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Seasonality and light 
phase‑resetting in the mammalian 
circadian rhythm
Kevin M. Hannay1*, Daniel B. Forger1,3,4 & Victoria Booth1,2,4

We study the impact of light on the mammalian circadian system using the theory of phase response 
curves. Using a recently developed ansatz we derive a low-dimensional macroscopic model for the 
core circadian clock in mammals. Significantly, the variables and parameters in our model have 
physiological interpretations and may be compared with experimental results. We focus on the 
effect of four key factors which help shape the mammalian phase response to light: heterogeneity 
in the population of oscillators, the structure of the typical light phase response curve, the fraction 
of oscillators which receive direct light input and changes in the coupling strengths associated with 
seasonal day-lengths. We find these factors can explain several experimental results and provide 
insight into the processing of light information in the mammalian circadian system. In particular, 
we find that the sensitivity of the circadian system to light may be modulated by changes in the 
relative coupling forces between the light sensing and non-sensing populations. Finally, we show how 
seasonal day-length, after-effects to light entrainment and seasonal variations in light sensitivity in 
the mammalian circadian clock are interrelated.

Daily or circadian cycles in behavior and metabolism can be observed for virtually all forms of life. The utility 
of circadian rhythms relies on the proper timing of these cycles relative to external environmental oscillations. 
Thus, a defining property of circadian rhythms is their ability to be entrained to external time cues or zeitgebers. 
The principal zeitgeber for the mammalian circadian clock is light1. Therefore, a crucial component to under-
standing mammalian circadian rhythms is an improved understanding of the impact of light on the circadian 
cycle. A first step in this endeavor is understanding the response of the circadian circuit to a brief light pulse.

The theory of phase response curves (PRC) provides a natural language for studying the effects of external 
stimuli on endogenous rhythms with a rich history of application to circadian biology2,3. Phase response curves 
characterize the phase shift induced by the application of the stimulus at different phases of the oscillation. For 
instance, the amplitude of the PRC gives the entrainment range of the system to a weak resetting signal and the 
zeros of the PRC determine the entrainment angle4.

Phase response curve theory figured prominently in early investigations of circadian rhythms, where organ-
isms were exposed to a sensory stimulus at a sampling of points across the daily cycle and phase shifts were 
measured relative to some behavioral or physiological marker3,5. However, the discovery of the location of the 
master circadian clock in a small region of the hypothalamus known as the suprachaismatic nucleus (SCN) 
provided a neurological basis for circadian rhythms in mammals6,7. The SCN was found to contain thousands of 
coupled clock neurons which each contain a biochemical oscillator with a period of approximately 24 h8. Daily 
activity cycles are driven by this large ensemble of coupled oscillators acting collectively to produce a reliable 
circadian oscillation.

Thus, a light stimulus applied to the mammalian circadian rhythm does not act by shifting a single limit 
cycle oscillator, but rather acts by shifting the oscillations of individual clock neurons which in turn induce a 
shift in the collective rhythms produced by the ensemble. The recognition of this distinction helped motivate 
the development of the theory of collective phase response curves which describe the collective phase shift of 
an entire population of coupled oscillators subjected to a stimulus9–12. Collective phase resetting is especially 
important for the mammalian circadian response to light, because only a fraction of the clock cells are phase 
shifted in response to the stimulus13. This may induce non-trivial transient dynamics on the system following a 
light perturbation and forms a major focus of this work14.
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In general, the phase-shifting behavior of a coupled ensemble of oscillators differs from the behavior of a single 
autonomous oscillator. In this work we study the transformation between the response of a single circadian cell 
to a light-pulse (microscopic PRC) and the collective phase response described by the shift in the mean-phase 
of the population of oscillators. A growing literature on collective phase resetting has revealed that coupling, 
oscillator heterogeneity and network structure can all lead to significant differences between the microscopic and 
collective PRCs in networks of coupled oscillators9–12. Within the circadian literature, examinations of collective 
phase resetting have led to the formation of a rule of thumb that increasing phase dispersion in the oscillator 
population leads to a monotonic increase in the amplitude of the collective phase response15,16 and thus the 
entrainment range of the collective oscillator3.

In addition to the role of light input in ensuring the circadian clock is synchronized to the outside envi-
ronment, the SCN is also responsible for storing seasonal day-length information17–19. The ability of seasonal 
day-lengths to alter the core circadian clock was established in early circadian studies, where it was noticed that 
entrainment of mammals to long/short day-lengths caused lasting changes in the endogenous circadian period 
when organisms were transferred to a dark environment20. These effects are known as seasonal after-effects and 
have been described for many mammal species5,20.

Recently, significant progress has been made in characterizing the physiological changes in the SCN underly-
ing seasonal day-lengths changes21–25. The physiological changes in the SCN which encode the seasons have been 
shown to affect the phase response to brief light pulses. When organisms are entrained to long (summer) days 
the phase shift caused by a brief light pulse is seen to decrease21,26. This seemingly contradicts the rule of thumb 
for collective phase resetting, because experimental evidence has also shown that phase dispersion in the SCN 
increases in longer day-lengths21. A primary goal of this work is to provide a unified theory of collective phase 
resetting to light in mammals, consistent with seasonal changes in SCN physiology.

In order to study phase resetting to light we make use of the recently developed m2 ansatz to derive a three-
dimensional model for the core circadian clock27. Significantly, the m2 ansatz is supported by experimental 
evidence and the resulting model gives variables and parameters which may be interpreted physiologically in 
the SCN27,28. Our work utilizes the framework for studying collective phase resetting developed in Levnajic and 
Pikovsky12, and we apply this theory specifically to light induced phase resetting in mammals. We extend the 
results in Hannay et al.29 to consider oscillator networks where only a fraction of the population receives the 
phase-shifting stimulus. Additionally, we develop a perturbation technique which can be applied generally to 
characterize the effects of coupling on collective phase resetting.

The principal biological impacts of our work are threefold. First, we provide a general theory for the effect of 
the collective amplitude on the phase-shifting capacity of the circadian clock. Our analysis reveals that the rule 
of thumb that lower amplitude rhythms with larger phase dispersion give larger phase shifts in response to a 
stimulus is incomplete, and more detailed analysis is required for many real-world phase response curves. Sec-
ondly, our analysis reveals the reduction in light-shifting capacity observed for organisms entrained to long day-
lengths may be explained by an adjustment of the coupling strengths between clock neurons as a function of the 
seasonal day-length. Finally, we find this adjustment of coupling strengths is consistent with current theories for 
seasonal day-length encoding and is required to explain seasonal after-effects to light entrainment in mammals.

Results
Formulation of the model.  Circadian model.  The suprachaismatic nucleus (SCN) is a collection of 
about 10,000 neurons which form the core circadian pacemaker in mammals. Individual neurons in the SCN 
contain a biochemical feedback loop which cycles with a period of approximately 24 h. While the SCN produces 
a variety of spatiotemporal activity patterns it can be functionally and physiologically broken into the ventral 
(core) and dorsal (shell) populations30.

In mammals, light input comes in through the eyes and is channeled to the SCN along the retinohypothamic 
tract (RHT)13. It is remarkable that the core circadian clock receives light information through a direct pathway 
from the eyes, which underscores the importance of light in entraining mammalian circadian rhythms. However, 
only a fraction of the clock cells in the SCN receive light input directly, with the majority of cells receiving input 
in the ventral region13. Therefore, for the purposes of our model we split the SCN into ventral and dorsal phase 
clusters and allow light-input into only the ventral population (Fig. 1).

Coupling between clock neurons in the SCN is mediated by a large suite of neurotransmitters31. In this 
work we focus on the functional coupling between the regions, although it may assist the reader to give an 
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Figure 1.   Subpopulations and coupling in the SCN. Light input comes into the sensor cells in the ventral SCN 
through the retinohypothalamic tract (RHT). The majority of the dorsal cells do not receive direct input from 
the RHT but are bidirectionally coupled to the ventral sensor cells. Coupling terms are labeled as in Eq. 1.
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interpretation of the coupling in reference to two predominant neurotransmitters in mammalian circadian 
rhythms: vasoactive intestinal polypeptide (VIP) and γ-aminobutyric acid (GABA) whose properties have been 
characterized experimentally23,32,33. Perhaps, the best understood coupling agent in the SCN is VIP which is 
released by the ventral population and is received by all the oscillators32. VIP is known to be a synchronizing force 
in the SCN (phase attractive)33. Recent experimental results23,34 and detailed mathematical modeling35 suggest 
that GABA mediated coupling is more subtle. GABA is released and received by all or nearly all clock neurons 
in the SCN and has been identified as both a synchronizing36 and desynchronizing37,38 agent among clock cells, 
although recent evidence suggests these properties vary spatially in the SCN23,35. Evidence suggests that both VIP 
and GABA are involved in the communication of phase shifts between the ventral and dorsal SCN as well as the 
storage of seasonal day-length information in the SCN23,35,39,40. Here we assume the combined action of VIP and 
GABA act to modulate the strength of the coupling between the ventral and dorsal phase clusters in the SCN.

This conceptual model, summarized in Fig. 1, may be translated into a coupled phase oscillator system, 

where Q(φ) gives the microscopic phase response curve of the ventral oscillators to light and ηv,dk  defines a 
white noise process i.e. ( �ηk(t)� = 0 and �ηk(t)ηl(t′)� = 2δklδ(t − t ′) ). The ε factor scales the microscopic phase 
response curve and is taken to be a small parameter. The coupling strengths are given as Kfrom,to and we let Mv,d 
indicate the total number of oscillators which fall into the ventral and dorsal phase clusters. Finally, we define 
q = Mv/(Mv +Md) to be the fraction of ventral (sensing) oscillators in the population and p = 1− q.

We allow the oscillators within the ventral and dorsal regions to be heterogeneous in their intrinsic frequen-
cies and assume each cluster has a Cauchy (Lorentzian) distribution of frequencies,

with the mean frequency ωv,d
0  and dispersion parameter γ̂.

In addition to daily timekeeping, the SCN is also responsible for storing seasonal day-length information17,18,41. 
It has been shown by several experimental groups that the phase difference between the dorsal and ventral clusters 
grows with the seasonal day-length, making this a leading hypothesis for how seasonal information is encoded 
in the SCN23,24. Additionally, it has been suggested that the physiological root of this seasonal variation in the 
phase difference is alterations in the coupling forces in the SCN23,25,35. Thus, we incorporate seasonal effects (day-
lengths) into our model by allowing the coupling strengths Kvd and Kdv to vary with the seasonal day-length, as 
these coupling terms can control the phase difference between the ventral and dorsal populations.

Macroscopic model.  The model for the mammalian SCN as given in Eq. 1 gives a high-dimensional representa-
tion of the dynamical state of the circadian rhythm as Mv +Md = O(104) . This high dimensional representa-
tion of the system makes analytical analysis of the light-response difficult. Therefore, we make use of the recently 
developed m2 ansatz to derive a low-dimensional macroscopic model for the ventral and dorsal phase clusters27. 
Mathematically, we have demonstrated that the m2 ansatz provides an accurate approximation to noisy hetero-
geneous systems as seen in Eq. 127. In the absence of noise (D = 0) and a Cauchy distribution of frequencies 
g(ω) the Ott–Antonsen ansatz provides an exact reduction42. Crucially, for this application the m2 ansatz may 
be justified through comparison with experimental data on the phase distribution of cellular oscillators in the 
mammalian SCN27,43.

First, we define the Daido order parameters44,45 for the ventral and dorsal phase clusters as: 

where n ∈ Z . The special case of n = 1 gives the classical Kuramoto order parameter Zv,d
1 = Rv,d

1 eiψ
v,d
1  , where R 

is known as the phase coherence and gives a measure of the overall synchrony in the population. When R1 = 1 
the population is phase locked in perfect synchrony and R1 = 0 if the population is completely desynchronized 
and spread uniformly around the unit circle. Additionally, ψ1 gives the mean phase of the population. Since 
our macroscopic model will be written in terms of the Kuramoto order parameters we will drop the subscript 
for those terms i.e. Zv,d

1 = Zv,d = Rv,deiψ
v,d . Using these order parameter definitions we may rewrite Eq. 1 as, 
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with Im denoting the imaginary part of the expression. In the continuum limit Mv,d → ∞ Eq. 4 give rise to 
continuity equations for the phase density functions f v,d(ω,φ, t) , 

Let us consider the Fourier series representation of the phase density functions f v,d(ω,φ, t),

where the bar indicates the complex conjugate. Inserting the Fourier series representation into the continuity 
equation gives a system for the Fourier coefficients Av,d

k (ω, t) , 

with the bar representing the complex conjugate. In the continuum limit the Daido order parameters Zv,d
n  are 

given by,

using that all the terms in the Fourier series integrate to zero except the n = k term. Further, since we approxi-
mate the natural frequency distribution as a Cauchy/Lorentzian distribution (Eq. 2) we may evaluate the integral 
(Eq. 8) under the assumption that Ak(ω, t) may be analytically continued into the complex ω plane42. Thus we 
have that,

This substitution into Eq. 7 gives, 

Finally, we consider the system with k = 1 and apply the m2 ansatz ( Zm = |Z1|m
2−mZm
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1  , ψm = mψ1

)27. Applying the m2 ansatz and separation into the real and imaginary parts of the expressions gives a four 
dimension system describing the phase coherence Rv,d and mean phase ψv,d of each cluster. However, with a 
change of variables θ = ψd − ψv (“phase gap”) and letting �ω = ωd
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0 and γ = γ̂ + D we arrive at a three 

dimensional system of equations: 
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In order to facilitate our analysis we define a default parameter set for this model given in Table 1. Under this 
parameter set Eq. 11 evolve to a fixed point (R∗

v ,R
∗
d , θ

∗) with a collective frequency �∗-we will use starred quan-
tities refer to fixed-point solutions. Finally, we note that experimental evidence has shown that the phase gap 
between the dorsal and ventral populations is typically a small variable θ∗ ∈ [0, 0.5] radians for photoperiods in 
the range of 6–18 h of light23, although it has been shown in mice to grow considerably when they are kept in 
20 h or more of light each day24.

Collective phase response curves.  Components of the collective phase response curve.  The collective 
phase response to a stimulus may be defined by the shift in the mean-phase ψ = Arg(Z) induced by the light per-
turbation. For a brief (Dirac δ function) stimulus we may break the collective phase shift into two components12: 

1.	 The prompt phase shift ( �0 ) induced at t = t̂ the instant the stimulus is applied.
2.	 The relaxation phase shift ( �R ) which results from any phase shifts induced as the system relaxes to its 

asymptotic state.

The collective phase shift ( �∞ ) is then given by,

where we define Z0 as the order parameter just prior to the perturbation and ZA as the order parameter just after 
the perturbation. A subscript of A on quantities will refer to the quantity just after the perturbation is applied.

It is also useful to define the amplitude resetting curve � as a measure of the perturbations transient effect 
on the amplitude of the collective rhythm,

Given the assumed stability of the limit cycle, perturbations of the amplitude R are expected to decay, thus the 
amplitude resetting is defined in terms of the initial amplitude reduction imposed on the system.

Single population case.  We first consider the collective phase response for a single population of oscillators, that 
is, we consider the case where all oscillators in the population receive the light stimulus. These results will aid our 
consideration of the two population case, as they can be used to describe the phase shift in the ventral oscillator 
population. For a general phase response curve Q(φ) we have previously derived an asymptotic formula for the 
collective phase response of a single population29 of Kuramoto–Sakaguchi oscillators making use of the Ott–
Antonsen formalism. In this section we adapt those results to study phase shifts in a population which follows 
the m2 ansatz as has been found in experimental measurements of the SCN phase distribution27. For times close 
to the perturbation t ≈ t̂ we may approximate the single population continuity equation as,
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Table 1.   Parameter sets used for numerical simulations in the main text (default parameter set). These 
parameters give steady state values of R∗

v = 0.81 , R∗
d
= 0.84 , θ∗ = 0.06 . The mean frequency parameters 

ω
v,d
0  are chosen to be consistent with experimental measures22. The remaining parameters were chosen to be 

consistent with known properties of the SCN, however they have not been determined from experimental 
measurements. The results presented here are not sensitive to the choice of these parameters.

Parameter Value

ωv
0 2π/24.5

ωd
0

2π/23.5

γ 0.024

Kvv 0.095

Kdd 0.07

Kvd αKdv

Kdv 0.05

α 2.0

q 0.5
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We have previously shown that for small ε we may approximate the solution of Eq. 15 as,

by employing the method of characteristics. Expanding Eq. 16 to leading order in ε , multiplying by eiφ and 
integrating with respect to φ and ω gives an expression relating the order parameter after the perturbation ZA to 
the order parameter just prior to the perturbation Z0.

Now, we replace the microscopic PRC Q(φ) with its Fourier Series representation, 

Substitution of the Fourier series representation into Eq. 17 and applying the definition of the Daido order 
parameters gives,

Now we apply the m2 ansatz [ Rm = Rm2 , ψm = mψ ] to arrive at an expression for ZA in terms of Z0 , 

By applying Eqs. 13 and  14 we may derive expressions for the prompt resetting �0 and the amplitude response 
curve � respectively, 

The real part of Q̂(ψ) can be compactly expressed in terms of the Fourier series for the microscopic PRC Eq. 18, 

From these expressions we can see the principal effect of the phase distribution on the shape of the PRC is to 
re-weight the Fourier harmonics according to fk(R) . As R → 1 we have that fk → 1 and the collective and 
microscopic prompt phase response curves coincide. However, when R < 1 the first harmonic of the microscopic 
phase response curve is amplified like R3 + 1

R while the higher harmonics are damped out by higher powers of R.
The imaginary part of Q̂(ψ) can be expressed as, 

In this case we see that the modulation term gk(R) goes to zero as R → 1 meaning the amplitude is unaffected 
by the stimulus in this limit. Additionally we observe that,
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so we expect the amplitude shifts � to be greatest around the zeros of the microscopic phase response curve, 
with transient increases in R around stable points and decreases around unstable zeros.

Application to light PRCs.  The mammalian phase response curve to light has been characterized over a large 
variety of species and conditions2,46. Generally, the circadian rhythm shows small sensitivity to light during the 
subjective day, phase delays during the early subjective night and phase advances in the late subjective night47. 
Although we expect our results to hold more generally we will focus our attention on phase response curves with 
this general shape.

The single population results derived in the last section indicate that for microscopic PRC’s dominated by 
their first harmonic, as are commonly assumed in the circadian literature15,16, a general amplification in the 
phase response is expected as the oscillators are more dispersed in phase or have a reduced amplitude (either 
through weaker coupling or greater frequency heterogeneity in the population). This expectation has surfaced 
in the circadian literature under a variety of guises in the context of both phenomenological and biochemically 
motivated models16.

These observations have led to the formation of a rule of thumb in the circadian literature that the phase 
response of a limit cycle oscillator should increase when the collective amplitude/phase coherence decreases16. 
However, our analysis shows this prediction will only hold when the underlying individual/microscopic phase 
response curve is dominated by its first harmonic-otherwise a overall reduction in the amplitude may be 
observed29 (Eq. 22). An example of this effect is shown in Fig. 2 for a first harmonic phase response curve and a 
light-like PRC shape. The first harmonic curve shows a uniform increase in amplitude as the phase coherence of 
the sensing population decreases, whereas the light-like PRC shows a initial decrease in amplitude as the higher 
harmonics are dissipated.

The general shape of the mammalian phase response curve to light has significant power at higher harmonics46. 
Therefore, the rule of thumb does not necessarily apply in this case. For example, the phase coherence of the 
ventral (sensor) population is known to decrease with increasing day-length48 which leads to the expectation of 
increasing amplitude in the response to light. However, as previously noted the opposite trend has been observed 
experimentally where organisms entrained to longer day-lengths show decreased sensitivity to light-pulses21.

This reduction in amplitude of the collective phase response, in spite of a reduction in the phase coherence 
of the sensing population, may be at least partially explained when the higher harmonics in the microscopic 
phase response to light are taken into consideration. This effect has been noted in the course of simulations21 
and is readily explained by the theory given here using the m2 ansatz and detailed previously for cases adhering 
to the Ott–Antonsen ansatz29.

In the following section we investigate the effects of only having a fraction of the total population shift in 
response to a light pulse. This analysis reveals an additional effect which allows the amplitude of the collective 
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Figure 2.   Collective phase response curves for two assumed microscopic phase response curves: (left) Simple 
phase response curve Q(ψ) = sin(ψ) , (right) Light-like PRC shape Q(ψ) = H(− sin(ψ)) sin(−2ψ) . Shown for 
three phase coherence R values: R=1 (solid black) R=0.6 (dashed green) and R=0.3 (red circles).
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phase response to be modulated depending on the degree of asymmetry in the coupling between the ventral 
and dorsal populations.

Two population case.  We now consider the collective phase response of the circadian model Eq. 11 to brief 
light pulses using that �∞ = �0 +�R . In the first section we compute the prompt phase shifting behavior �0 
for the circadian model with a subset of sensor cells and observe the effects on the initial phase shifting behavior 
( �0 ). In the next subsection, we present a perturbation technique to determine the relaxation phase shift ( �R).

In the figures for this section we consider a microscopic phase response curve Q(ψ) which is fit to experi-
mental measurements of the human phase response curve to brief light pulses46.

Prompt resetting �
0
.  We begin by studying the prompt phase shifting curve �0 for the circadian model. 

By applying Eq. 20 and using that the dorsal population is unaffected by the perturbation, we find the order 
parameter Z = qZv + pZd just after the perturbation ZA = qZv(1+ iεQ̂(ψv))+ pZd . Therefore the prompt 
phase shift �0 for the SCN model can be derived as: 

where η = p/q is the ratio of dorsal to ventral (sensors) in the population. We may now expand Eq. 24d, 

Which gives an analytical expression for the prompt resetting in our system using our expressions for �v
0 and �v 

for a single population of oscillators (Eq. 21). We note that Eq. 25 has the expected limits: As η → 0 , �0 → �v
0 

and the system converges to the behavior of a single population of oscillators, in addition as the dorsal population 
grows η → ∞ we see that �0 → 0 causing the system to become unresponsive to perturbations. This analytical 
approximation gives an accurate approximation for the prompt resetting curve when compared with numerical 
simulations (Fig. 3).

It is interesting to note the differences between our system and a single population of oscillators which all shift 
in response to the stimulus. In the two population system the damping of higher harmonics in the microscopic 

(24a)�0 = Arg

(

ZA

Z

)

= Arg

(

qZv(1+ iεQ̂(ψv))+ pZd

qZv + pZd

)

(24b)= Arg
(

1+ iεµQ̂(ψv)

)

, µ = Rv

Rv + ηRdeiθ

(24c)= arctan

(

εRe[µQ̂(ψv)]
1− εIm[Q̂(ψv)]

)

(24d)= εRe[µQ̂(ψv)] +O(ε2)

(25a)C = Rv[Rv + Rdη cos(θ)]
R2
v + 2RvRdη cos(θ)+ R2

dη
2

(25b)D = RvRdη sin(θ)

R2
v + 2RvRdη cos(θ)+ R2

dη
2

(25c)�0 = C�v
0 + D(�v − 1).
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Figure 3.   Prompt resetting curve with the fraction of sensors in the population q = 0.50 and the default 
parameter values. The microscopic phase response curve (solid black) is fit to the human PRC to a brief light 
pulse, direct numerical simulations of Eq. 1 with N = 104 (red crosses) and the theoretical prediction Eq. 25 
(dashed green).
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PRC is also observed, however we additionally see a decrease in the initial shift as a function of the fraction of 
oscillators which receive the light pulse. We note that under the assumption that θ ≈ 0 we may approximate 
Eq. 25a as,

giving the intuitive result that the overall amplitude of the initial response scales with the fraction of ventral 
sensor cells in the population q.

In addition, unlike the single population case we see the prompt phase response curve depends on the ampli-
tude response function �v . This dependence leads to a slight change in the zeros (entrainment points) of the 
prompt PRC when compared to the microscopic PRC since �v will be largest about the zeros of Q. Moreover, 
this effect is dependent on having a non-zero phase gap between the two populations ( θ  = 0).

Relaxation phase shift �R.  We now consider the relaxation shift �R which describes the phase shift induced 
during the return of the system to equilibrium following a perturbation. For the single population case this 
relaxation phase shift was directly computable from the Ott–Antonsen equations describing the collective 
dynamics12. This computation relied on the relatively simple spiral isochrons of the Kuramoto–Sakagucki cou-
pling scheme4,12,29.

For the circadian model presented here this quantity can no longer be easily computed by direct integra-
tion. However, the relaxation phase shift occurs during the transient decay of the system back to the dynamical 
fixed point (R∗

v ,R
∗
d , θ

∗) of the macroscopic model. The collective frequency of the unperturbed system is given 
by �∗ = �(R∗

v ,R
∗
d , θ

∗) . Therefore, the phase shift induced as the system relaxes back to the equilibrium state 
is given as, 

Thus, we may calculate the relaxation phase shift by integrating the frequency mismatch between the perturbed 
system and the steady state system along the trajectory of the system as it returns to equilibrium. The relaxation 
trajectory may be approximated by a perturbation about the fixed point under the assumption the light-pulse 
does not induce a large deviation from (R∗

v ,R
∗
n, θ

∗) . We set, 

where σ is a small parameter and with initial conditions Rv(0) = R∗
v +�Rv , Rd(0) = R∗

d , θ(0) = θ∗ +�θ using 
that the dorsal population is initially unaffected by the light stimulus. The initial changes in Rv and θ can be writ-
ten in terms of the prompt phase and amplitude response curves for the ventral population: �Rv = Rv(1−�v) 
and �θ = (ψd − ψv

A)− (ψd − ψv) = ψv − ψv
A = −�v

0 , where ψv
A is the ventral phase just after the perturbation.

Therefore, the leading order terms in σ for the relaxation phase shift is given by,

with the (A,B) constants determined by the model parameters. In practice we find the leading order term in σ is 
sufficient to provide a good approximation to the numerical solutions (see Fig. 4) although higher order terms 
may be taken in the perturbation series (Eq. 28) if additional accuracy is required. We note that (A, B) are a 
measure of the sensitivity of the collective frequency of the system to perturbations in the amplitude ( Rv ) and 
phase gap θ respectively, and are weighted by the stiffness of the system to perturbations in those directions.

To gain intuition of how the circadian model parameters will affect the relaxation phase shifts, we solve for 
the relaxation terms analytically for a simplified system (see supplementary information). If the amplitude of the 
ventral and dorsal populations are fixed (without loss of generality let Rv,d = 1 ) we find that,

From this simplification we can see that B ∈ [−p, q] when both coupling terms are positive. Moreover the change 
occurs at α = q

p from a positive to negative value. Note, for symmetric coupling ( α = 1 ) between the regions 
and q = p = 1

2
 we have B = 0 . In Fig. 5 we show the variation of B with α using both the perturbation approach 

and the simplified formula Eq. 30.

Collective phase response curve.  When the prompt phase shift �0 is combined with the relaxation shift �R we 
find the collective phase response curve �∞,

(26)C ≈ qRv

qRv + pRd
≈ q,

(27a)�R =
∫ ∞

0

�(Rv(t),Rd(t), θ(t))−�∗dt

(27b)=
∫ ∞

0

��(t)dt

(28a)Rv(t) = R∗
v + σR1

v(t)+O(σ 2)

(28b)Rd(t) = R∗
d + σR1

d(t)+O(σ 2)

(28c)θ(t) = θ∗ + σθ1(t)+O(σ 2),

(29)�R ≈ A(1−�v)− B�v
0,

(30)B = q− pα

1+ α
, α = Kvd

Kdv
.
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with the constants (A, B, C, D) as defined in the previous sections. In general, we find this approximate formula 
provides a good approximation to the numerically determined collective phase response (Fig. 6). To improve 
our understanding of the role of light-input to the mammalian circadian system we analyze these results further. 
Of particular importance is the amplitude of the collective phase response as this determines the entrainment 
range for weakly forced systems3.

(31)�∞ = �0 +�R = (C − B)�v
0 + (D − A)(1−�v),
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Figure 4.   Relaxation phase response curve �R using a first order perturbation series to calculate (A, B) in 
Eq. 29 (dotted green) versus numerical simulation(red crosses) for the default parameter values.
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Figure 5.   Network resistance to phase shifts B versus α = Kvd/Kdv for the first order perturbation theory 
(circles) with the default parameter values varying Kvd and the approximate formula Eq. 30 (solid line) with 
q = 0.5 (red), q = 0.8 (blue), q = 0.2 (green).
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Figure 6.   Collective phase response curve for the theoretical curve (Eq. 31) (dotted green) versus numerical 
simulation (red crosses) for the default parameter values.
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We first note that the collective PRC for the circadian system carries over many of the trends of the single 
population model. Namely, we expect that higher harmonics in the microscopic phase response curve will be 
damped with the first harmonic amplified like R3

v + 1
Rv

 . This transformation in the shape leads to an overall 
smoothing effect and is tied to the disorder in the underlying population.

Additionally, we note that the term proportional to the amplitude response curve (D − A)(1−�v) is expected 
to be of comparatively small magnitude as it is proportional to 1Rv − R3

v → 0 as Rv → 1 . Moreover the amplitude 
response curve reaches its maximum values around the zeros of the individual phase response curve. Thus, the 
amplitude of the collective phase response curve is largely determined by the (C − B)�v

0 term, while a shift in 
the entrainment points is determined by the (D − A)(1−�v) term.

From Eq. 31 we see the amplitude of the collective PRC is influenced by the sign of the B constant as deter-
mined by the relaxation dynamics. Positive values of B indicate the relaxation shift acts to decrease the initial 
phase shift thus providing a resistance to the phase shift. Negative values of B indicate the initial shift is rein-
forced/increased during the transient relaxation, while a value near zero indicates the relaxation shift has a small 
effect on the collective phase response.

The simplified expression in Eq. 30 allows for intuition on the scale and sign of B. In particular we can see 
the value of B scales with the ratio of the feedforward coupling strength Kvd to the feedback strength Kdv . For a 
balanced system Kvd = Kdv , q = 0.5 we observe that B = 0 , although by varying this ratio of coupling strengths 
the system can toggle between a resistant/reinforcing behavior to the initial phase shifts.

For a pure feedforward network, where Kdv = 0 , the B term is positive and the effect of having a fractional 
sensor population on the amplitude of the collective phase response disappears. In this limit the phase shift in the 
ventral population is imposed on the dorsal population over time. Thus, when Kdv  = 0 the non-sensing dorsal 
population can act as a feedback on the phase shifts and integrate the current phase shift against the past history.

Therefore, we see that the entrainment range of a two-population system is crucially dependent on the ratio of 
the coupling strengths between the sensing (ventral) and non-sensing (dorsal) populations (Fig. 7). By adjusting 
the ratio of these coupling strengths the size of the light response may be modulated.

Seasonal effects on light resetting.  Our study of the collective phase response in a two-population 
model identified the relative strengths of the intra-population coupling forces as an important factor in deter-
mining the amplitude of the phase response. Experimental evidence has found that the amplitude of phase shifts 
induced by a light-stimulus decreases in mammals entrained to long day-lengths21,26. This could be explained 
in our framework by an increase in the network resistance to the phase shift (B), in animals exposed to long 
day-lengths.

To evaluate this hypothesis we may check for consistency against two other seasonal light effects on mam-
malian circadian rhythms: Seasonal encoding and light entrainment after-effects. First, we consider seasonal 
encoding. Experimental evidence has indicated that the phase difference between the dorsal and ventral phase 
clusters grows with the day-length23,24. Within our model this corresponds to the variable |θ∗| growing with the 
entrained day-length. We make use of the hypothesis that these changes in θ occur through an adjustment of the 
coupling strengths rather than a change in the intrinsic periods in the ventral/dorsal SCN23,35. Thus, we consider 
the intrinsic periods to be constant while allowing the coupling strengths to vary.

Let χ ∈ [0, 1] be the photoperiod, or the fraction of the circadian day in which the organism is exposed to 
light. Considering Eq. 11 we see the steady state phase gap θ∗ is given by, 

(32a)θ∗(χ) = arcsin

(
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Figure 7.   The amplitude of the collective phase response curve as a function of α = Kvd/Kdv . The range of 
the numerical collective phase response is highlighted in yellow and the theoretical prediction of the amplitude 
(Eq. 31) is shown as dotted green lines.
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From this we can see that we must have G′(χ) < 0 to allow the absolute value of the phase gap to increase with 
the photoperiod length.

Additionally, we observe that θ∗ will only show significant variation for a small range G(χ) = O(�ω) and 
will asymptote to a small value for G(χ) outside this range. This nonlinear dependence of the phase gap θ∗(χ) 
with asymptotic values for short photoperiods has been observed in experiments using both Per2 and Bmal 
circadian phase markers23,24.

Moreover, the macroscopic model also identifies a fundamental trade-off as the photoperiod is lengthened. 
As G(χ) decreases towards �ω the phase gap increases quickly. However, a further increase in χ will cause the 
system to undergo a bifurcation where the ventral and dorsal regions decouple from one another. Thus, we predict 
that organisms which show robust seasonal adjustment necessarily must approach a bifurcation to desynchrony/
large phase gaps at long photoperiods. Therefore, organisms which show robust decreases in G(χ) , thereby show-
ing larger changes in the phase gap variable θ∗ as the photoperiod lengthens, will also approach a bifurcation to 
desynchrony more closely and display rhythm abnormalities.

In fact, several species of mammals show desynchrony or large phase gaps when perturbed outside their 
normal photoperiodic range by unnatural lighting conditions (e.g. constant light)24,49,50. Moreover, it has been 
observed that hamsters which show robust seasonal adjustments to short day lengths have a higher propensity 
for rhythm abnormalities under constant lighting conditions-illustrating the trade-off identified by our analysis51.

In order to relate these properties to reduced light phase-resetting responses at long photoperiods we now 
recall a predominant circadian after-effect to light-entrainment in mammals1,23: Mammals entrained under 
short day-lengths show a transient increase in period when moved to a dark environment. The long day length 
after-effect works in an opposite direction by inducing a short period with the magnitude of the period change 
increasing with the entrained day length. In the context of our model this implies that d�dχ > 0 in Eq. 12. Expand-
ing this condition gives,

Applying the assumption that θ∗ is a small variable we may simplify this condition to give,

and we consider the case that �ω > 0 as indicated by experimental evidence22,23,52. Under the approximation that 
Rv ≈ Rd we have that 2H(χ) ≈ qKdv(χ)− pKvd(χ) and G(χ) ≈ Kdv(χ)+ Kvd(χ) . This simplification allows us 
to express our approximation for the network resistance to phase shifts B (Eq. 30), in terms of H and G,

Thus, taking the derivative with respect to the photoperiod χ,

we see that the network resistance to phase shifts B will increase with the photoperiod directly from the after-
effect condition (Eq. 34). This gives the surprising result that seasonal entrainment after-effects and the reduced 
sensitivity to light-pulses at long photoperiods are intimately related to one another. In fact, the presence of 
one implies the other in our model. Additionally, we see that the seasonal adjustment condition G′(χ) < 0 is 
consistent with the after-effect and increasing phase shift resistance condition (Eq. 36). Therefore, we find the 
adjustment of the coupling strengths required to explain three predominant light mediated circadian effects are 
all mutually consistent within our model.

Discussion
In this work we focus on phase resetting to light in mammalian rhythms making use of the m2 ansatz to derive 
a simplified model of the central clock. The reduced model holds the advantage that the collective variables 
(Rv ,Rd , θ) all have physiological interpretations and are measurable in experimental treatments. We have focused 
on the effects of heterogeneity in oscillator frequencies, the shape of the microscopic phase response curve 
to light, the effects of only a fraction of populations receiving direct light input and variation of the coupling 
strengths between regions on the phase resetting response.

Similar to previous work on this subject we find heterogeneity of the population changes the shape, ampli-
tude and zeros of the collective phase response curve12,29. Moreover, we note these alterations occur through a 
re-weighting of the Fourier components of the collective phase response with the first harmonic amplified and 
higher harmonics being damped out as the oscillators spread out in phase. We find examination of only the first 
harmonic terms may give misleading results when considering phase resetting to light in mammals.

The effect of having a fraction of the population receive light-input can lead to a reduction in the overall 
amplitude of the collective phase response. However, we find this effect is dependent on the coupling between 
the oscillators in the SCN. In a feedforward network, where the sensing ventral cells project more strongly on 

(32b)
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= −|�ω|G′(χ)

G(χ)2

(33)
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= H ′(χ) sin(θ∗)+H(χ) cos(θ∗)

dθ∗

dχ
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the non-sensing dorsal cells than the feedback connection, the initial shift induced on the sensing population is 
largely imposed on the total population over time. Thus, for pure feedforward network architectures the effect 
of a fractional sensing population is to induce a time delay on the shift of the population mean phase.

However, when feedback coupling from the dorsal cells to the sensing ventral populations is significant we 
see the reduction in the initial shift caused by the fractional sensing is retained and even reinforced over time. 
This leads to the conclusion that the relative coupling strengths between the ventral and dorsal oscillators allows 
the system to weight phase shifts induced by light differently. The re-weighting of the coupling strengths between 
the sub-populations with seasonal changes in day length may act like the aperture on a camera by allowing the 
sensitivity of the clock to light to vary with the total amount of light input received. In short days the feed-forward 
connection is weighted more strongly to allow for larger responses when light input is more scarce. In contrast, 
relatively weighting the feedback connection more strongly in long days results in a reduction in light sensitivity 
when more light is received over the course of the day.

These results may also have applications to the study of aging of the circadian clock. In a similar manner to 
long-day lengths, older animals tend to show reduced phase coherence and the clock neurons are thought to be 
more weakly coupled as the animals age53–55. Moreover, these aged animals also show reduced phase-shifts in 
response to light stimuli and slower entrainment to shifted light schedules56–59. Our analysis reveals this reduction 
in phase shifting capacity may be explained in terms of a reduction in the ratio of the feed-forward to feedback 
coupling between the ventral and dorsal populations.

Our results are consistent with current ideas of how seasonal information is encoded the mammalian circa-
dian clock23,60 and provide an explanation for mammals showing reduced phase shifts to light when entrained 
to long day lengths21,26. Furthermore, our model reveals an intimate connection between seasonal day-length 
encoding, seasonal entrainment after-effects and the amplitude of the phase-response to light. Additionally, 
we find the change in coupling strengths with the day-length required to explain each of these phenomena are 
mutually consistent within our model.

Recently, it was found that two feedback loops which make up the cellular circadian clock show a differing 
light response61. Mathematical models of these two feedback loops as weakly coupled phase oscillators bear a 
strong resemblance to the network level models we consider in this work62. This work on the cellular scale also 
identified the inter-oscillator coupling as an important parameter in the dynamics62. Moreover, the interaction 
between the two biochemical feedback loops appears to vary across tissues, allowing for differential responses to 
be encoded across the body63. This possible convergence on a common mechanism across scales suggests these 
findings could be a unifying principle in circadian biology.

The model reduction technique ( m2 ansatz) was especially chosen because of its agreement with experimental 
results for mammalian circadian rhythms27,43. However, we note that all of the results presented in this work could 
be expressed using an alternative moment closure-for instance the Ott–Antonsen technique27,42. The choice of 
moment closure enters our calculations at only two points: to close the Daido order parameter sequence in the 
macroscopic model (Eq. 10) and again in calculating the prompt resetting curve (Eq. 19). Finally, we note that 
changing between the Ott–Antonsen and m2 ansatz will not qualitatively change the conclusions of this work.

These results remain to be strengthened both from a biological and theoretical standpoint. In order to derive 
these results we have assumed an all-to-all connectivity between clock cells in the SCN and simple sinusoidal 
coupling between the oscillators. However, the connectivity in the SCN is known to be much more complex43. 
An important extension of these results would be to consider phase resetting in a general circadian network 
building on previous results64,65.

From a biological standpoint it remains to be tested whether an increasing resistance to phase shifts under 
long-day lengths underlies the decreased sensitivity to light pulses for organisms entrained to long day-lengths. 
Although, this prediction seems testable by measuring initial phase shifts to light and comparing these with the 
asymptotic phase shifts obtained over long-times. This would be particularly interesting if the effect was seen to 
vary with the entrained day-length and could provide evidence for a variation in the relative coupling strengths 
between the ventral and dorsal SCN with seasonal day-length. Recent experimental evidence suggests that the 
coupling strength, as determined globally in the SCN, decreases with increasing day-lengths which could provide 
indirect evidence for this hypothesis25.
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