of the 32 cancer types (>10,000 TCGA samples in total). Looking 

at the transcriptional landscape of super-enhancers, we noticed highly recurrent sharp eRNA 

expression peaks across super-enhancer bodies, as illustrated by a ~670 bp region in Figure 

2A. This is one of the super-enhancer regions most consistently identified in nearly half (39 

out of 86) of the tissue/cell types (Figure S2A), and also one of the most widely expressed 
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regions across cancer types (Figure 2A-B and S2B-C). In 28 of the 32 cancer types, we 

observed five sharp eRNA expression peaks with lengths of only a few dozen base-pairs near 

the 70th, 210th, 390th, 520th, and 640th nucleotide positions. Interestingly, not only the 

location of the eRNA peaks but also their relative heights (expression levels) showed 

recurrent patterns, leading to four distinct clusters of the 32 cancer types (Figure 2B). Such 

an eRNA pattern was further confirmed by the independent GTEx dataset of 31 normal 

tissues (Figure 2C and S2D-E) (GTEx Consortium, 2017).

To systematically identify such eRNA peaks, we searched the 1,531 core super-enhancers 

for local maximums of expression levels in all possible 200 bp windows and identified a 

total of 29,828 eRNA expression peaks recurrent in at least three TCGA cancer types (FDR 

= 0.12, permutation analysis; FDR <0.01 when recurrent in more than three cancer types, 

Figure S3A). Interestingly, an overwhelming proportion of these eRNA peaks showed a 

length of only ~100 bp, which then quickly decreased to the baseline (Figure 3A). This 

pattern of a short pulse held true when the maximum search range was extended to 400 or 

600 bp (Figure S3B-C), or using the GTEx dataset (Figure 3B and S3D-E). A typical peak 

(the median of 29,828 peaks) has a maximum expression level that quickly drops by 

~2.3fold as close as 50 bp on either side (Figure 3C). Further, we detected no enrichment of 

splicing motifs on the body or boundaries of these peaks, in contrast to the strong signals 

observed on intron-exon junctions (Figure S3F-G). We observed a strong signal of tandem 

TF binding motifs on either boundary of the eRNA peaks on both strands (Figure 3D), 

supporting that they resulted from transcriptional initiation rather than RNA splicing, similar 

to that of the FANTOM eRNA loci with precise transcription start sites (5′-cap). These 

results suggest that there are biologically meaningful eRNA loci in super-enhancers, and 

they generate discrete, recurrent, short eRNAs that can be readily detected by RNA-seq.

eRNA expression is regulated by well-positioned nucleosomes

The eRNA peaks we observed were as short as ~100 bp (Figure 2A and 3C), and this length 

is close to a 147 bp DNA unit occupied by a typical nucleosome, the unit of chromatin 

organization. Since the nucleosome dynamics is a critical feature of TF binding on DNA 

motifs (He et al., 2010; West et al., 2014), we hypothesized that the eRNA peaks in super-

enhancers are shaped by changes in chromatin organization at the nucleosome level in 

response to the super-enhancer activation by TF binding. When the super-enhancer is silent, 

binding motifs are protected from being accessed by TFs through promiscuous interactions. 

Upon activation, the nucleosome is disassembled, making the motifs available for TF 

recognition, which would then initiate transcription and generate the observed eRNAs. After 

activation, the enhancer sequence released from the TFs would soon be reclaimed by the 

nucleosome for protection (Jin et al., 2009; Mueller et al., 2017). The “state switch” of these 

nucleosomes are likely to release one unit of 147 bp DNA, thereby explaining the short 

(~100 bp) and sharp shape of the eRNA peaks (Figure 3A). Notably, even though the core 

super-enhancers we studied are likely to have effects in multiple tissues, they are still tissue-

specific and should, therefore, be silent in the majority of the tissues (they are expected to be 

active in >20% of the tissue types only). As a result, nucleosomes should occupy the eRNA 

loci in most tissues surveyed, thereby allowing the detection of well-positioned nucleosomes 

when examining nucleosome binding signals across tissues. When the super-enhancer is 
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activated, the situation can be more complicated. Upon transcription initiation, the 

nucleosome occupying an eRNA locus would have to be replaced by a TF (Brahma and 

Henikoff, 2019; He et al., 2010). However, the TF on this “open” DNA competes with 

intruding nucleosomes that often contain the histone variants H3.3 and H2A.Z (Jin et al., 

2009; Mirny, 2010; Wasson and Hartemink, 2009) in a tissue-specific manner (Goldberg et 

al., 2010). The nucleosome turnover at this site leads to its observation as a fragile 

nucleosome (Brahma and Henikoff, 2019), depending on a variety of factors such as MNase 

digestion time (Brahma and Henikoff, 2019), replication stage (Ramachandran and 

Henikoff, 2016), and salt concentration (Jin et al., 2009). Recent studies have shown that the 

widespread nucleosome turnover in the actively transcribed gene bodies or enhancers is 

generally rapid enough so that no change of nucleosome occupation signal could be 

observed (Brahma and Henikoff, 2019; Mueller et al., 2017).

To test this hypothesis, we collected the MNase-seq data of 29 tissue/cell types (Figure S4A) 

and aligned the nucleosome signals flanking the 29,828 peaks. We indeed observed well-

positioned nucleosomes on the eRNA expression peaks in all 29 human tissues (Figure 4A 

and S4B), and even in sperms where nucleosomes are highly sparse (Figure 4B) (Hammoud 

et al., 2009). The occupancy of these nucleosomes is conserved across macro-evolution, with 

similar occupancy observed in five tissues from pig, mouse, and human (Figure 4A, middle 

and bottom panel) with available MNase-seq data (Jiang et al., 2018), indicating the 

functional importance of nucleosome occupancy at these positions. Thus, our analysis 

reveals the epigenetic regulation mediated by nucleosome binding on the transcriptional 

initiation of eRNAs in super-enhancers (summarized in Figure 4C), similar to that observed 

for gene transcription start sites (TSS).

Global identification of eRNA loci in super-enhancers

From the above analysis, we made two key observations related to the eRNA loci in super-

enhancers: (i) a super-enhancer usually contains multiple eRNA loci generating short eRNA 

species <100 bp; and (ii) these eRNA loci tend to coincide with well-positioned 

nucleosomes. We, therefore, generalized our analysis to the whole set of super-enhancers 

(~377 Mb), which would otherwise suffer greatly from the noise of global transcription 

background without precise enhancer locus annotation.

We first identified the loci with local maximum RPKM for all possible 140 bp windows in 

the super-enhancers in each TCGA cancer type, generating a total of >4 million eRNA peak 

positions. We then calculated the nucleosome signals on the flanking 140 bp for each peak 

position in 27 MNase-seq datasets (the two sperm samples were excluded). To characterize 

the major patterns of nucleosome binding, we performed principal component analysis 

(PCA) on these signals (Figure 5A and S5A-C). The first three principal components (PCs) 

collectively explained ~85% of the total variations. PC1 effectively reflected the averaged 

local MNase-seq signal intensity on the flanking 140 bp regions (Figure S5D; Pearson’s R = 

0.96; p <2×10−16). PC2 and PC3 were independent of PC1 and from each other (Figure 

S5E-G). They represented the phase of nucleosome positioning near the eRNA peak. 

Specifically, PC2 and PC3 divided the 4 million peaks into three groups (shown in different 

colors in Figure 5A): PC2 represented the relative occupancy of nucleosome up- or down-
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stream of the peak position (Figure 5B-C) while a negative PC3 indicated a synchronization 

between nucleosome occupancy and eRNA expression signal (Figure 5D, Figure S5H-I). 

Thus, a negative PC3 value was a good indicator of an eRNA expression peak aligned with a 

well-positioned nucleosome, the eRNA locus of our interest. Strikingly, a negative PC3 

exhibited a strong correlation with the probability of a common SNP in the eRNA peaks 

being a GTEx eQTL (R = −0.93; p = 5.2×10−5; Figure 5E), indicating the functional 

significance of the eRNA peaks coinciding with well-positioned nucleosomes. In contrast, 

PC1 was a much worse indicator than PC3, emphasizing the importance of nucleosome 

positioning rather than the affinity of the local sequence to nucleosomes (R = −0.39; p = 

0.03; Figure 5F). As true eRNA signals, rather than transcriptional noise, should be 

synchronized across multiple tissues where they function, we found that PC3 was strongly 

associated with either the probability of the region being identified as a super-enhancer in 

the original 86 tissue/cell types (R = −0.89; p = 3.7×10−6; Figure 5G) or the recurrent 

frequency identified in the 32 TCGA cancer types (R = −0.90; p = 6.7×10−8; Figure 5H).

As described above, the eRNA expression peak also tends to form sharp and short 

transcription pulse ~100 bp in length, which can be measured as the relative peak height, by 

comparing the peak expression with those of the two “gulfs” ~50 bp away from the peak 

(Figure 3C). We found this value to be strongly correlated with the probability of a common 

SNP in the eRNA peaks being a GTEx eQTL signal (R = −0.996; p <2×10−16; Figure 5I) or 

the probability of the peak region being a super-enhancer in the 86 tissue/cell types (R = 

0.86; p = 8.9×10−7; Figure 5J). Therefore, we decided to integrate the eRNA peaks with 

well-positioned nucleosomes to identify eRNA loci systematically.

Based on permutation analysis of eRNA loci, we developed two criteria to identify candidate 

eRNA loci by searching the 4 million eRNA peaks for those (i) coincident with well-

positioned nucleosomes (PC3 <0), and (ii) with sharp eRNA expression peaks (relative peak 

height >0.05). We identified >300,000 such eRNA loci (FDR <0.1, permutation analysis) in 

the ~377 Mb super-enhancer regions (Table S3). This procedure strongly enriched recurrent 

loci (Figure S5J-K, ranging from ~50,000 to ~120,000 loci per cancer type) that retained 

high tissue specificity compared to protein-coding genes (Figure S5L). This procedure also 

identified many more such loci in the super-enhancers than in other regulatory regions or 

non-regulatory sequences (Figure S5M), consistent with the enrichment of RNA Pol II 

ChIP-seq signals in the super-enhancers. As visualized on chromosome 22, dense eRNA loci 

were observed across the super-enhancer regions (Figure 5K, top and middle panels). 

Interestingly, both heterogeneous and highly co-activating modules were frequently found in 

genomic neighborhoods. For example, the blue super-enhancer region formed two distinct 

clusters, whereas a highly complex co-activation pattern was observed across the structure of 

the green super-enhancer (Figure 5K; bottom panel).

We then evaluated the quality of these eRNA loci in several aspects. First, to confirm if the 

identified eRNA loci represent the true transcription initiation, rather than transcriptional 

noise, we analyzed the average enhancer CAGE-seq signal around the eRNA loci 

(Andersson et al., 2014). Indeed, there was a sharp peak of enhancer transcription initiation 

signal detected by CAGE-seq at ~60 bp upstream of the eRNA loci on either the Watson or 

Crick strand (Figure S6A-B). The ~120 bp distance between the two CAGE-seq peaks 
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flanking the eRNA loci is consistent with the role of well-positioned nucleosomes we 

proposed (Figure 4C). Although the read depth of CAGE-seq data was much lower than that 

of the RNA-seq data, the flanking CAGE-seq peaks showed an enrichment relative to the 

genomic background (Figure S6C-D). Despite the local enrichment of CAGE-seq signals 

near our eRNA loci (Figure S6A-B), it should be emphasized that ~77% of the ~300,000 

eRNA loci are at least 2 kb away from any FANTOM-annotated enhancer (Figure S6E), 

highlighting the discovery power of our approach for novel eRNA loci. Second, we called 

well-positioned nucleosomes in 15 paired-end MNase-seq samples (Chen et al., 2013) and 

found >60% of the eRNA loci to be occupied by well-positioned nucleosomes in ≥5 samples 

studied (Figure S6F), indicating the robustness of this pattern. Taken together, using the key 

features identified in the core super-enhancers, we systematically identified candidate eRNA 

loci in the whole set of super-enhancers. These eRNA loci feature well-positioned 

nucleosomes (as in gene TSS (Jiang and Pugh, 2009)) and are enriched in eQTL 

associations, suggesting that these eRNA loci are functionally important and represent 

quantifiable units for studying super-enhancer activities using routine RNA-seq data.

eRNA expression provides extra quantitative power for clinical phenotypes

Since the effects of enhancers must ultimately converge on their target genes, one key 

question is whether and how the eRNA loci we detected can provide additional quantitative 

power in dissecting genotype-phenotype relationships (Chen et al., 2018c). With a 

comprehensive catalog of eRNA loci (>300,000), we hypothesize that eRNA signals better 

explain quantitative traits than gene expression because of the tissue or cell-type specificity 

of the super-enhancers, which can be illustrated as follows. In a hypothetical case, the cell-

type-specific enhancers A, B, and C are regulators of the gene X in cell types A, B, and C, 

respectively (Figure 6A). However, only the cell type A contributes to a quantitative trait 

through the activity of gene X. As a result, only the activation level of enhancer A should be 

strongly associated with the trait, while the predictive power of gene X is compromised by 

including the expression signals of gene X in cell types B and C (which have no effects on 

the phenotype of interest). This scenario is particularly relevant in the RNA-seq analysis of 

clinical tumor samples in two aspects. First, according to a recent CAGE-based study, a 

much larger proportion of eRNAs (>30%) is highly cell-type-specific compared to mRNAs 

(<5%). Super-enhancers are even more cell-type specific, and their activation often 

represents cell lineages in H3K27ac ChIP-seq studies (Hnisz et al., 2013). Second, clinical 

tissue samples (e.g., solid tumors) usually are a mixture of various cell types (Marusyk et al., 

2020). The eRNA peaks identified in this study are mostly restricted to a few cancer types 

(Figure S5K), distinct from the protein-coding genes in the same dataset (Figure S5L), 

which are readily detectable in many tissues. Therefore, the expression level of protein-

coding genes from bulk RNA-seq data largely reflects the average signals across different 

cell types within a tumor sample, whereas the eRNA levels likely retain more cell-type-

specific signals. As a result, differentially expressed eRNA signals could reasonably 

outperform differentially expressed mRNAs in quantitative power for complex traits 

determined by one or a few specific cell types, such as immunotherapy responses and 

endocrine resistance (Augello et al., 2019; Hanker et al., 2020).
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To support the concept, we studied the value of our eRNA loci in predicting tumor response 

to cancer immunotherapy. In a cohort of 28 melanoma tumors differentially responding to 

the anti-PD1 immunotherapy (Hugo et al., 2017), the response to which requires the 

interactions among T cells, tumor cells, and an array of other cells in the microenvironment, 

we found that none of the ~20,000 coding genes showed significant differential expression 

(Figure 6B; q <0.1), as originally reported (Hugo et al., 2017). In sharp contrast, when the 

same statistics were applied to the ~40,000 eRNA loci identified in TCGA melanoma 

dataset, we detected 164 eRNAs with differential expression at the level of q <0.05 (Figure 

6C, Table S4). Interestingly, all of these 164 eRNA loci showed consistent hyperactivation in 

the fully responding group (Figure 6D), even though they were evenly distributed across the 

genome (Figure S7A). To understand the biological theme of these eRNA signals, we 

identified their 36 target genes by eQTLs (as annotated by GTEx) and performed gene set 

enrichment analysis (GSEA). This small gene set showed significant enrichment for the 

genes downregulated in exhausted CD8+ T cells and those over-expressed in expanding 

CD8+ T cells (Figure 6E), suggesting that the activation of the 164 super-enhancer eRNAs 

(and hence the 36 genes) is important in the functional CD8+ T cells. Consistently, the 164 

eRNAs were expressed in the primary T-cells while being largely undetectable in several 

homogeneous cell lines regardless of tissue of origins (Figure S7B). To further support this 

finding, the combined expression level of these 164 eRNAs was correlated with a T cell 

dysfunction gene signature (R = −0.35; n = 310; p = 6.6×10−10; Figure S7C), and a T cell 

exclusion signature (R = −0.15; n = 310; p = 7×10−3; Figure S7D) obtained from a recent 

gene-based study where the predictive model was developed based on dozens of cancer 

patient cohorts (Jiang et al., 2018). Furthermore, the two GSEA gene signatures were 

associated with patient survival in a cohort of 42 melanoma patients receiving anti-CTLA4 

immunotherapy (Van Allen et al., 2015). These results provide a vivid example of how the 

eRNA signals can provide additional insights beyond mRNA expression analysis by 

resolving intra-tumor heterogeneity through their cell-type specificity (CD8+ T cell in this 

case).

eRNA loci are dysregulated and show clinical relevance in cancer

To study super-enhancer dysregulation in human cancers, we first compared the expression 

levels of the ~300,000 eRNA loci between tumors and normal samples in 12 cancer types 

with ≥20 tumor-normal sample pairs and observed a global activation of super-enhancers in 

many cancers (Figure 7A), similar to that of typical enhancers we recently reported (Chen et 

al., 2018a). Interestingly, a substantial portion of the eRNA loci was affected by the driver 

events of focal copy-number amplification, ~4-fold more likely than being affected by driver 

deletion events (Figure 7B). This pattern was in sharp contrast to the contributions of copy-

number driver events affecting protein-coding genes, for which focal deletions were ~1.2-

fold more likely to occur (Figure 7C). The same pattern held true when recurrent events 

across multiple cancer types were merged (Figure 7D).

CpG methylation plays a critical role in controlling its nearby regulatory elements 

(Skvortsova et al., 2019). We found ~4,000 eRNA loci containing at least one CpG 

methylation probe of the Human Methylation 450k array used in TCGA project. In these 

probes, 1,187 (>30%) CpG dinucleotides showed significant changes at the DNA 
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methylation level (Figure 7E; >20% absolute changes; FDR <0.01; paired t-test). These 

changes can be clearly divided into two clusters (hypo- and hypermethylation) with near 

consistency across different cancer types (Figure 7E). These methylation changes were 

associated with the expression changes of the 360 eRNA loci (Figure 7F-G; log2Fold-change 

>2; FDR <0.05; paired t-test) in the same patients, of which 174 (~50%) events were the 

deactivation of eRNA loci with hypermethylated CpGs inside (Figure 7G). We observed 

another 93 activation events on eRNA loci containing hypomethylated CpGs (Figure 7F). 

These results support that the hypermethylation of within-peak CpGs is an important 

indicator of super-enhancer deactivation during tumorigenesis (Skvortsova et al., 2019). 

Finally, we found ~50,000 eRNA loci (or ~62,000 associations) whose expression levels 

were associated with clinical outcomes, such as patient survival time, in at least one cancer 

type (Figure 7H), supporting their functional and clinical relevance.

To facilitate the community use of our results, we have built a user-friendly data portal, The 

Cancer eRNA Atlas (https://bioinformatics.mdanderson.org/public-software/tcea). This data 

portal provides (1) the detailed annotation of mappable non-coding super-enhancer regions 

(~377 Mb) surveyed in this study; (2) the details of the core super-enhancer regions (~5 

Mb); (3) the expression level (RPKM) of >300,000 super-enhancer transcription units in 

>10,000 TCGA tumor samples, >9,600 GTEx normal samples, and >900 CCLE cell lines; 

(4) the super-enhancer eRNA loci and genes associated with responses to immunotherapy; 

(5) the associations of super-enhancer transcription units with clinical outcome, somatic 

copy-number alteration, and CpG methylation in TCGA datasets; (6) the 3D eRNA-locus/

promoter interactions in >50 ChIA-PET or HiC datasets (Wang et al., 2018), resulting in a 

strong enrichment of positive eRNA/target-gene co-expression (Figure S7E-H); (7) 

additional super-enhancer regions: we collected ~350 H3K27ac profiles from Cistrome (Liu 

et al., 2011) and SEdb (Jiang et al., 2019) and annotated the potential eRNA loci in an 

additional ~350 Mb putative super-enhancer.

Discussion

We recently showed that cohort-based eRNA expression analysis is powerful in studying 

cancer mechanisms based on CAGE-seq-defined enhancers (Chen et al., 2018a; Chen et al., 

2018b). However, it is difficult to apply a similar strategy to super-enhancers, mostly due to 

their large size (>10 kb in length). By integrating dynamic nucleosomes with eRNA 

expression signals from aggregated RNA-seq data, we developed a systematic strategy to 

identify their eRNA loci, wherein the tissue-specific property of super-enhancers is the key. 

In a tissue A where the super-enhancer is active, and a motif is required by the TFs, the local 

nucleosome is recognized and labeled by chromatin modifiers and then intentionally opens 

to allow the TF-DNA binding; whereas in the majority of tissues where the super-enhancer 

is silent, a well-positioned nucleosome is necessary to prevent the TF-motif contact and 

suppress unwanted enhancer activation (He et al., 2010; Zhang et al., 2008). This is why we 

could observe well-positioned nucleosomes coinciding with the sharp transcriptional peaks 

when integrating eRNA expression and nucleosome position data across different tissues. An 

alternative model is that during rapid transcription initiation on enhancers, cells can alter 

DNA accessibility of well-positioned nucleosomes using ATP-powered chromatin 

remodelers without changing nucleosome occupation (Mueller et al., 2017). Both models 
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suggest the importance of well-positioned nucleosomes on the TF-motifs in enhancers. 

Strikingly, the constraint on well-positioned nucleosomes is conserved across a billion years 

of evolution, indicating its essential role in maintaining the overall transcriptional structure 

of super-enhancers. In contrast to the eRNA loci we detected, background transcription is a 

nature of genome organization that can be caused by DNA breathing (Chen et al., 2012), 

replication (Brar et al., 2012), or repair (Michelini et al., 2017). As a result, the low 

background transcription would amount to substantial noise in large-size regulatory 

elements such as super-enhancers. Importantly, this transcriptional noise does not have a 

protective (well-positioned) nucleosome accompanying it in other tissues, or when the DNA 

is closed (Figure 5E and I), thus, it is more likely to be associated with fuzzy nucleosomes 

(Mavrich et al., 2008).

One limitation of our study is that the public, consortium RNA-seq datasets (TCGA or 

GTEx) used are polyA+ selected, and can only capture a subset of eRNA signals. But the 

aggregated RNA-seq data across hundreds of individual samples help mitigate this limitation 

and still allow the detection of a large number of eRNA loci. With the eRNA loci thus 

defined, the most frequently generated polyA+-selected RNA-seq data can be readily used to 

characterize super-enhancer activities. We expect to detect more eRNA loci using a similar 

approach on rRNA-depleted RNA-seq data and will revisit this when a large amount of such 

RNA-seq data become available.

In summary, our study systematically identified >300,000 eRNA loci in ~377 Mb super-

enhancer regions, allowing the possibility to quantify the activation of super-enhancers using 

RNA-seq data. As demonstrated in the case study of cancer immunotherapy, the eRNA 

levels can largely retain cell-type-specific signals, whereas the mRNA expression levels by 

bulk RNA-seq data are more likely to be confounded by different cell types within a tumor 

sample. Thus, the eRNA loci map defined here will increase the power to explain 

quantitative traits beyond gene expression, thereby opening a new horizon to investigate the 

biological functions and potential applications of super-enhancers in various developmental 

and disease processes.

STAR Methods

Lead Contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Han Liang (hliang1@mdanderson.org).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

To facilitate the utilization of the results generated in this study by a broad community, we 

have provided all the information on our super-enhancer analysis in The Cancer eRNA Atlas 

(TCeA) data portal that can be accessed at https://bioinformatics.mdanderson.org/public-

software/tcea. The supplemental datasets include 5 files. Briefly, Table S1 provides the 
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detailed annotation of mappable non-coding super-enhancer regions (~377 Mb) surveyed in 

this study. Table S2 provides the details of the core super-enhancer regions (~5 Mb). Table 

S3 provides the information of >300,000 eRNA loci detected in >10,000 TCGA tumor 

samples. Table S4 provides the eRNA loci and genes associated with responses to 

immunotherapy. Table S5 provides the sample information used in this study.

Method Details

Annotation of super-enhancers—We obtained the annotation of super-enhancers in a 

panel of 86 human tissues and cell types from a previous study (Hnisz et al., 2013). In total, 

a list of 58,283 genomic regions was identified as super-enhancers in at least one tissue or 

cell type. This annotation was based on UCSC Hg19. We obtained all the exons under the 

attribute “ensembl_exon_id” from the GRCH37 ENSEMBL archive (https://

grch37.ensembl.org/index.html) using the R package “biomaRt” (Durinck et al., 2009) and 

removed these exons and their flanking 100 bp sequences from the above-mentioned super-

enhancer regions to avoid contamination of transcriptional signals with known genes. We 

then obtained a human genome benchmark (Zook et al., 2014) from ftp://ftp-

trace.ncbi.nih.gov/giab/ftp/data/NA12878/analysis/NIST_union_callsets_06172013/

union13callableMQonlymerged_addcert_nouncert_excludesimplerep_excludesegdups_exclu

dedecoy_excludeRepSeqSTRs_noCNVs_v2.18_2mindatasets_5minYesNoRatio.bed.gz, that 

excluded the genomic regions that were ambiguous for mutation calling or short read 

mapping. Only the non-coding super-enhancer regions within the genome benchmark 

regions were considered for further eRNA expression analysis in this study to control for 

mappability. Following these steps, we generated a list of 65,728 genomic regions of super-

enhancers (some of the original 58,283 super-enhancers were divided into multiple regions) 

for our eRNA expression analysis (Table S1). To identify a set of core super-enhancer 

regions with activities in multiple tissues and cell types, we divided the above sequences into 

non-overlapping 10 bp windows and compared all these windows with the original super-

enhancer annotations in the 86 tissue and cell types to obtain their tissue specificity 

information. We obtained 1,531 genomic regions with super-enhancer activities in >20 of the 

86 tissue and cell types (Table S2).

Analysis of eRNA and ChIP-seq H3K27ac signals—For the H3K27ac data, we 

obtained two datasets from ENCODE (n = 50, most of which are normal human tissues and 

primary cells) (ENCODE Consortium, 2012) and the Cistrome database (n = 90, all of 

which are cancer cell lines) (Mei et al., 2017). The corresponding RNA-seq data for these 

samples were obtained from the ENCODE (n = 50) and CCLE (n = 90) database (Barretina 

et al., 2012), respectively. The identifiers of these samples in the corresponding database are 

provided in Table S5. Notably, the Cistrome database provides mapped bigwig files in the 

genome version of UCSC Hg38, and we converted the 1,531 super-enhancer regions from 

Hg19 to Hg38 using UCSC liftOver (Casper et al., 2018). For the ENCODE ChIP-seq 

samples, the level of H3K27ac on each super-enhancer was defined as the average fold 

change over the control as provided in the ENCODE bigwig file (Table S5). We used the 

average signal in the super-enhancer regions from the ENCODE RNA-seq bigwig files as 

the readout of eRNA expression. For the Cistrome H3K27ac dataset, we called the signal on 

each super-enhancer and then normalized it using the average signal across the whole 
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genome to measure its H3K27ac level in a given sample. The corresponding RNA-seq bam 

files of the 90 cancer cell lines were obtained from CCLE (the bam file ids are provided in 

Table S5) (Barretina et al., 2012). The RPM of each of the 1,531 regions was calculated as 

the intensity of its eRNA expression. Since the ENCODE dataset and the Cistrome dataset 

are very different in terms of genomic coordinates, signal determination, normalization 

methods, and tissues of origin, we did not combine the two datasets and calculated the 

Spearman’s Rhos separately to measure the correlation between an eRNA and its local 

H3K27ac level for each super-enhancer in either dataset (Figure S1A-B). To evaluate the 

broadness of the positive correlations, we used a one-sided t-test on the Spearman’s Rhos to 

calculate p values (so that a large negative Rho would not pass the t-test). For each super-

enhancer, the p values generated from the two datasets were combined into one using the 

Fisher’s method (Fisher, 1928) before being subjected to a q-value computation (Figure 

S1C) (Storey and Tibshirani, 2003). We then estimated the pi0, or the percentage of true null 

H0 (no positive correlation between the eRNA and H3K27ac) based on the distribution of 

the resulting combined p-values of the 1,531 super-enhancers using the R package “qvalue” 

(Figure S1D) (Storey and Tibshirani, 2003), Phison’s LFDR (Phipson, 2013), and 

Nettleton’s method (Nettleton et al., 2006).

Super-enhancer eRNA expression profiles—For tissue/cancer type (or subtype) level 

expression profiling, we first combined the 10,004 (including 720 normal samples and 9,284 

tumors; see sample information in Table S5) TCGA bam files into merged bam files of 32 

cancer types or the 66 cancer subtypes (Cancer Genome Atlas Research et al., 2013). For 

each of the 10 bp windows on the 1,531 super-enhancer regions, we calculated the RPKM 

and classified a window as “expressed” in a given cancer type if at least one read with 

mapping quality >20 was observed in ≥5 samples and >5% of the total samples of that 

cancer type. The 672 bp long genomic region of chr3:50,265,725–50,266,396 (Hg19) was 

selected for illustration in Figure 2A since (i) it was identified as a super-enhancer in nearly 

half (39/86) of the tissue/cell types, and (ii) nearly all of the positions in this region were 

expressed in >30 cancer types.

To identify eRNA peaks in the core super-enhancer regions, we searched the 1,531 regions, 

using a window size of 200 bp and a step length of 10 bp, for the local maximum RPKM in 

each of the 32 cancer types. Two positions of local maximum RPKMs (in different cancer 

types) were merged if they were <20 bp away from each other. To merge two peaks, the peak 

with a local maximum value in more cancer types determined the position of the merged 

peak. If the two positions had the same number of supporting cancer types, the one with a 

higher RPKM value determined the position of the merged peak. A position identified as the 

local maximum RPKMs in ≥3 of the 32 cancer types was considered as a transcriptional 

peak on the core super-enhancer. To develop this cutoff, we removed the reads mapped to 

the top 10% positions with the highest RPKM in the 5 Mb core super-enhancers (to avoid 

the bias introduced by positions with extremely high expression levels) and randomly 

assigned new positions to the other reads. The permutated reads were used as input for peak 

identification in the same way as described above. We used the 5% quantile of the RPKM of 

the resultant peaks as a cutoff. Peaks from real data with a lower RPKM value than the 

cutoff were defined as false identification. The FDR of peaks recurrent in a given number of 
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cancer types were thus calculated. More than 96% of the peaks recurrent in ≥3 of the 32 

cancer types showed higher RPKM than the peaks identified using permutated reads (Figure 

S3A). The 200 bp window size was changed to 400 bp or 600 bp in Figure 3 to assess any 

potential technical bias. Using this strategy, we generated a list of 29,828 transcriptional 

peaks in the ~5 Mb region of the 1,531 core super-enhancers (related to Figure 2, 3, and S3). 

To identify eRNA expression peaks in the general super-enhancer regions (n = 65,728; ~377 

Mb, see details in Table S1), we computed the RPKM values of all the non-redundant 10 bp 

windows. The sequence range for local maximum RPKM search was set to 140 bp as it is 

the length of a typical nucleosome. A total of 4,355,962 loci were identified as local 

maximum RPKMs (of the 140 bp sequence) in at least one cancer type. For each locus, we 

calculated (i) the PC3 using the nucleosome positioning around it as described below and (ii) 

the relative peak height, which was computed as the local maximum RPKM minus the 

RPKM at its ± 50 bp loci, whichever was smaller (Figure 3C). If an identified locus had the 

local maximum RPKM in more than one cancer type, we used the second largest relative 

peak height of these cancer types for this locus to avoid potential outlier effects. Among the 

~4 million loci of local maximum RPKMs, we selected 302,951 loci with PC3 <0 and the 

relative peak height of >0.05 (in RPKM) as the final super-enhancer eRNA peaks. Notably, 

two peaks <20 bp away from each other (in different cancer types) were merged as described 

above. In total, we identified 302,951 loci (Table S3). To estimate the FDR of eRNA 

location identification with the cutoff of PC3<0 and the peak height >0.05 (in RPKM), we 

used a similar strategy as that for the 5 Mb core super-enhancer regions. Specifically, we 

removed the top 10% positions with the highest RPKM values and randomly assigned new 

positions to the other reads. The permutated reads were used as input for local maximum 

RPKM identification. The PC3 and the peak height of the resulted positions of local 

maximum RPKMs were calculated as that for the real data. We identified ~26,000 peaks 

passing the two criteria in three permutation analysis and estimated the eRNA location 

identification FDR to be ~0.086 (FDR <0.1). The peak on chromosome 22 was displayed 

using the R package “karyoploteR”(Gel and Serra, 2017). Chr22 was selected since it is the 

smallest chromosome and thus provides convenient visualization.

For sample-level expression profiling, the expression level for each of the 302,951 peaks was 

defined as the RPKM in its flanking 20 bp region. For all the 302,951 super-enhancer peaks, 

we computed their expression levels in 10,004 TCGA and 9,664 GTEx RNA-seq samples 

(Consortium, 2017), respectively. For the analysis of rRNA-depleted RNA-seq data, we 

obtained the data from GEO (GSE69360) (Choy et al., 2015). The raw reads were mapped to 

the reference genome hg19 using Tophat2.0 with default settings (Trapnell et al., 2012). The 

expression level of each eRNA was then defined in the same way as for the TCGA eRNA 

analysis.

Motif discovery and chromatin organization in super-enhancer eRNA peaks—
We used the FIMO software (Bailey et al., 2009) with default settings to identify all the 

DNA motifs annotated by the Mononucleotide human motifs database (Kulakovskiy et al., 

2016) in the flanking 200 bp region of the 29,828 core super-enhancer peaks (related to 

Figure 3D-E). The FIMO outputs with FDR <0.01 were considered as valid motifs. We 
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identified the splicing factor motifs by submitting the DNA sequences of interest to the 

SFmap online server with default settings (http://sfmap.technion.ac.il/) (Paz et al., 2010).

For nucleosome analysis, we collected a panel of 29 MNase-seq profiles of various human 

tissues and cell types (including two sperm samples) (ENCODE Consortium, 2012; 

Descostes et al., 2014; Diermeier et al., 2014; Du et al., 2017; Gaffney et al., 2012; Gaidatzis 

et al., 2014; Gomez et al., 2016; Hammoud et al., 2009; Hu et al., 2011; Jiang et al., 2018; 

Jung et al., 2012; Kelly et al., 2012; Kfir et al., 2015; Lavender et al., 2016; Shah et al., 

2018; West et al., 2014; Yazdi et al., 2015; Zhang et al., 2016). The raw reads for all these 

samples were downloaded from the SRA database (the SRR run IDs are provided in Table 

S5). Long reads were trimmed to 50 bp to make the samples more comparable in terms of 

mappability. All reads were mapped onto the human genome hg19 using Bowtie2 with 

default settings (Langmead and Salzberg, 2012). Only reads with mapping quality >10 were 

kept for further analysis. For a read mapped to the genomic locus of X, we extended the read 

and considered the region between X+40 to X+110 as being occupied by a nucleosome 

confidently (Zhang et al., 2008). The normalized read number (Z-score) on each genomic 

locus was considered as the readout of nucleosome occupancy (related to Figure 4 and S3). 

For evolutionary analysis, we converted the genomic locus on hg19 to mouse (UCSC 

genome version mm9) and pig (UCSC genome version susScr3) using the UCSC liftOver 

software (Jiang et al., 2018). For the PCA, we computed, across 27 human samples (the two 

sperms were excluded), the mean nucleosome signal of all 10 bp windows within the 

flanking 140 bp region relative to each of the ~4 million loci of local maximum RPKM, 

generating a matrix of 29 × 4,355,962 as the input. The first three components, PC1, PC2, 

and PC3, explained 52.3%, 18.2%, and 13.3% of the total variation (summed up to be 

83.9%), respectively, and were kept for further analysis (related to Figure 5 and S4). 

Although the PCA included all the 4 million peaks, only the first 10,000 are displayed in 

Figure 5A and Figure S4A-C for convenient visualization. The GTEx eQTLs were obtained 

from the GTEx data portal (GTEx_Analysis_v7_eQTL.tar.gz) under the link https://

gtexportal.org/home/datasets (GTEx Consortium, 2017). For each quantile in Figure 5E, F 

and I, we defined the probability for a common SNP to be a GTEx eQTL as the number of 

GTEx eQTLs in the loci’s flanking 20 bp divided by the total number of common SNPs 

(minor allele frequency >20% in 1000 Genome Project dataset) in the same regions. For the 

analysis of CAGE-seq signal flanking the eRNA loci, we collected 266 CAGE-seq datasets 

(in ctss format) of human cell lines from http://fantom.gsc.riken.jp/5/datafiles/latest/basic/

human.cell_line.hCAGE/, and 512 human primary cells from http://fantom.gsc.riken.jp/5/

datafiles/latest/basic/human.primary_cell.hCAGE/ as listed in Table S5. Since the ctss files 

contained the 5′-end of CAGE-seq reads from both FANTOM promoters and enhancers, we 

selected those from FANTOM eRNAs using reads mapped to the FANTOM enhancers 

(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/

human_permissive_enhancers_phase_1_and_2.bed.gz) and their flanking 200 bp regions. 

The resultant reads were compared with the 302,951 eRNA loci identified in this study, and 

the relative distances of each read to all of its nearby eRNA loci (<1 kb) were calculated. We 

counted reads within 1 kb distance of two (or more) eRNA loci multiple times for all the 

eRNA loci. The 302,951 eRNA loci and their flanking 1 kb DNA were then aligned with the 

loci of the eRNA peak at the center. We then counted the number of reads mapped to all the 
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10 bp tandem windows within these aligned sequences. Windows with the same relative 

distance to all the eRNA loci were combined for the calculation of the CAGE-seq signal. 

The relative CAGE-seq signal was then defined as the number of reads in a given window 

normalized by the average number of all 10 bp windows in the aligned sequences (Figure 

S5A-B).

For 15 (out of 29) non-sperm, paired-end MNase-seq profiles, we called individual 

nucleosomes using DANPOS2.0 (Chen et al., 2013). The pair-end reads were mapped to the 

reference genome hg19 using Bowtie2 (Langmead and Salzberg, 2012) with default settings. 

The bowtie results were then converted into bed files before being sorted, using the 

bamtobed function in bedtools (Quinlan and Hall, 2010). The bed files were input to 

DANPOS2.0 using danpos.py with default settings. We defined an eRNA locus to overlap 

with a nucleosome if the “center” parameter from the DANPOS2.0 result was within the ± 

20 bp region of that eRNA locus (Figure S6G).

eRNA expression analysis for tumor response to immunotherapy—We obtained 

the raw reads of 28 melanoma tumors receiving anti-PD1 immunotherapy from the SRA 

database (see the SRR IDs in Table S5)(Hugo et al., 2017). The reads were mapped to the 

human genome (UCSC hg19) using Bowtie2 with default settings (Langmead and Salzberg, 

2012). Only reads with mapping quality >20 were kept for further analysis. We found 

37,651 super-enhancer eRNA loci identified in the TCGA melanoma cancer type (SKCM) 

with detectable expression in ≥14 (50%) of the 28 tumors. Each of these eRNAs was 

subjected to ANOVA test among the three groups with differential responses to the anti-PD1 

immunotherapy. The p-values were converted to q-values to adjust for multiple comparisons. 

The 164 eRNA loci with q <0.05 are provided in Table S4 and displayed using the R 

package “karyoploteR” (Gel and Serra, 2017). The gene-level expressions of these 28 

tumors were obtained from the original study. We found 36 GTEx eQTLs on the 164 eRNA 

loci associated with 36 genes (Table S4). There were no common SNPs/GTEx eQTLs within 

the other 128 eRNA loci, and thus, they were not included in the enrichment analysis. The 

36 downstream genes of these eQTLs were subjected to GSEA using the GSEA online 

server (http://software.broadinstitute.org/gsea/index.jsp) with default settings (Subramanian 

et al., 2005). The TIDE scores of the 310 TCGA SKCM tumors for immunotherapy 

response prediction were obtained from http://tide.dfci.harvard.edu/ (Jiang et al., 2018). For 

the cohort of 42 patients receiving anti-CTLA-4 immunotherapy, raw reads were obtained 

from the SRA database (see the SRR IDs in Table S5) (Van Allen et al., 2015). The reads 

were mapped to the human genome (UCSC hg19) using Bowtie2 with default settings. Only 

reads with mapping quality >20 were kept for further analysis. The log2RPKM of the 8 

genes selected from GSEA were calculated and summed up as a combined score for CD8+ T 

cell functionality. To test whether this score was associated with better survival in the 42 

patients, we used the R package “FHtest” to perform a one-sided FH-test on its effect on the 

one-year survival rate (Oller and Langohr, 2017).

Integrative analysis of eRNA loci with other TCGA molecular and clinical data
—For somatic copy-number analysis, we surveyed a list of 138,781 focal somatic copy-

number alterations (SCNA) identified with the GISTIC software with an FDR <0.05 
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(Mermel et al., 2011) by the TCGA Pan-Cancer analysis consortium (Cancer Genome Atlas 

Research et al., 2013). We considered SCNAs without overlaps with any genes (or ncRNA) 

annotated by the Human GENCODE database v18 (https://www.gencodegenes.org/human/

releases.html) as non-coding driver events (Frankish et al., 2018). We found 3,678/1,047 

non-coding amplification/deletion SCNAs involving at least one eRNA locus identified in 

this study. A full list of these events is provided in our data portal.

For CpG DNA methylation analysis, we selected 3,919 eRNA loci containing at least one 

CpG probe in the Human Methylation 450K array used in TCGA project. A total of 8,430 

TCGA samples have both methylation and super-enhancer peak expression data available. 

This 3,919×8,430 matrix is provided in our data portal. For differential CpG methylation 

analysis, we considered the 10 cancer types with >10 tumor-normal paired samples and used 

paired t-test to determine the significance of the methylation changes (ranging from 0% to 

100%) between the normal and tumor samples. A CpG methylation change with an FDR 

<0.01 and an absolute change >20% was considered as a significant hit.

For prognostic analysis, we surveyed only (i) the eRNA loci annotated in a given cancer type 

(Table S3), and (ii) with detectable expression in >10 samples and >10% of the total samples 

in that cancer type. For each loci, we used the Cox regression coefficient to measure the 

association between its expression (determined as either group, RPKM, or log2RPKM) and 

clinical outcomes (measured as either overall survival [OS], disease-specific survival [DSS], 

or progression-free interval [PFI]) (Liu et al., 2018). The expression level “group” was a 

binary parameter generated by dividing the patients into two groups according to the RPKM 

of the peak of interest, with the lower half (RPKM ≤ median) assigned as 0 and the higher 

half (RPKM >median) assigned as 1. The resulting p-values were converted into q-values to 

correct for multiple comparisons (Storey and Tibshirani, 2003). A list of 49,849 eRNA loci 

associated with any of the clinical outcomes (q <0.05) is provided in our data portal.

Analysis of eRNA-locus/gene co-expression and 3D chromatin interactions—
We calculated the co-expression patterns between each eRNA-gene pair across the 32 cancer 

types and selected those that were consistently co-expressed/reversed in at least 3 cancer 

types. In each cancer type, we required a p-value with Bonferroni correction to be <0.01 and 

an absolute Spearman’s Rho to be >0.3. We observed ~161 million eRNA-gene pairs 

meeting these criteria, among which 72.1% were positively co-expressed. We applied the 

same cutoffs to the protein-coding genes across the 32 cancer types to identify ~63 million 

gene-gene interactions, of which about half (55%) were positive correlations. From 3D 

Genome Browser (Wang et al., 2018), we then obtained the HiC chromatin loops calculated 

by Peakachu (https://github.com/tariks/peakachu) from 56 HiC datasets. We compared the 

HiC loops with the co-expressed eRNA-gene pairs and selected 32,298 pairs connected by at 

least one loop in any of the 56 HiC profiles, of which 96.6% were positively co-expressed 

(Figure S7D-H).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Super-enhancers contain discrete eRNA loci featured by sharp eRNA peaks

• Expression of such eRNA loci is regulated by dynamic, well-positioned 

nucleosomes

• eRNA signals confer explanatory power on quantitative traits beyond gene 

expression

• Super-enhancer activities are dysregulated in cancer by diverse mechanisms
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Figure 1. Overview of this study
Principle discovery: we focused on a subset of 1,531 core super-enhancers (~5 Mb) to study 

their transcriptional patterns by integrating ENCODE ChIP-seq data, TCGA RNA-seq data, 

and published MNase-seq profiles. Global identification: based on the proposed model in 

which well-positioned nucleosomes mediate eRNA transcription, we generalized our 

analysis to the whole set of super-enhancers (~377) to annotate >300 eRNA loci in super-

enhancers. Application: with the global map of eRNA loci, we assessed the utility of eRNA 

signals in explaining the response to immunotherapy, eQTL analysis, pan-cancer analysis, 

and built a user-friendly data portal for community use. See also Figure S1, Table S1 and 

Table S2.
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Figure 2. Recurrent eRNA expression peaks in super-enhancers
(A) The eRNA expression on chr3:50,265,725-50,266,396 in 4 cancer types representing the 

four clusters (C1-C4) of the 32 TCGA cancer types. Each bar represents a 10 bp window in 

the 672 bp region. The y-axis shows the RPKM in the 10 bp windows, and the x-axis 

represents the relative genomic coordinates (bp) in the region. The loci on the 70th, 210th, 

390th, 520th, and 640th bp have local maximum RPKMs. These and their flanking 20 bp 

regions are highlighted. (B) A heatmap showing unsupervised clustering of the 32 cancer 

types based on the relative eRNA expression of all 10 bp windows in this 672 bp region. The 

Chen and Liang Page 26

Cancer Cell. Author manuscript; available in PMC 2021 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eRNA expression levels (RPKM) are normalized into Z-scores within the columns of the 

heatmap. (C) The number of TCGA cancer types (top) or GTEx tissue types (bottom) with 

local maximum RPKM values of sliding 200 bp windows in this region. ACC, 

adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive 

carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 

CHOL, cholangiocarcinoma; COAD/READ, colon/rectum adenocarcinoma; DLBC, 

lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, 

glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney 

chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell 

carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver 

hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell 

carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, 

pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate 

adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach 

adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, 

thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; 

UVM, uveal melanoma. See also Figure S2.
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Figure 3. Characteristics of the super-enhancer eRNA expression peaks
(A, B) The mean eRNA expression level on the flanking 200 bp sequences of 29,828 

recurrent peaks identified in the 1,531 core super-enhancers in 32 TCGA cancer types (A) or 

31 GTEx tissue types (B). For each cancer/tissue type, the 29,828 400 bp sequences were 

aligned with the peaks at the center (0 bp). Each point represents a 10 bp window. Mean 

RPKM was calculated for all 29,828 10 bp windows with the same relative positions to the 

peaks (indicated by the x-axis). The resulting mean RPKMs were normalized to Z-scores 

(indicated by the y-axis) for each cancer/tissue type. (C) The consensus profile of a typical 

eRNA expression peak in the TCGA dataset. The curve represents the median RPKM of the 

29,828 peaks in 32 cancer types. (D) The density of the TF binding site (TFBS) motifs 

identified within the flanking 100 bp sequences of the 29,828 peaks. The 29,828 200 bp 

sequences were aligned with the peaks at the center (0 bp). Motifs on these DNA sequences 

were identified by the FIMO software with q <0.01. The y-value of the orange (or grey) 

curve represents the number of motif start/end sites identified at the same position relative to 

the peak (x-axis) on the DNA strand indicated by blue arrows. The phase difference, as 
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indicated by the green arrows, between the orange and the grey curves, represents the 

enrichment of TFBS motifs at these locations. See also Figure S3.
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Figure 4. A dynamic nucleosome model of eRNA peaks in super-enhancers
(A) The normalized nucleosome intensities (MNase-seq signals) in the flanking 500 bp 

sequence of the 29,828 recurrent super-enhancer eRNA peaks in 27 human tissue/cell types, 

and five mouse and pig tissues. For each tissue/cell type, the 29,828 1 kb sequences were 

aligned with the eRNA peaks at the center (0 bp). Each point represents a 10 bp window. 

The mean number of mapped MNase-seq reads was calculated for all the 29,828 10 bp 

windows with the same relative positions to the peaks (indicated by the x-axis). The 

resulting mean signals were normalized into Z-scores for each tissue/cell type, as indicated 

by the y-axis. (B) The normalized nucleosome intensities on two human sperm samples 

calculated similarly. (C) A schematic representation of the impact of a dynamic nucleosome 

on super-enhancer eRNA peaks. See also Figure S4.
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Figure 5. Identification of eRNA loci in the genome-wide super-enhancer regions
(A) Principal component analysis (PCA) of nucleosome positioning on the flanking 140 bp 

sequences around ~4 million loci of local maximum eRNA RPKMs. The color represents 

the distance between the position with the maximum MNase-seq signal and the position of 

the local maximum eRNA RPKMs. Only the first 10,000 loci are plotted for convenient 

visualization. (B, C, and D) The sliding mean of mapped MNase-seq reads in all 27 

nucleosome profiles in the flanking 140 bp DNA (each side) were plotted for loci meeting 

the indicated criterion: PC2<0/PC3>0 (B), PC2>0/PC3>0 (C), or PC3<0 (D). The sequences 
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meeting the indicated criterion were aligned with the loci of the local maximum eRNA 

RPKMs at the center (0 bp). Each point represents a 10 bp window. The mean number of 

mapped MNase-seq reads was calculated for all 10 bp windows with the same relative 

positions to the peaks (indicated by the x-axis). (E, F) The correlation of the PC3 (E) or PC1 

(F) quantile with the relative probability for a common SNP in its flanking 20 bp region to 

be identified as a GTEx eQTL. For loci with indicated PC3/PC1 quantile, this probability 

was calculated by dividing the number of GTEx eQTLs in the region with the total number 

of common SNPs (minor allele frequency >20% in 1000 Genome Project) in the region. The 

resulting probabilities were normalized by dividing them with the minimum value of all 

quantiles (y-axis). (G, H) The correlation of the PC3 quantile with the frequency for the loci 

to be identified as a super-enhancer in the original 86 tissue/cell types (G) or with the 

recurrence frequency as local maximum RPKM in 32 TCGA cancer types (H). (I) The 

correlation of the relative height of a locus with the relative probability for a common SNP 

in its flanking 20 bp to be identified as a GTEx eQTL. (J) The correlation of the relative 

height of a locus with the frequency for the loci to be identified as a super-enhancer in the 

original 86 tissue/cell types. (K) The distribution of eRNA peaks in super-enhancer regions 

on chr22 (top panel), with each dot representing one of the ~7,000 peaks on the chromosome 

(the second panel). A ~660 kb block containing the first five super-enhancers is zoomed in 

on the third panel. The order of the 162 eRNAs in these regions (fourth panel) and a 

heatmap representing the pairwise correlation (Spearman’ Rho) among the 162 super-

enhancer eRNA peaks in the region across 66 TCGA cancer subtypes (bottom panel). See 

also Figure S5, S6, and Table S3.
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Figure 6. The eRNA loci in super-enhancers provide additional explanatory power for 
immunotherapeutic response by resolving tumor heterogeneity
(A) A cartoon model illustrating how cell-type-specific enhancers can increase the 

explanatory power of quantitative traits by resolving tumor heterogeneity. Left: a 

hypothetical bulk tumor consists of three different cell types in which enhancer A, B, or C 

controls the expression of gene X, respectively; and only cell type C contributes to a 

phenotype of interest. Right: distinct correlation patterns when correlating different eRNA or 

mRNA signals with the phenotype. (B) The p-value distribution of coding genes through the 

Chen and Liang Page 33

Cancer Cell. Author manuscript; available in PMC 2021 November 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differential analysis in a cohort of 28 melanomas with different responses to anti-PD1 

immunotherapy (q <0.1). (C) The p-value distribution of eRNAs through the differential 

analysis in the same cohort as in B (q <0.05; ANOVA test). (D) Unsupervised clustering 

based on the RPKM values of the 164 eRNA loci across the 28 tumors. The RPKMs were 

normalized by each eRNA peak (row) in the 28 tumors. (E) GSEA results of the 36 genes 

targeted by at least one GTEx eQTL in the 164 eRNA locus regions (defined as the flanking 

50 bp DNA on either side of the eRNA loci). (F) The combined expression level (sum of 

log2RPKM) of the 8 non-redundant genes in E exhibits prognostic power in a cohort of 42 

patients receiving anti-CTLA-4 immunotherapy (p = 0.037; one-sided HF-test). See also 

Figure S7 and Table S4.
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Figure 7. Pan-cancer analysis of the eRNA loci in super-enhancers
(A) Differential expression of eRNA loci between tumor and normal samples in 12 cancer 

types with >20 tumor-normal pairs; * p<0.01 (paired t-test). (B) Numbers of driver focal 

somatic copy number alterations (SCNA) affecting at least one eRNA locus but no protein-

coding genes. Driver focal SCNAs were detected by GISTIC. (C) The number of driver 

focal SCNAs affecting the protein-coding genes. (D) The same analysis as in (B) except that 

the overlapping focal SCNAs identified in different cancer types were merged. (E) 
Differential CpG methylations in eRNA loci between tumor and normal samples in 10 

cancer types with methylation profiles of >10 tumor-normal pairs available. Hypo/

hypermethylation in tumors, compared to normal, is indicated as red/blue. Only significant 

changes are colored (q<0.01; paired t-test). Probes with absolute changes >20% in at least 

one cancer type were included in the unsupervised clustering. (F-G) The number of 

differential expressions for eRNA loci, including significant hypo- (F) or hyper- (G) 
methylation changes as defined in (E) (>20% and q<0.01). Differential expression changes 
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were determined by paired t-test. (H) The number of eRNA loci with prognostic power on 

overall survival, progression-free interval, or disease-specific survival in 32 TCGA cancer 

types (q<0.05; log-rank test).
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