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Abstract
Existing drug delivery methods have not led to a significant increase in survival for patients with malignant primary brain 
tumors. While the combination of conventional therapies consisting of surgery, radiotherapy, and chemotherapy has improved 
survival for some types of brain tumors (e.g., WNT medulloblastoma), other types of brain tumors (e.g., glioblastoma and 
diffuse midline glioma) still have a poor prognosis. The reason for the differences in response can be largely attributed to 
the blood–brain barrier (BBB), a specialized structure at the microvasculature level that regulates the transport of molecules 
across the blood vessels into the brain parenchyma. This structure hampers the delivery of most chemotherapeutic agents for 
the treatment of primary brain tumors. Several drug delivery methods such as nanoparticles, convection enhanced delivery, 
focused ultrasound, intranasal delivery, and intra-arterial delivery have been developed to overcome the BBB in primary 
brain tumors. However, prognosis of most primary brain tumors still remains poor. The heterogeneity of the BBB in pri-
mary brain tumors and the distinct vasculature of tumors make it difficult to design a drug delivery method that targets the 
entire tumor. Drug delivery methods that combine strategies such as focused ultrasound and nanoparticles might be a more 
successful approach. However, more research is needed to optimize and develop new drug delivery techniques to improve 
survival of patients with primary brain tumors.
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Key Points 

Drug delivery methods such as nanoparticles, convec-
tion enhanced delivery, focused ultrasound, intranasal 
delivery, and intra-arterial delivery have not yet led to a 
significant increase in survival for most patients with a 
malignant primary brain tumor.

Blood–brain barrier disruption is heterogeneous within 
and between primary brain tumors in both adult glioblas-
toma and pediatric brain tumors.

A multimodal drug delivery approach might be more 
effective than a single drug delivery method.

1  Introduction

Most primary brain tumors, such as high-grade glioma, 
have an exceedingly poor prognosis due to their tumor 
location and fast development in both adult and pediatric 
patients [1–4]. The presence of the blood–brain barrier 
(BBB) is an important obstacle for drug delivery in most 
brain cancers [2, 5–8]. The BBB is a complex interplay 
between endothelial cells, astrocytes, pericytes, basal lam-
ina, and extracellular matrix (ECM). These components, 
together with smooth muscle cells and neurons, form the 
neurovascular unit (NVU), which in turn regulates cerebral 
blood flow and BBB function [9–11]. The consequence 
of this tightly regulated barrier is that toxins and drugs, 
including chemotherapy, do not readily cross the BBB, 
posing a problem for drug delivery into the brain.

In order for a therapeutic intervention to be effective, 
chemotherapy must be capable of traversing the BBB and 
penetrating the brain parenchyma [5, 6, 12]. Systemic deliv-
ery of drugs (via the blood stream) is possible for molecules 
with a molecular weight of < 500 Dalton (Da) and a high 
lipophilicity [13, 14]. However, as only 5% of drugs meet 
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these requirements, adequate drug delivery methods are 
needed to efficiently deliver the remaining 95% of drugs 
into the brain [12, 15, 16]. Current research on central nerv-
ous system (CNS) drug development predominantly focuses 
on either optimizing systemic drug delivery to the brain, or 
on circumventing the BBB (Fig. 1) [5, 6, 17–19]. Systemic 
delivery can be achieved with nanomedicine [20, 21]; drugs 
that are not likely to cross the BBB can be adapted or packed 
into liposomes to make them more lipophilic [22, 23]. Nano-
medicine can also be used for targeted therapy where nano-
particles can be equipped with specific proteins to target the 
tumor [23]. In contrast, the BBB can also be disrupted or 
circumvented by microbubble-mediated focused ultrasound 
(FUS), convection enhanced delivery (CED), intranasal 
delivery, and intra-arterial delivery [24–27]. Microbubble-
mediated FUS uses microbubbles to locally and temporarily 
open the BBB, enabling drugs to accumulate in the brain 

parenchyma, while CED is a more invasive method for 
bypassing the BBB using surgically implanted catheters to 
administer drugs locally into the tumor [24, 25]. Intranasal 
delivery uses the direct anatomical relationship of the olfac-
tory neuro-epithelium to the brain to circumvent the BBB, 
whereas intra-arterial delivery locally administers the drug 
in the artery [26, 27].

As promising as all these methods are, they have not 
led to a significant improvement of drug delivery for most 
malignant primary brain tumors. The phenotypic heteroge-
neity of the BBB across primary brain tumors makes it dif-
ficult to determine the best drug delivery method. Therefore, 
knowledge about BBB pathology is essential to determine 
the optimal drug delivery method. In the following para-
graphs we will elaborate more on BBB pathology and the 
different methods for drug delivery in primary brain tumors.

Fig. 1   Overview of current drug delivery methods for the treatment 
of primary brain tumors. Panel 1 intranasal drug delivery: drug is for-
mulated in spray particles that enter the brain through the nasal cavity 
via the neuroepithelium. Here, the drug can enter without interference 
of the blood–brain barrier (BBB). Panel 2 nanoparticles: nanoparti-
cles encapsulate drugs to increase plasma half-life and allow entry 
to the brain parenchyma by the enhanced permeability and reten-
tion (EPR) effect, endocytosis, and receptor-mediated transcytosis. 
Panel 3 microbubble-mediated focused ultrasound: microbubbles 

are intravenously administered and upon the application of focused 
ultrasound, microbubbles start to oscillate. The oscillation disrupts 
the BBB, temporarily opening it to allow drugs to enter the brain 
parenchyma. Panel 4 convection enhanced delivery (CED): surgical 
placement of catheters in the brain to administer the drug directly in 
the tumor site. Panel 5 intra-arterial drug delivery: catherization of 
the blood vessel and injection of drugs directly in the vicinity of the 
tumor, sometimes in combination with hyperosmolar drugs that open 
the BBB
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2 � Blood–Brain Barrier (BBB) Physiology

The tightly regulated BBB is impermeable for most con-
ventional chemotherapeutics [28]. Transport across the 
BBB is restricted by specialized endothelial cells [29, 30], 
which have specific characteristic properties that create an 
impermeable barrier. The first is the presence of tight junc-
tions, which prevent paracellular passage of molecules. The 
main tight junction proteins are occludins, tricellulins, clau-
dins, and junctional adhesion molecules [29]. Second, CNS 
endothelial cells express efflux transporters that regulate 
the movement of substrates across the BBB [31]. Various 
drugs are substrates for efflux transporters, thus hampering 
drug accumulation in the brain parenchyma. These efflux 
transporters belong to the class of ATP-binding cassette 
(ABC) transporters, with the most important transporters 
being multidrug resistance receptors (MDRs, ABCB), mul-
tidrug resistance proteins (MRPs, ABCC), and the breast 
cancer resistance protein (BCRP/ABCG2) [32]. In the brain, 
MDR1 (ABCB1, P-glycoprotein [P-gp])—the most exten-
sively researched ABC transporter—plays a role in the efflux 
of numerous drugs [33]. Third, transcytosis by pinocytic 
and endocytotic vesicles is limited due to the low density of 
these vesicles in CNS endothelial cells [34]. Finally, CNS 
endothelial cells are able to limit the entry of immune cells 
into the brain due to their low expression of leukocyte adhe-
sion molecules, consequently hampering immunotherapy 
[29].

Proper function of the BBB also requires other cells 
such as astrocytes, pericytes, basal lamina, neurons, and the 
ECM. Astrocytes are vital for BBB formation and main-
tenance [29], being closely linked to the endothelial cells 
by astrocytic endfeet, which cover more than 99% of the 
capillaries [35]. The endfeet produce a variety of proteins 
that regulate the composition of the ECM, immune cell infil-
tration, BBB permeability, and BBB integrity [29, 33, 36]. 
Astrocytic endfeet are important for maintaining junctional 
complexes regulating BBB permeability [36]. Pericytes are 
multi-functional cells that are key regulators of BBB perme-
ability and vascular function, regulating vessel formation 
and vessel maturation [29, 30, 36]. The basal lamina, formed 
by endothelial cells, astrocytes, and pericytes, consists of 
an ECM that is both responsible and influential to proper 
BBB function [36]. Microglia are resident immune cells that 
act as a first line of defense in the CNS by screening the 
brain parenchyma for blood–borne substances and potential 
inflammatory stimuli [37]. Due to their low turnover rate, 
these cells exist as permanent populations within the brain 
[38]. Microglia, in combination with macrophages, also play 
a role in the regulation of vascular growth by secreting vari-
ous signals [39]. Together these structures create an imper-
meable barrier.

3 � BBB/Blood–Tumor Barrier (BTB) Pathology

The presence of a brain tumor disrupts the regulation of the 
BBB, resulting in an altered BBB phenotype that is referred 
to as the blood–tumor barrier (BTB) [36, 40]. Characteri-
zation of the BBB/BTB phenotypes of different tumors is 
important to understand the extent of effectiveness of drug 
delivery for the treatment of primary brain tumors. In the 
following paragraphs, the BBB/BTB of several primary 
brain tumors is discussed.

3.1 � Adult Glioblastoma

The most common malignant primary brain tumor in adults 
is glioblastoma (GBM), with patients having a median 
survival of one year. It is believed that the presence of the 
BBB/BTB is a major influence on the effectiveness of drug 
delivery [41, 42]. GBM is a highly heterogeneous malig-
nancy characterized by aggressive and invasive growth, and 
is one of the most hypoxic and angiogenic brain tumors [43, 
44]. The microenvironment of GBM consists of special-
ized niches, each of which display different BBB properties 
[37, 43]. In the core of the tumor, higher oxygen demands 
lead to severe hypoxia and necrosis, and subsequent BBB/
BTB defects, especially in late-stage disease. Glioma cells 
that have migrated further into the brain parenchyma reside 
behind an intact BBB, demonstrating the heterogeneity of 
GBM [37, 44]. This heterogeneity can be visualized by mag-
netic resonance imaging (MRI), where the core of the tumor 
is enhanced by contrast agent on MRI, indicating a disrupted 
BBB/BTB, while (often large) areas are not enhanced on 
MRI, showing a mostly intact BBB of the diffusely growing 
tumor [44].

GBM vessel areas that are contrast-enhanced on MRI are 
characterized by aberrant and disorganized angiogenesis, 
resulting in permeable vessels with defective pericyte cover-
age and an abnormal basement membrane—all suggestive of 
BBB breakdown [43, 45, 46]. The disrupted BBB is typified 
by a disturbed organization of permeable endothelial cell 
junctions due to the downregulation of claudin-5, claudin-3, 
and occludin [37, 47, 48]. In vitro, it was shown that GBM 
cells disrupt the BBB by secreting soluble factors that break 
down tight junctions [49]. The BBB is then further degraded 
via displacement of non-neoplastic astrocytes by tumor cells, 
that in turn allow tumor-derived chemokines and cytokines 
to cross the BBB [50]. Furthermore, the loss of aquaporin 
4 (AQP4) results in the polarization of astrocytic endfeet, 
reducing the astrocytic endfeet coverage of the endothelial 
cells, resulting in BBB disruption [51, 52]. A study showed 
that relocation of AQP4 in GBM coincides with a redistrib-
uted or diminished expression of argin, which is associated 
with the loss of several tight junction proteins [53, 54].
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The presence of ABC transporters and organic anion 
transporting polypeptides (OATP) transporters influences 
the resistance of tumor cells to chemotherapeutics [55]. 
These transporters have been identified in both GBM tumor 
vasculature and tumor cells [55, 56]. Remarkably, MDR1, 
MRP4, and MRP5 are expressed in glioma cells and astro-
cytes, while these receptors are usually not expressed by 
glial cells and astrocytes [55, 56]. In addition, BCRP expres-
sion is also increased in GBM cells [56, 57]. OATPA2 and 
OATP2B1 have been detected on the luminal membrane 
of endothelial cells in both the BBB and BTB, but not in 
glioma cells themselves [55].

3.2 � Pediatric Brain Tumors

In children, primary brain tumors are the leading cause of 
cancer-related morbidity and mortality [3, 4]. The most com-
mon malignant pediatric primary brain tumors are medul-
loblastoma, ependymoma, diffuse intrinsic pontine glioma 
(DIPG), and atypical teratoid/rhabdoid tumor (AT/RT) [3, 
4, 58]. Even though advances in surgery, adjuvant therapy, 
and research have resulted in the increase of survival rates of 
some of these brain tumor types, such as medulloblastoma, 
other tumor types still have a dismal prognosis [4, 58, 59]. 
Like for adult brain tumors, the poor prognosis can in part 
be attributed to the BBB phenotype of malignant pediatric 
brain cancers.

3.2.1 � Medulloblastoma

Medulloblastoma is the most common malignant embryo-
nal brain tumor [3, 58, 60]. These tumors can be classified 
based on histology (distinguishing classic, desmoplastic, and 
large-cell medulloblastoma), or molecular signature (WNT, 
Sonic hedgehog [SHH], Group 3 and Group 4) [60, 61]. 
Despite the general survival of medulloblastoma patients 
having increased significantly in the past decades, a subset 
of patients still have poor outcomes, partly due to compro-
mised vasculature and the presence of an intact BBB [3, 7, 
58]. Medulloblastomas have a low capillary permeability 
and blood flow compared with normal cerebellum, although 
the capillary density is heterogeneous throughout the tumor 
[62, 63]. Some types of medulloblastoma show an absence 
of astrocytes while other types show disruption of astro-
cytes from endothelial cells in the tumor parenchyma [63]. 
In addition, over 40% of medulloblastomas demonstrate the 
expression of MDR1 efflux transporters in the tumor, indi-
cating an effective BTB [64]. Group 3 medulloblastomas 
specifically overexpress BCRP, MRP7 (ABCC10), MRP5 
(ABCC5), and MRP1 [65]. As an exception, WNT medul-
loblastomas, which have the best prognosis of the different 
subgroups, lack a functional BBB [3, 58, 60]. This BBB 

dysfunction is likely due to aberrant, antagonistic medul-
loblastoma-endothelial cell WNT signaling, which renders 
the non-CNS vasculature porous, resulting in a hemorrhagic 
vasculature, aberrant fenestration, and higher vascular den-
sity compared with the other subtypes [7]. Overall, the BBB/
BTB and the vasculature are affected in medulloblastoma, 
influencing the outcome of therapy.

3.2.2 � Ependymoma

Ependymomas are slow-growing tumors that are treated 
with surgery and local fractionated radiotherapy, while the 
potential benefit of chemotherapy is still under debate [3, 4, 
58]. Ependymomas overexpress vascular endothelial growth 
factor (VEGF), a main marker of angiogenesis [68]. Epend-
ymomas exert an aberrant vasculature, the extent of which 
is dependent on tumor grade [66, 67]. The mean vessel area 
is larger for myxopapillary ependymoma grade I, low-grade 
ependymoma grade II, and anaplastic ependymoma grade III 
compared with normal cerebral and cerebellar tissue [66]. 
In addition, grade III has a higher blood vessel density com-
pared with grade II, but the diameter of blood vessels for 
grade II was found to be larger than that for grade III [66, 
67]. Subependymoma grade I has fewer vessels than normal 
cerebral tissue [66]. In contrast, Wagemakers et al. found 
that microvessel density in neovasculature does not differ by 
age, gender, tumor location, or tumor grade. The microves-
sel density of ependymoma was increased and comparable 
to GBM [68]. Little is known about the expression of BBB 
proteins and transporters in ependymomas. MDR1, BCRP, 
and ABCB1 were not significantly altered in grade II and III 
ependymomas [69, 70]. Hence, the different ependymoma 
grades have characteristic vasculature profiles, however little 
is known about the BBB.

3.2.3 � Diffuse Intrinsic Pontine Glioma

DIPG is a high-grade glioma of the brainstem with a median 
survival of 11 months [59]. The poor prognosis is mainly 
due to the tumor location making complete resection of the 
tumor impossible [71]. At diagnosis, many patients have 
an absence of contrast enhancement on MRI [72]. Little is 
known about the BBB/BTB pathology in DIPG. One study 
indicated highly active SHH signaling which decreased BBB 
permeability in DIPG [73, 74]. Furthermore, efflux trans-
porters MDR1, BCRP, and MRP1 are present in endothelial 
cells, and MRP1 is expressed in tumor cells [75]. Not only 
the tumor, but also its location can affect the BBB pheno-
type. In healthy non-human primates, BBB heterogeneity 
was observed with differential penetration of temozolomide 
between the pontine region, the cortex, and the CSF [72, 76]. 
Since the brain region already has an influence on the BBB 
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permeability, a tumor in the pontine region might have a 
different effect compared with other supratentorial tumors. 
However, there is no direct evidence that the BBB is intact 
in DIPG.

3.2.4 � Atypical Teratoid/Rhabdoid Tumor

AT/RT tumors are highly aggressive embryonal tumors most 
commonly found in infants and young children [3, 77]. The 
overall median survival is 17 months [78]. Improvement of 
treatment protocols has resulted in only a small increase of 
survival, as only a subset of patients respond to treatment 
[77, 79, 80]. MRI images of AT/RT patients show contrast 
enhancement, indicating BBB disruption [79, 81]. How-
ever, little is known about the BBB/BTB and the vascula-
ture in AT/RT. Only one paper has been published on the 
vasculature and BBB alterations in AT/RT, showing a sig-
nificant decrease in vessel density and an increase in vessel 
diameter of the tumor vasculature [79]. Endothelial cells in 
existing blood vessels maintained expression of claudin-5 
but showed displacement of claudin-5 localization com-
pared with healthy tissue [79]. In neovasculature, expres-
sion of claudin-5 was lost. In contrast, glucose transporter 1 
(GLUT1) was lost in both existing endothelial cells as well 
as in neovasculature [79]. In order to improve median sur-
vival, more research is needed to determine to what extent 
the BBB/BTB is compromised, and how this can be used for 
efficient drug delivery.

4 � Drug Delivery Methods to Overcome 
the BBB

Several drug delivery methods have been used to overcome 
the BBB. Nanoparticles can be used to modify the drug per-
meability of an existing drug. Other methods such as FUS, 
CED, intranasal and intra-arterial delivery can be used to 
temporarily disrupt or bypass the BBB to deliver drugs into 
the brain parenchyma.

4.1 � Nanoparticles

Nanoparticles are particles created from different packag-
ing materials such as lipids, polymers, and metals that can 
be utilized as a proxy to efficiently deliver drugs. These 
particles can be designed in various compositions that, for 
example, increase their half-life or ability to target a specific 
receptor [23, 36]. Nanoparticles have been successfully used 
in the treatment of several types of cancer [21].

Nanoparticles cross the BBB in a variety of ways, includ-
ing endocytosis, receptor-mediated transcytosis, or the 

enhanced permeability and retention (EPR) effect [82–84]. 
The EPR effect exploits the leaky vasculature of solid tumors 
where the nanoparticle can extravasate locally into the tumor 
[83]. After the nanoparticle is extravasated, the encapsulated 
drugs are slowly released into the tissue. Since nanoparticles 
are not able to cross normal vasculature in most organs, this 
reduces both peripheral and systemic toxicities [6, 21, 84].

Nanoparticles are able to cross the leaky BBB, which 
could be a potential method for drug delivery for brain 
tumors. However, in clinical trials nanoparticles have not 
been able to reach therapeutic concentrations in the tumor 
[20, 36]. For example, GBM is characterized by both intact 
and disrupted BBB niches. Due to the heterogenous BBB/
BTB in GBM, drugs are not homogenously distributed in 
the tumor leaving parts of the tumor untreated. In addi-
tion, GBM is characterized by high interstitial pressure and 
hypoxia which negatively influences the passage of nanopar-
ticles in these areas [84]. Therefore, the use of nanoparticles 
as a delivery method for the treatment of brain cancer has 
not yet been successful [36]. However, nanoparticles exhibit-
ing beneficial properties, such as sustained release of a drug 
over a prolonged period of time, could potentially be useful 
in combination with other drug delivery methods for treat-
ment of brain tumors [85, 86].

4.2 � Focused Ultrasound

Microbubble-mediated focused ultrasound (FUS), or sonop-
oration, is a minimally/non-invasive method for targeted 
drug delivery into the brain tumor [25, 87, 88]. Upon acous-
tic pressure from a transducer, microbubbles are pressed 
against the endothelial cell wall and start to vibrate. The 
vibration induces stress on the endothelial cell wall result-
ing in the temporary and local disruption of the BBB [89]. 
The combination of ultrasound with microbubbles is con-
sidered to be safe, since no neuronal damage, apoptosis, 
ischemia, or long-term vascular damage has been observed 
upon treatment [87]. The combination of FUS with con-
ventional chemotherapeutics, antibodies, nanoparticles, and 
gene-based therapies allows for a range of possibilities [36, 
85, 90].

The therapeutic window of microbubble-mediated FUS is 
dependent on the closure dynamics of the BBB after disrup-
tion. The BBB slowly closes within several hours, whereas 
larger molecules such as nanoparticles have a shorter 
therapeutic window compared with smaller molecules 
[91]. In addition, drug half-life and penetration depth after 
sonoporation is also drug dependent. Therefore, the phar-
macokinetic profile of the drug is an important parameter 
for treatment success [92]. The heterogeneous nature of the 
BBB phenotype poses less of a problem for FUS since the 
focused ultrasound can be applied over the entire tumor area. 
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Furthermore, the vasculature is important for the delivery of 
microbubbles and drugs since the blood vessels are key to 
deliver microbubbles and drugs to the tumor. Brain tumors 
with a low vessel density might be less suited for focused 
ultrasound. Moreover, efflux transporters hamper drug accu-
mulation in the brain. However, it was recently discovered 
that FUS suppresses MDR1, which could aid in the increase 
of drug accumulation in the tumor tissue [93]. Many brain 
tumors such as GBM, medulloblastoma, and DIPG express 
ABC transporters. The use of FUS could potentially increase 
the accumulation of drugs in these tumors.

For diffuse infiltrating tumors such as GBM and DIPG, 
FUS is a promising technique since it is a non-invasive drug 
delivery method that can target the tumor. Recently, the first 
clinical MRI-guided FUS study was concluded for GBM 
patients [94]. A 1.5- to sevenfold increased concentration of 
temozolomide in sonicated versus unsonicated tumor tissue 
was observed in two patients whose tissue could be ana-
lyzed. The treatment was well tolerated in all patients [94]. 
Implanted ultrasound devices have been studied in several 
clinical studies: CarThera (SonoCloud) is an implantable 
ultrasound device that has been used in phase I clinical stud-
ies in combination with systemic administration of carbo-
platin [95, 96]. Treatment via FUS prolonged progression-
free survival in 11 GBM patients presenting BBB disruption 
compared with 8 patients with intact BBB [95, 96]. The 
downside of implanted ultrasound devices is the requirement 
of invasive surgery, they do not specifically target the tumor 
site, and are mostly suitable for superficial brain tumors. As 
such, these devices will be limited for treating DIPG as they 
do not reach the pontine region. Furthermore, combining 
FUS with immunotherapy might be a powerful combination 
for the treatment of brain cancer. Immune cells are not able 
to cross the BBB since CNS endothelial cells have a low 
expression of leukocyte adhesion molecules [29]. Immune 
cells can extravasate after the BBB is disrupted with FUS. 
In vivo studies are now investigating the possibilities of 
immunotherapy in combination with FUS [36]. The non-
invasive nature of FUS in combination with numerous drugs 
makes FUS a versatile and promising technique for drug 
and/or immune therapy delivery for various brain tumors.

4.3 � Convection Enhanced Delivery

CED has been proposed as a promising strategy for drug 
delivery to the CNS. This method involves placing one or 
more intracranial catheters connected to an external infu-
sion pump, which allows for the direct delivery of thera-
peutic agents into target tissues via an established pressure 
gradient [24, 97, 98]. The local infusion ensures a higher 
therapeutic concentration in the brain parenchyma with less 
systemic toxicity [24, 97]. The pressure-driven bulk flow of 
the desired drug solution allows for more uniform infusion 

over larger volumes [98–101]. The infusion volume is not 
dependent on molecule size and weight [98, 101]. The drug 
can travel for a few centimeters, increasing the volume 
treated, and makes it suitable for tumors with a low vas-
cular density [101]. However, this technique also has some 
caveats. Highly vascular tumors are potentially less suited 
since the infused drugs can be excreted/absorbed into the 
vasculature [102]. The catheters should not be placed inside 
or around necrotic tissues since the drug can pool together 
in this necrotic area, thereby not exposing the entire tumor 
to the drug [101].

CED is in clinical trials for multiple brain cancers, with 
most trials focusing on GBM and DIPG [100, 103, 104]. 
However, clinical trials have had major setbacks and so 
far only one phase III trial has been completed [101, 104, 
105]. In this multicenter phase III study, which included 
276 patients with recurrent GBM, no difference in median 
survival was observed between treatment with CED using 
cintredekin besudotox (IL13-PE38QQR) and GLIADEL 
wafers, a carmustine implant [105]. For DIPG, only phase 
I studies have been conducted but without significant 
improvement in survival. While CED in combination 
with IL13-PE38QQR reported that tumor coverage was 
not optimal, 124I-8H9 administered with CED did show 
good tumor coverage with a single dose [103, 106]. The 
study was not powered for survival and a follow-up phase 
II study will soon be initiated [103]. Besides the fact that 
the optimal CED drug with the highest therapeutic index 
has yet to be found, the limited success of CED can be 
attributed to a number of factors. First, CED causes a het-
erogeneous pressure gradient in the tumor, resulting in a 
non-uniform drug distribution and inhomogeneous drug 
concentrations in the treated area [99]. Second, catheter-
induced tissue damage and reflux can be seen contiguous 
to the catheter, with ‘intrinsic’ backflow of solute and air 
bubbles [99]. Third, the mixed-tissue environment can 
cause rapid efflux of many drugs, lowering the concentra-
tion of drugs in the brain [107]. Additionally, other fac-
tors may affect efficient delivery, such as high and vary-
ing tumor interstitial fluid pressure, which are reviewed 
elsewhere [99, 100]. Provided that these problems can be 
resolved, CED represents a suitable technique to overcome 
the BBB.

4.4 � Intranasal Delivery

Intranasal delivery is an alternative method to overcome the 
BBB. The nasal cavity provides access to the brain paren-
chyma without interference of the BBB. The drugs are deliv-
ered to the brain via paracellular, transcellular, and neuronal 
transport from the neuroepithelium of the nasal cavity to 
the CNS. However, not all drugs are suitable for intranasal 
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drug delivery, since specific physicochemical properties and 
formulations determine the bioavailability of the drug in the 
brain. Generally, lipophilic drugs with low molecular weight 
show a more ready bioavailability after nasal administration 
than charged hydrophilic drugs. Drug formulations can be 
modified to increase drug bioavailability with, for example, 
liposomes, cyclodextrans, and nanoparticles. In addition, the 
advantage of drug delivery through the nose is that the drugs 
are not metabolized by first-pass metabolism. However, a 
disadvantage is the small volume that can be administered 
via intranasal delivery [26, 108, 109].

Only limited results have been published on clinical trials 
using intranasal drug delivery. Perillyl alcohol has been used 
as an intranasal drug for the treatment of malignant glioma 
[110, 111]. The four-times daily administration of perillyl 
alcohol resulted in a 6-month progression-free survival 
in ~ 45% of a limited number of cases [110, 111]. Potential 
problems with intranasal drug delivery are the non-speci-
ficity of drugs, which can result in toxicity. Toxicity can be 
minimized by targeting tumor cells. For example, GRN163 
has been investigated in vivo, which specifically targets tel-
omerase. The treatment resulted in specific targeting of the 
tumor and minimal toxicity [112]. Other ways to decrease 
toxicity to surrounding brain tissue is the combination of 
intranasal drug delivery with microbubble-mediated FUS. 
The combination of these methods has shown an increased 
and specific drug uptake in the targeted tumor region [113, 
114]. Only a few studies have investigated the use of intrana-
sal drug delivery for the treatment of primary brain tumors; 
therefore, it is difficult to conclude if intranasal drug delivery 
is a suitable technique to overcome the BBB.

4.5 � Intra‑Arterial Drug Delivery

Intra-arterial drug delivery administers drugs directly into an 
artery in the proximity of the tumor [27, 115]. After the tar-
geted area is cannulated, the drug is released into the blood 
vessel. In addition to the drug, a hyperosmolar drug such as 
mannitol can be administered to open the BBB locally [115, 
116]. This technique has been successful in the treatment of 
retinoblastoma and liver cancer [27]. However, several clini-
cal trials and cases did not report significant improvement in 
survival. Intra-arterial drug delivery in a small set of medul-
loblastoma patients treated with celyvir (autologous mes-
enchymal stem cells infected with adenovirus ICOVIR5), 
a 7-day treatment course of oral procarbazine, intravenous 
vincristine in combination with four cycles of intra-arterial 
carmustine, or conventional chemotherapeutics in combina-
tion with mannitol, did not lead to remission of the disease 
in most patients [117–119]. In ependymoma, a small cohort 
of patients were treated with intra-arterial drug delivery with 

carmustine, bevacizumab, and cetuximab, and responded to 
the treatment [120, 121]. However, toxicity concerns arose 
for the treatment with carmustine, epipodophyllotoxin, and 
cisplatin [120]. Several clinical studies investigated the 
use of intra-arterial drug delivery for GBM patients. The 
reported survival ranged from 20 weeks to 10 months fol-
lowing treatment with nimustine, bevacizumab, or carbopl-
atin in combination with other conventional chemotherapy 
[122–125]. Toxicity and low drug efficacy seem to ham-
per the use of intra-arterial drug delivery in primary brain 
tumors [27, 115, 120, 126].

5 � Conclusions

Is there a way to overcome the BBB to give modern therapy 
a chance? So far, we have discussed several drug deliv-
ery techniques that have been developed to overcome the 
BBB. However, most techniques have not led to a signif-
icant increase in survival in patients with primary brain 
tumors. One of the main reasons that drug delivery tech-
niques have not been successful is the limited knowledge of 
the BBB/BTB and vasculature in both adult and pediatric 
brain tumors. We have reviewed several BBB pathologies, 
of which almost all have incomplete information regarding 
the BBB pathology of specific tumors. Pediatric medullo-
blastoma has illustrated the importance of knowledge about 
the characterization of the BBB to improve survival. Medul-
loblastoma WNT subtype has a dysfunctional and high vas-
cular density compared with the other subtypes, making 
this tumor subtype treatable with conventional therapies. 
Understanding BBB/BTB properties and challenges can 
provide more insight into the optimization of drug deliv-
ery techniques. For example, highly vascularized tumors 
might benefit more from FUS, as this technique requires 
the systemic administration of microbubbles and drugs. 
Furthermore, FUS can suppress efflux transporters, which 
could potentially benefit the accumulation and retainment 
of drugs in the brain parenchyma. In contrast, CED is espe-
cially suited for tumors that have a low vascular density 
and an intact BBB to prevent ‘leakage’ of infused drugs 
from the tumor site. A multimodal approach might even 
be necessary to treat brain tumors by combining strategies 
such as FUS with nanoparticles or immunotherapy. We 
therefore urge the collaboration of physicians, research-
ers, and biotechnical companies to characterize BBB/BTB 
from patient samples to help personalize the chemotherapy 
delivery method.
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