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Distinct regional ontogeny 
and activation of tumor 
associated macrophages in human 
glioblastoma
Alexander P. Landry*, Michael Balas, Saira Alli, Julian Spears & Zsolt Zador*

Tumor-associated macrophages (TAMs) constitute up to 50% of tumor bulk in glioblastoma (GBM) and 
play an important role in tumor maintenance and progression. The recently discovered differences 
between invading tumour periphery and hypoxic tumor core implies that macrophage biology is 
also distinct by location. This may provide further insight into the observed treatment resistance to 
immune modulation. We hypothesize that macrophage activation occurs through processes that 
are distinct in tumor periphery versus core. We therefore investigated regional differences in TAM 
recruitment and evolution in GBM by combining open source single cell and bulk gene expression 
data. We used single cell gene expression data from 4 glioblastomas (total of 3589 cells) and 122 total 
bulk samples obtained from 10 different patients. Cell identity, ontogeny (bone-marrow derived 
macrophages-BMDM vs microglia), and macrophage activation state were inferred using verified 
gene expression signatures. We captured the spectrum of immune states using cell trajectory analysis 
with pseudotime ordering. In keeping with previous studies, TAMs carrying BMDM identity were 
more abundant in tumor bulk while microglia-derived TAMs dominated the tumor periphery across 
all macrophage activation states including pre-activation. We note that core TAMs evolve towards 
a pro-inflammatory state and identify a subpopulation of cells based on a gene program exhibiting 
strong, opposing correlation with Programmed cell Death-1 (PD-1) signaling, which may correlate 
to their response to PD-1 inhibition. By contrast, peripheral TAMs evolve towards anti-inflammatory 
phenotype and contains a population of cells strongly associated with NFkB signaling. Our preliminary 
analysis suggests important regional differences in TAMs with regard to recruitment and evolution. We 
identify regionally distinct and potentially actionable cell subpopulations and advocate the need for a 
multi-targeted approach to GBM therapeutics.

Glioblastoma (GBM) is the most frequent adult primary brain tumor which remains invariably lethal. Median 
survival is approximately 16–20 months1 and has remained essentially unchanged over the last decades2. It is 
known that this tumour’s ability to reprogram the body’s immune response in order to evade destruction and 
support growth is one of the key mechanisms of glioblastoma resilience3,4. Most of the immune cells in GBM 
consist of tumor associated macrophages (TAM), which may constitute up to 50% of tumor bulk5. TAMs may 
be recruited from circulating bone marrow derived macrophages (BMDM) or resident microglia3,6. Notably, 
recent studies have implied distinct regional abundance for TAMs, with BMDM being dominant in tumor core 
while microglia are more prevalent in the invading edge7. TAMs are also described in terms of their activation 
state, often categorized as “classical” (M1) with seemingly anti-tumor effects or “alternative” (M2) with pro-
tumor effects, both arising from a precursor “pre-activation” state (M0)8. However, emerging evidence suggests 
that TAM activation in-vivo doesn’t translate well to this categorical model9. Therefore, recent approaches use 
a score-based method that to assess macrophage activation states10,11. Understanding the origin of TAMs and 
the process by which their oncotoxic functions are silenced may provide the basis for new treatment options. 
Notably, immune checkpoint blockade has been advocated as one of the key modulators of T cell activation based 
on its game-changing effects in melanoma12, non-small cell lung cancer13 and Hodgkin’s lymphoma14. However, 
PD1 inhibitors have shown prolonged benefit for only a small patient group (< 10%) within a GBM cohort15. 
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Furthermore, PD-1 expression has been recently demonstrated in TAMs with anti-phagocytic effects16 implying 
that PD-1 may exert its effect through mechanisms other than modulating T-cells.

Inter- and intra-tumoral heterogeneity of the cellular environment in GBM is well documented7,17–19. Regional 
differences are particularly distinct between the hypoxic tumor core and the invading edge which interfaces 
with adjacent brain tissue20–22. Recent data further supports the relevance of GBM diversity: features such as 
neoplastic cell composition23, mutation load24, and immune cell composition25 associate with GBM treatment 
response to radiation therapy, chemotherapy, and even immune modulation. Here we set out to further explore 
the heterogeneity of glioblastoma microenvironment using established techniques in computational biology. We 
hypothesize distinct region-specific recruitment, activation, and maturation programs.

Methods
Data pre‑processing.  The majority of our analysis relies on single cell RNA-sequencing (scRNA-seq) data 
obtained by Darmanis et al7, made publicly available on Gene Expression Omnibus (GEO)26 accession GSE84465. 
This dataset includes 3589 cells from 4 IDH wild type glioblastomas, each with paired samples from the tumour 
periphery (outside the region of gadolinium enhancement on MRI) and tumour core (the region of enhance-
ment on MRI). The authors used antibody-mediated cell sorting, RNA cluster-based sorting, and copy-number 
variation analysis to identify seven cell types: immune, oligodendrocytes, oligodendrocyte precursors (OPCs), 
vascular, neurons, astrocytes, and neoplastic cells. Importantly, the original paper characterizes immune cells 
based on myeloid-specific genes and find that > 95% of immune cells are represented by macrophages or micro-
glia. Therefore, lymphoid cells are not considered in this paper and immune cell are taken to be macrophages. It 
is known that GBM is relatively lymphodepleted compared to other cancers, making this approximation more 
feasible27. Full details of tumour collection, RNA-sequencing, and quality control parameters can be found in 
the original paper. Spike-in quality control genes were omitted from our analysis. The package Seurat28 (version 
3.1.4) was used to preprocess the data. Firstly, the tumour label was regressed out of the raw counts and the 
resulting data was scaled and centered. Counts from each cell were divided by the cell’s total counts, multiplied 
by a default scale factor (10,000), and log-transformed. This processed data, as well as the raw count data, was 
used in all subsequent analysis.

To compare peritumoral microglia to normal microglia, we obtained publicly available scRNA-seq data on 
homeostatic microglia from GEO accession GSE135437 (960 cells from five human samples)29 and GSE134705 
(2,304 cells from six human samples)30. The aforementioned preprocessing steps were used on both datasets. 
After aggregating the homeostatic and peritumoral microglia datasets together, we performed Weighted Gene 
Coexpression Network Analysis (WGCNA) to identify gene modules that are distinct to either homeostatic or 
peritumoral microglia31.

In order to perform validation of our findings we relied on publicly available bulk RNA-seq data from the 
Ivy Glioblastoma Atlas Project22, using a subset of of 122 RNA samples which were obtained from 10 different 
tumours. In this dataset, tumours have representation from five distinct anatomic structures (leading edge, 
infiltrating tumour, cellular tumour, microvascular proliferation, and pseudopalisading cells around necrosis) 
obtained through laser microdissection of surgically excised glioblastoma tissue. To parallel the sampling location 
for our single cell analysis, we consider “leading edge” and “infiltrating tumour” to constitute tumour periphery 
and “cellular tumour”, “microvascular proliferation”, and “pseudopalisading cells” to constitute tumour core. 
Genes with zero counts across all samples were excluded and normalization was carried out using the “limma”32 
R package with default parameters.

Cell clustering and gene‑enrichment analysis.  We embedded and clustered our single-cell expres-
sion data using Uniform Manifold Approximation and Projection (UMAP), a manifold learning approach to 
dimensionality reduction which has been shown to preserve global data structure better than other similar 
techniques33. This technique is included within the Seurat package; settings were left as default. The resultant 
cluster map was annotated according to sample location (periphery vs core) and cell type (Fig. 1A–E).

We defined a meta-gene as the difference between the centered, log-transformed mean counts of an input gene 
list and the centered, log-transformed mean counts of the remaining genes in an array, adopting the approach 
described by Tirosh et al.34. This allowed for interpretation of how a known biological program (rather than an 
individual gene) varied between cells/tumours. To further explore the UMAP clusters we evaluated the meta-
gene expression of a general macrophage gene signature18 to compare with known immune cell annotations 
(Fig. 1F), as well as signatures implicated in bone-marrow-derived macrophages (BMDM) and microglia-derived 
macrophages19 (Fig. 1G,H).

Finally, we used MacSpectrum10, a single-cell RNA-sequencing based gene enrichment tool to infer the 
macrophage activity of our immune population (Supplemental Fig. 1). This technique estimates the Macrophage 
Polarization Index (MPI) and Activation induced Macrophage Differentiation Index (AMDI) based on input 
RNA-seq count data; both scores have ranges from -50 to 50. With this score-based approach we were able to 
map macrophage activity onto a biological spectrum rather than using a categorical representation. A higher 
MPI value indicates greater pro-inflammatory features and higher AMDI indicates greater maturity. Adopting 
Li et al.’s approach10 in some parts of the analysis, we use zero as a threshold to define “pre-activation” or “M0” 
cells (AMDI < 0, MPI < 0), “M1-transitional” or “M1 pre-activation” cells (AMDI < 0, MPI > 0), “M2-like” cells 
(AMDI > 0, MPI < 0), and “M1-like” cells (AMDI > 0, MPI > 0). We note that despite these conventions, the 
M1/M2 paradigm of macrophage activation remains controversial; M1 is meant to be synonymous with “pro-
inflammatory/anti-tumor” and M2 is meant to be synonymous with “anti-inflammatory/pro-tumor”.
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Cell recruitment analysis.  To attempt to infer cell recruitment patterns in our single cell data, we amal-
gamated a list of 25 ligands found to be relevant in GBM tumour-associated macrophages (TAMs) based on 
previous systematic reviews on this topic35–37 (Supplementary data). These ligands were filtered to include 
only those which are expressed by at least 5% of cells38 and paired with known receptors using the FANTOM 
compendium39. Resultant receptors were filtered in the same way as the ligands. The ligand and receptor density 
in both tumour core and periphery was assessed by macrophage activation state (Fig. 2). We also assessed the 
relative importance of individual ligands and receptors using a hive plot representation (Supplemental Fig. 2). 
Importance ranking of a receptor in a particular macrophage activation state was computed as being propor-
tional to the sum of edge weights in all loops beginning and ending with the activation state of interest and 
containing the receptor of interest (Supplemental Fig. 3).

We further analysed immune cell recruitment in tumor core versus periphery using the meta-gene expres-
sion of bone marrow and microglia-derived macrophages10 (Fig. 3). The degree of regional separation for each 
macrophage activation state was assessed with a support vector regression (SVM) model with radial kernel, tuned 
using tenfold cross validation. The model was trained on a random subset (70%) of the data and performance 
assessed on the remaining cells. BMDM and microglia-derived macrophage scores for each cell were used as 
inputs. Bulk data was used as validation using the same approach22. Additionally, we compare microglia in the 
tumor periphery to normal microglia (derived from accession GSE135437 and GSE134705).

Where indicated we used hard thresholding to derive cell identities with the AUCell function from the SCE-
NIC package40. Details of the method is described in the reference, briefly the algorithm evaluates the enrichment 
of a marker gene set in each cell based on area under the curve (AUC) value and a cut-off threshold for these 
values is used to determine cell identity. Notably, this is the only case where hard-thresholding into microglia/
BMDM is used; elsewhere these states are considered to represent the ends of a continuous spectrum.

Figure 1.   UMAP clustering of single cell data with Seurat. Cells are clustered in 2 dimensions using the UMAP 
dimensionality reduction technique and annotated by cluster label (A), geography (B), and cell type (C). The 
relative proportions of cell locations and cell types within each cluster are examined using the stacked barplots 
in (D,E), respectively. Meta-gene expression of macrophage, bone-marrow derived macrophage, and microglia-
derived macrophage gene signatures by cluster are plotted in (F–H), respectively. In (G,H), the meta-gene scores 
of non-immune clusters are set to 0, core-predominant clusters are coloured blue and periphery-predominant 
coloured red.
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Single‑cell trajectory analysis and pseudotime ordering.  To better understand the landscape of 
tumour-associated macrophages in tumour core versus periphery we used single-cell trajectory analysis, a 
machine learning method to embed cells into a linear/branched representation of their gene expression profiles. 
The aim of this approach is to infer, based on the expression pattern of a gene subset, how cells evolve from 
one state to another (i.e. from precursor cells to macrophages). Pseudotime, a measure of the overall degree 
of transcriptional change in this subset of genes, orders cells along a fitted tree structure such that the highest 
pseudotime values are associated with terminally differentiated states.

We employed Monocle41,42 (version 2.14.0) to perform this analysis on core and peripheral cells separately. 
Following Monocle’s suggested pipeline, genes were considered useable if expressed in at least 10 cells, and 
cells with outlier total mRNA (outside 2 standard deviations of log10-transformed counts) were omitted. Nor-
malization was done using Monocle’s embedded “Census” method with default settings, which converts scRNA 
transcript counts (following a negative-binomial distribution) to relative transcript counts. Full details of this 
method can be found in the paper cited above.

We selected genes to define our cell trajectories using an unsupervised feature selection approach called 
“dpFeature”, which is included in the Monocle pipeline. Briefly, an array with genes expressed in at least 5% of 
cells was dimensionality-reduced with t-SNE. This was clustered into relevant cell subpopulations using density 
peak clustering, a technique which computes each cell’s local density (P) and the nearest distance (D) of a cell to 
another cell with higher distance. Cells with P and D values above a threshold (default 0.95) are defined as density 
peaks, each of which defines an individual cluster. Optimal clustering was achieved with 8 clusters in core and 
4 in periphery. The most variable genes were extracted by computing likelihood ratios for each gene between a 
generalized linear model with and without cluster label as a covariate, and the top 1000 genes by q-value were 
used in the trajectory analyses.

Trajectory analysis was carried out using DDRTree43 (Discriminative Dimensionality Reduction Tree), a 
machine learning technique which fits a latent tree structure (in low dimensions) from high dimensional input 
data. Cells were ordered such that the lowest pseudotime value was set as the terminal cell on the line (“state”) 
with lowest mean AMDI score. Trajectories were annotated with AMDI and MPI scores to assess their associa-
tion with pseudotime (Fig. 4).

Annotation and analysis of branch points.  Since branch points in the trajectory analysis (nodes con-
taining one input state and two output states) are likely to represent important “decision points” during mac-
rophage evolution, we used Monocle’s BEAM function to compute likelihood ratios between the expression of 

Figure 2.   Receptor and ligand expression density by location and macrophage activation state. (A,B) UMAP 
plots annotated with macrophage activation state in core and periphery cells, respectively. (C,D) The same 
UMAP plots as above with shade corresponding to the number of filtered ligands expressed by each cell. (E,F) 
As above, with shade corresponding to the number of filtered receptors expressed by each cell. (G,H) Dot plot 
representation of the proportion of ligands expressed and average expression in tumour core (G) and periphery 
(H) by macrophage activation state. I and J: Dot plot representation of receptors expressed in core (H) and 
periphery (I) by macrophage activation state.
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each gene in both output states. Genes with q-values < 0.05 were considered “branch-dependent”. Hierarchical 
clustering of each branch-dependent gene (for each branch) was used to subset the genes into subgroups with 
similar pseudotime evolution. Gene clusters with strongly divergent expression (whose meta-gene expression 
differed strongly between terminal cells in both output states) were probed for potentially relevant mechanisms 
using Enrichr44,45. A meta-gene constructed from the cluster of genes from which important signaling were 
found was investigated as a function of pseudotime and correlated to the meta-gene constructed from a signa-
ture of the mechanism itself. This latter meta-gene correlation was verified using bulk data (Figs. 5 and 6).

Computational platform.  All analysis was carried out using R46 (version 3.6.3).

Results
Data demographics.  We used single cell RNA-seq data obtained from Gene Expression Omnibus26 acces-
sion GSE844657, which consists of 3589 cells obtained from 4 glioblastomas, each with representation from 
tumour core (2343 cells) and periphery (1246 cells) (Table 1). Most cells were labeled as immune (51%, 1847 
cells) or neoplastic (30.4%, 1091 cells), with the remained divided amongst oligodendrocyte-precursors (OPCs), 
astrocytes, oligodendrocytes, vascular cells, and neurons in decreasing proportions. Notably, after subclassi-
fication with Macspectrum, the immune population consisted of 1160 cells from tumour core and 646 cells 
from tumour periphery (Table 2). Applying MacSpectrum to the tumor core immune subpopulation yielded 
462 (40%) are M2-like, 358 (31%) are M1-like, 188 (16%) are M0, and 152 (13%) are M1 pre-activation cells. 
In the periphery, applying the same approach, 235 cells (36%) are M2-like, 156 (24%) are M1-like, 139 (22%) 
are M1 pre-activation, and 116 (18%) are M0. No significant differences were noted between the proportion of 
M2-like or M0 cells between core and periphery, though tumour core contains significantly more M1-like cells 
(31% vs. 24%, Chi-squared p = 0.003) and fewer M1 pre-activation cells (13% vs 22%, Chi-squared p < 0.0001) 
than periphery. No difference was noted between the total number of pro-inflammatory cells (M1-like + M1 
pre-activation) between groups, but the peripheral tissue contained a greater number of immature immune cells 
(M0 + M1 pre-activation; 39% vs 29% Chi-squared p < 0.0001).

Bulk validation was carried out with the publicly available Ivy Glioblastoma Atlas Project22, comprised of a 
total of 122 RNA samples from 10 different tumours with sampling from five disctinct regions (leading edge, 
infiltrating tumour, cellular tumour, microvascular proliferation, and pseudopalisading cells around necro-
sis). This cohort contains entirely primary GBMs that underwent gross total surgical resection. Median age is 
57.5 years (range 18–67), 6/10 are males, and median survival is 871 days (range 105–1293). Most are IDH wild 
type (9/10), with a single tumour having IDH1 mutation. Additionally, half of tumours (5/10) have positive 

Figure 3.   Macrophage recruitment: bone-marrow vs. microglia. (A) Scatter plot of microglia-derived meta-
gene signature (x-axis) vs. BMDM meta-gene signature (y-axis) for each macrophage activation state. Density 
plots are used the show the separation in average metagene scores on both axes between core and peripheral 
cells. (B) BMDM scores by anatomical location in bulk validation data. (C) Microglia abundance represented 
using metagene scores by anatomical location in bulk validation.
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MGMT methylation status. Tumours are also labelled according to molecular subgroups: 2 classical, 3 proneural, 
1 neural, 2 classical/neural, and 2 classical/mesenchymal.

Single cell gene expression programs define uniform immune subgroups in human GBM.  Sin-
gle cell clustering of all 3589 cells using Uniform Manifold Approximation and Projection (UMAP, see “Meth-
ods”) identified 22 distinct cell clusters (Fig. 1A). There was good separation of tumour location, with limited 
mixing of cell locations within clusters (Fig. 1B,D). Additionally, there is strong geometric separation of cell 
types suggesting the validity of the clusters obtained (Fig. 1C,E). We noted that within the immune cell clusters 
there is consistent upregulation of our macrophage meta-gene score (Fig. 1F) and that the average bone marrow-
derived macrophage meta-gene score is higher in tumour core clusters whereas the average microglia-derived 
macrophage meta-gene score tends to be higher in periphery-dominated clusters (Fig. 1G,H). This is in keeping 
with the findings of Müller et al.19 from their single cell analysis 13 untreated primary gliomas. Macrophage 
activation states mapped reasonably well onto cell clusters (Supplemental Fig. 1) and identified, for example, 
several subgroups enriched in either low or high inflammatory activation (M0 and M2 or M1 pre-activation 
and M1, respectively). We also found that the expression profile of peritumoral microglia is distinct from that of 
homeostatic microglia, which cluster together across different studies (Supplementary Fig. 9A,B). Furthermore, 
of the two modules discovered via WGCNA, one of them (the “blue” module) is distinctly expressed by only 
peritumoral microglia (Supplementary Fig. 9C). Using EnrichR, we found that this module enriches in linoleic 
acid metabolism and VEGF-related pathways using the REACTOME 2016 database (Supplementary Fig. 9D).

Tumor associated macrophages follow distinct recruitment patterns in human GBM.  Based 
on prior observations and our own findings, we hypothesized that immune cells follow distinct recruitment 
patterns in GBM. We firstly sought to understand the number of salient tumour-associated macrophage ligands 
proposed to be involved in the recruitment of TAMs (derived from published systematic reviews35–37) and their 
paired receptors using the FANTOM dataset47. In our exploratory analysis we found that several receptor-ligand 
interactions proposed to be implicated in TAM recruitment appear to be expressed amongst all TAM activation 
states, and note a particularly important role of M1-transitional cells in the periphery, and of pre-activation cells 
and M1-transitional cells in the core with considerable overlap (Supplemental Fig. 2). Notably, the top ranked 
ligands in both core and periphery are SPP1, ICAM1, and VEGF-A. The top 3 ranked receptors in core are 
ITGB1, ITGB2, and CD44, while the top ranked in periphery are ITGB2, ITGAX, and CSF1R. We subsequently 
took an approach that would demonstrate the parallel signalling processes within each cell. We firstly examined 

Figure 4.   Single cell trajectory analysis and pseudotime ordering. (A) Tree structure of tumour core immune 
cells, coloured by pseudotime, MPI, and AMDI (right to left). Note that there are two branches (labeled 1 and 
2) and five states (lines), labelled numerically in the leftmost plot. These states are the result of the unsupervised 
DDRTree algorithm and represent the evolution pathway of immune cells. Mean scores for each state are 
labelled in the MPI and AMDI-annotated plots, and an arrow is used to demonstrate the direction of numeric 
increase. (B) The same process is repeated for the peripheral immune cells, whose tree structure also has 2 
branches and 5 states. (C,D) Correlation of mean state-specific AMDI and MPI scores in tumour core (C) 
and periphery (D). For each state in the tree structures, mean AMDI and MPI value is plotted, with dot size 
proportional to the number of cells in that state and colour representing the state’s mean pseudotime value. 
Numbers correspond to the state labels from the leftmost plots in (A,B).
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the expression density of receptors and ligands from both core and peripheral tumour cells (Fig. 2). As expected, 
we found multiple ligands (mean 3.2, SD 2.0) and receptors (mean 9.0, SD 4.7) expressed per cell, evidencing 
parallel biological processes underlying TAM recruitment. Notably, the mean number of ligands expressed by 
immature macrophage states (M0 and M1 pre-activation cells) was significantly higher than mature macrophage 
states (M1-like and M2-like) in both core and periphery (4.5 vs 3.8, Mann–Whitney p = 0.001 and 4.7 vs. 3.8, 
M–W p < 0.0001, respectively). The same was noted for the mean number of receptors expressed (13.7 vs. 11.4, 
M–W p = 0.0004 and 11.0 vs. 9.4, M–W p < 0.0001, respectively). Additionally, the average number of both recep-
tors and ligands expressed in pro-inflammatory states (M1 pre-activation and M1-like) was significantly higher 
than the average in anti-inflammatory states (M0 and M2-like) for both core and periphery (MW p < 0.0001). 
We then focused on the regional differences in the pool of pre-activation cells which would represent TAM’s at 
the more initial stages of recruitment. We inferred dominant receptor activation in these cells by ranking them 
based on relative weight of receptors (Supplementary Fig. 3). We found receptor components integrin subunit 
beta 1 and alpha V were top ranked in both core and periphery. Receptors CD44 and NPR1 had considerably 
greater inferred activity in tumor core (ranked #3 and #4, respectively, in core and #6 and #15, respectively, in 
periphery) whereas CSF1R and CCR1 were considerably more abundant in receptor periphery (ranked #5 and 
#3 ,respectively, in periphery and #17 and #16, respectively, in core).

We next investigated the ontogeny of TAMs in different anatomical locations. We compared the abundance 
of TAMs with bone marrow (BMDM) versus microglia origin by scoring each cell based on their expression of 
marker genes as described in the Methods. These relative BMDM and microglia-specific expression scores dem-
onstrate clear differences between the immune cell populations of core and periphery. Specifically, BMDMs were 
consistently more prevalent in the core whereas microglia-derived TAMs were more prevalent in the periphery 
(Fig. 3). Notably, an SVM classifier yielded high area under the receiver operating curves (AUCs), ranging from 
0.83 in transitional M1-like cells to 0.99 in pre-activation (M0). There was a significant difference between the 
classifier performance in M0 cells and all other individual curves (DeLong’s p < 0.05), and the three remaining 
curves were statistically similar to one another (Supplemental Fig. 4A). Validating these results in bulk tumour 
samples derived from different anatomical locations, we achieve an AUC of 0.98 with the same approach (Sup-
plemental Fig. 4B).

Figure 5.   Core tumour cell branch analysis reveals PD-1 associated cell population. (A) Heatmap of branch 
2-dependent gene expression as a function of pseudotime. Genes constitute rows and pseudotime values as 
columns. Pseudotime evolves from the middle of the heatmap outwards, with leftward movement from center 
being associated with increasing pseudotime along output state A (state 5) and rightward movement being 
associated with increasing pseudotime along output state B (state 3). Hierarchical clustering identifies 3 gene 
groups with similar pseudotime evolution in a given cell state. Cluster 3 (boxed, labelled MG1) mapped strongly 
to PD-1 signalling. (B) Correlation of MD1 and PD1 meta-genes with pseudotime, annotated by state. Branch 
2 is represented by a yellow dot, with input state 4 and output states 3 and 5. The expression of each meta-gene 
in both output states from branch 2 is shown to the right of these plots, with pseudotime values for each state 
scaled to a range of 0–100. (C) Correlation plot of MG1 and PD1 signalling meta-gene, showing significant 
positive correlation (Pearson’s correlation 0.72. p < 0.05). (D) Validation of MG1 as a marker of PD-1 enriched 
subpopulation in bulk data from tumor core. Significant positive correlation is noted between meta genes in 
core samples from bulk data (Pearson’s correlation 0.85. p < 0.05).
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Figure 6.   Peripheral tumour cell branch analysis reveals NFkB-associated cell population. (A) Heatmap of 
branch1-dependent gene expression as a function of pseudotime. Heatmap layout as in Fig. 5, with state A 
corresponding to state 3 and state B corresponding to state 4. Hierarchical clustering identifies 7 gene groups 
with similar pseudotime evolution in a given cell state. Cluster 2 (boxed, labelled MG2) mapped strongly to 
NFkB signalling. (B) Correlation of MD2 and NFkB meta-genes with pseudotime, annotated by state. Branch 
1 is represented by a yellow dot, with input state 2 and output states 3 and 4. The expression of each meta-gene 
in both output states is shown to the right, with pseudotime values for each state scaled to a range of 0–100. 
(C) Correlation plot of MG2 and NFkB signaling meta-gene, showing significant positive correlation (Pearson’s 
correlation 0.58. p < 0.05). (D) Validation of MG2 as a marker of NFkB enriched subpopulation in bulk data. 
Significant positive correlation is noted between meta genes in tumour periphery samples from bulk data 
(Pearson’s correlation 0.8. p < 0.05).

Table 1.   Single cell data cell characterization. *Chi-squared p value comparing core and periphery.

Cell type All N (%) Core N (%) Periphery N (%) P*

All cells 3589 (100) 2343 (100) 1246 (100) N/A

Immune 1847 (51.5) 1182 (50.4) 665 (53.4) 0.103

Neoplastic 1091 (30.4) 1029 (43.9) 62 (5.0)  < 2.2 × 10–16

OPC 406 (11.3) 50 (2.1) 356 (28.6)  < 2.2 × 10–16

Astrocytes 88 (2.5) 0 (0) 88 (7.1)  < 2.2 × 10–16

Oligodendrocytes 85 (2.4) 34 (1.5) 51 (4.1) 1.30 × 10–6

Vascular 51 (1.4) 47 (2.0) 4 (0.3) 9.15 × 10–5

Neurons 21 (0.6) 1 (0.0) 20 (1.6) 1.99 × 10–8

Table 2.   Immune activation states of single cell data based on Macspectrum. *Chi-squared p value comparing 
core and periphery.

Activation All cells N (%) Core N (%) Periphery N (%) P*

All 1806 (100) 1160 (100) 646 (100) N/A

M1-like 514 (28) 358 (31) 156 (24) 0.003

M2-like 715 (40) 462 (40) 253 (36) 0.82

M1 pre-activation 291 (16) 152 (13) 139 (22)  < 0.0001

M0 304 (17) 188 (16) 116 (18) 0.38
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Trajectory analysis shows distinct regional inflammatory states for tumor associated mac-
rophages.  We next sought to investigate the dynamics of macrophage maturation in tumor core and periph-
ery. Rather than comparing fixed cell states, we carried out single cell trajectory analysis to explore intermedi-
ate cell states and their molecular drivers and identify important transcriptomic branch points relevant to this 
process. Cells were ordered on a fitted tree model by computing a pseudotime value based on the expression 
profile of highly variable genes. This pseudotime value is designed to represent the biological state of each cell 
along a pathway towards maturation. Notably, this approach assumes that although the tumour sample was 
taken at a specific time, it captures cells in different biological states which, in a longitudinal analysis, would shift 
from one state to another. Both core and peripheral immune cells yielded tree structures consisting of 5 states 
(lines) and 2 branches (Fig. 4A,B). Expectedly, the immune cell maturity score (AMDI) was positively associated 
with pseudotime in both core (Pearson correlation 0.29, p < 0.0001) and periphery (Pearson correlation 0.41, 
p < 0.0001). However, the macrophage polarization (MPI) was positively correlated with pseudotime in the core 
sample (Pearson correlation 0.46, p < 0.0001) but inversely associated in the periphery sample (Pearson correla-
tion − 0.34, p < 0.0001) (Fig. 4C,D; Supplemental Fig. 5). This suggests that cells within the tumour core tend 
towards increasingly pro-inflammatory features as they mature, whereas cells within the tumour periphery tend 
towards increasingly anti-inflammatory features.

Branch analysis reveals PD‑1‑associated subpopulation in tumour core and NFkB‑associated 
subpopulation in tumour periphery.  For each branch point in the trajectory analyses, we identified 
branch-dependent genes whose expression as a function of pseudotime was significantly different between out-
put states (likelihood ratio q-value < 0.05, see methods for further description). Genes were clustered using hier-
archical clustering, and groups with divergent mean expression between the two output states were investigated 
for enrichment in potentially important mechanisms.

One cluster of branch 2-dependent genes from the tumour core analysis enriches strongly in PD-1 signaling 
(Fig. 5A). A meta-gene constructed from this gene list (meta-gene 1; MG1, comprised of 756 genes) strongly 
differs in expression as a function of pseudotime between the two output states of branch 2: increasing with 
pseudotime in state 3 and decreasing with pseudotime in state 5. A similar pattern is observed using a meta-
gene constructed from known PD-1 signaling transcripts (Fig. 5B). Additionally, a significant (p < 0.05) positive 
correlation is observed between these two meta-genes (MG1 and PD1) both in single-cell data (Fig. 5C; Pearson 
correlation 0.72, p < 0.05) and bulk validation core data (Fig. 5D; Pearson correlation 0.85, p < 0.05). Importantly, 
MG1 may define a relevant subpopulation of cells within tumour core that is strongly associated with PD-1 
signalling. It appears as though there may be an important branch point early in immune cell maturation where 
this population is negatively selected, as evidenced in state 5. Annotation of all other core branch-specific gene 
clusters can be found in Supplemental Fig. 6.

In our analysis of tumour periphery, we find a branch 1-dependent gene cluster which maps strongly to NFkB 
signaling (Fig. 6A). This meta-gene (MG2, comprised of 340 genes) does not vary strongly with pseudotime, but 
is very strongly expressed in the terminal cells of state 4 (one of two mature states). A similar pattern is found 
using a metagene constructed from known NFkB signalling transcripts (Fig. 6B). A significantly positive cor-
relation is found between MG2 and NFkB signaling in both single cell data (Fig. 6C; Pearson correlation 0.58, 
p < 0.05) and bulk validation data from peripheral tumour samples (Fig. 6D; Pearson correlation 0.80). This 
suggests a strongly NFkB-dependent subpopulation of cells in the periphery, whose positive selection appears 
to occur late during the immune maturation process. Annotation of all other periphery branch-specific gene 
clusters can be found in Supplemental Fig. 7.

Discussion
Overview of results.  In this study we investigated several important aspects of tumor associated mac-
rophages in GBM, namely their origin, recruitment, activation states and plausible driver mechanisms. Our find-
ings demonstrate biological redundancy in TAM recruitment mechanisms. Furthermore, we found that TAMs 
in the tumour core mostly originate from the bone marrow derived pool whereas those in the tumour periphery 
are largely derived from microglial cells, supporting prior research19. Using trajectory analysis with gene enrich-
ment analysis we found differing profiles of macrophage activation by tumour region (core vs. periphery). Inter-
preting our findings using the conventional model for macrophage activation we find that cells in tumor core 
evolve from a “pre-activation” state towards pro-inflammatory state. However, this seemingly oncotoxic process 
is paralleled by increasing activity of PD-1-signaling, a known mechanisms of immune silencing in tumors and 
a target for immune checkpoint blockade48. In tumor periphery, by contrast, we found that cells transition from 
a pre-activation state towards pro-oncogenic activation (M2 or “alternative” activation state). We find this tra-
jectory of cells also contains an important subpopulation with strong NFkB signaling, highlighting a potential 
mechanism through which to reprogram periphery-resident TAMs49. To our knowledge, this study is the first to 
analyze geographical differences in macrophage recruitment and activation through sequential activation states. 
These findings may have implications on immune-based treatments of GBM, and in particular we identify a 
potential mechanism of resistance to immune checkpoint blockade in tumor periphery.

TAM ontogeny in GBM.  Understanding the origin and recruitment of TAMs in GBM is fundamental to 
understanding the immune landscape of these tumors and to developing immune modulation strategies. The 
two currently proposed sources of TAMs are bone marrow derived monocytes (BMDM), which reach the tumor 
through the blood stream, and CNS-resident microglia cells activated locally by the tumor microenvironment. 
The identification and tracking of these cell pools has been problematic due to the lack of consistent mark-
ers, and a number of studies using different models have disagreed upon the relative proportions of each in 
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GBM50–53. Our approach uses gene expression programs, rather than single markers, to represent cell identity 
as a numeric score in order to reflect the biological continuum of in vivo cells. Another hurdle for translation is 
the heterogeneity of GBM cell composition which contains distinct histological units such a cellular, necrotic, 
hypervascular, invading and leading edge22. Samples from different regions will therefore capture distinct cel-
lular features and biological processes. In keeping with this concept, we find TAMs in our combined single cell 
and bulk analysis that TAMs in the tumor core predominantly originate from BMDMs while in tumor periphery 
they are derived most from microglia.

TAM recruitment in GBM.  The driving mechanisms of TAM recruitment have largely been studied in cell 
cultures or animal models with implanted glioma cell lines. Most studies test single mediators/receptors such 
as MCP-154, MCP-355, CXCL1256, CX3L157, CSF158, LOX59, HGF60, Periostin61, osteopontin62 and others3,4,35,37,63 
which have shown promise. Importantly, we find that despite their limited numbers, the neoplastic cells in the 
tumor periphery are associated with osteopontin secretion which is known to facilitate a pro-tumor microen-
vironment. These results are key to understanding the building blocks of cellular interactions in GBM. In this 
study we evaluate a host of ligands suspected to be implicated in GBM TAM recruitment as well as their inferred 
receptors, an approach which has been implemented to infer changes in receptor-ligand interactions between 
endothelia cells and astrocytes in the aging brain64 and decipher the cellular interactome of the lung38. Our 
results suggest parallel receptor-ligand interactions involved in TAM recruitment which may serve as a salvage 
mechanism through which GBM is able to bypass immune modulation65. Nevertheless, we also note that integ-
rin activation appeared as a universal mechanism detected in pre-activation cells of tumor core and periphery, 
while CD44 and NRP1/2 activity was higher in tumor core and chemokine receptors CCR1 and CSF1R were 
higher ranked in the tumor periphery. These findings are the first to demonstrate the biological redundancy 
of receptor-ligand interactions in human GBM tissue and thus promote the need for a combined treatment 
approach.

Dynamic identity of TAM in GBM.  The classic model of macrophage activation states is derived from in-
vitro stimulation experiments66,67 wherein IL4 is noted to shift peritoneal macrophages to a state with enhanced 
endocytotic clearance, reduced antigen presentation and lower inflammatory cytokine production. This state 
was coined “M2”, or alternative activation67 in contrast to the “M1” or classic activation state characterized 
by pro-inflammatory functions68. This model was adopted in the study of tumor immune microenvironment, 
wherein M1 macrophages are considered “anti-tumor” and M2 as “pro-tumor”, promoting tissue remodelling, 
angiogenesis3,61,63 and malignant growth62. However, it has become increasingly recognized that the conven-
tional model of M1 vs M2 macrophages does not translate well to in-vivo pathological states9. For example, 
canonical M1 and M2 markers are co-expressed by individual immune cells in traumatic brain injury69 as well 
as gliomas19. Furthermore, there is growing evidence that macrophage activation is dynamic and may be con-
text and disease dependent, prompting expansion beyond a binary model11. In our analysis, we implemented a 
continuous score-based approach by Li et al. to characterize each TAM in terms of maturity and inflammatory 
features10. We also modeled the dynamic states of tumor associated macrophages with pseudotime70, which 
infers the position of each cell along a biological continuum based on cross-sectional expression data. Notably, 
TAM maturity correlated positively with pseudotime in both tumor core and periphery, yet the degree of inflam-
mation was negatively correlated in tumor periphery, suggesting a potential mechanism of immune silencing. 
This trend may be explained in part by a cell population in tumour periphery with high pseudotime and strong 
NFkB signalling, which has been previously shown to associate with pro-tumor macrophage activity49. In tumor 
core we find an opposite trend towards a “pro-inflammatory” state. This process correlates with PD-1 signal-
ling in most immune cell subpopulations of the tumour core. These opposing trends may follow from regional 
differences in selection pressures, and lends to the notion that that pro-inflammatory phenotypes may not be 
oncotoxic in the core. While there is need to further explore the role of TAMs in GBM, it is becoming increas-
ingly clear that the immune landscape differs strongly between infiltrating and central regions.

The role of PD‑1 in tumor associated macrophages.  Programed cell death protein 1 (PD-1) is 
thought to be a key mediator of tumor-induced immunosuppression, though to date its role is largely under-
stood to be via the regulation of T cells. However, there is emerging evidence that PD-1 is also expressed by 
tumor associated macrophages16, making it a plausible target in GBM TAMs. According to Filley et al.15, PD-1 
blockade has shown promise in mouse models of GBM. However, their trial (CHECKMATE 143) comparing 
nivolumab (an FDA-approved PD-1 inhibitor) to bevacizumab (a VEGF-A inhibitor) in recurrent glioblastoma 
demonstrated only an 8% response rate to nivolumab compared to a 23% response to bevacizumab (yet the 
duration of response was higher in the nivolumab arm, median 11.1 vs 5.3 months). Several potential reasons 
for failure are discussed, including an intact blood brain barrier, intra-tumoral T-cell anergy, and global immune 
dysfunction in patients with high grade glioma. However, the encouraging result in a small subset of patients 
suggests immune checkpoint inhibition may indeed play a significant role in GBM treatment when combined 
with adjuvant strategies, and several other trials are now underway. Our study identifies a gene program which 
is closely associated with PD-1 signalling in macrophages of tumor core. Notably, a small subpopulation of core 
TAMs appear to inhibit the expression of this program, and may thus by partly responsible for resistance to PD-1 
blockade in the majority of patients.

The role of NFkB in GBM.  Nuclear factor kappa-B (NFkB) is a ubiquitous transcription factor involved 
in the regulation of several immune chemokines. Previous work on mouse models49,71 demonstrate consider-
able promise for the inhibition of this pathway in GBM treatment. Specifically, it has been found that NFkB 
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signalling in involved in the invasive properties of GBM via metalloproteinases, which can be deprecated with 
NFkB inhibition71, and that NFkB knockout mice exhibit decreased tumour growth and increased pro-inflam-
matory cytokines49. Our study identifies a subpopulation of cells in tumour periphery defined by a genetic pro-
gram that correlates strongly with NFkB signaling in both single cell and bulk peripheral GBM tissue. We note 
that this program is highly expressed only within a subpopulation of cells in the tumour periphery, suggesting 
the possibility that this subset of cells plays a critical role in invasion. Further, as NFkB is suggested to drive 
TAMs towards a more anti-inflammatory environment, it is plausible that this subpopulation plays a role in the 
observed peripheral cells’ evolution towards an anti-inflammatory environment. Furthermore the enrichment of 
other transcription factors from the same cluster (BATF, PLXNC1, MTF1) as NFkB have been shown to upregu-
late in other cancers72–74 suggesting NFkB to exert and a pro-tumor effect.

Study limitations.  This study is designed to explore the complex immune microenvironment of GBM and 
yield novel hypotheses that warrant further in-vitro and in-vivo testing. Consequently, there are a number of 
limitations that must be considered. Firstly, the use of publicly available data limits our access to additional 
demographic annotations which may further educate out results. A lack of additional openly-available scRNA 
data with regional tumor annotation may limit generalizability. Additionally, Macspectrum gene-enrichment 
programs upon which we classify macrophage activation states were originally derived from BMDM only. This 
is also true of the other gene signatures used in the paper given a lack of robust gene signatures derived directly 
from GBM tissue. Nevertheless, we would argue that the relevant transcriptional profile, regardless of cell spe-
cies, remains a central determinant of biological activity.

Future directions.  This work adds to a growing body of literature suggesting fundamental regional differ-
ences in the immune microenvironment of glioblastoma. It is becoming increasingly clear that a treatment that 
is sufficient in the core may not be sufficient in the periphery and vice versa. While regional differences in blood 
brain barrier permeability and the sparing of peritumoral brain during resection and radiotherapy remain key 
reasons for this differential treatment response, differences in immune microenvironment must also be consid-
ered. Therefore, it will be important that future studies of glioblastoma microenvironment continue to probe for 
regional differences in this tumour. Importantly, since current treatments (surgery, radiation) predominantly 
target tumor core, it will be particularly relevant to develop novel therapeutics targeting the residual invasive 
periphery to prevent recurrence and spread. Additionally, we suggest the importance of critical immune sub-
populations which may influence treatment response. Moving forward, we hope to further explore the role of 
macrophage evolution in glioblastoma, particular under the influence of PD-1 and NFkB signalling, with large-
scale collection of primary and recurrent human glioblastomas. We also envision pairing these data with serum 
transcriptomic data to identify features of a patients underlying immune status which may correlate to treatment 
response.

Conclusions
This study uses recently developed machine learning techniques to further explore the highly complex immune 
microenvironment of glioblastoma using both single cell and bulk RNA sequencing. We find distinct activa-
tion and maturation processes between tumour core and periphery. Our results show bone-marrow derived 
macrophages evolve towards a pro-inflammatory state defining the core and microglia-derived macrophages 
evolving towards an anti-inflammatory state defining the periphery. We also identify potentially relevant cell 
subpopulations in tumor core with variable association to PD-1 signaling one of which may represent a resistant 
population. We also find NFkB signaling associated with TAM maturation in a cell population of tumor periph-
ery. This holds some promise in the future of GBM treatment. This work advocates for the need for a multi-target 
molecular approach to GBM therapy and suggests that future research continue to take these regional immune 
subpopulations into consideration.
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