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Relationships between motor 
and cognitive functions 
and subsequent post‑stroke mood 
disorders revealed by machine 
learning analysis
Seiji Hama1,2*, Kazumasa Yoshimura3, Akiko Yanagawa1,2, Koji Shimonaga2, Akira Furui4, 
Zu Soh4, Shinya Nishino4, Harutoyo Hirano5, Shigeto Yamawaki6 & Toshio Tsuji4*

Mood disorders (e.g. depression, apathy, and anxiety) are often observed in stroke patients, 
exhibiting a negative impact on functional recovery associated with various physical disorders and 
cognitive dysfunction. Consequently, post-stroke symptoms are complex and difficult to understand. 
In this study, we aimed to clarify the cross-sectional relationship between mood disorders and 
motor/cognitive functions in stroke patients. An artificial neural network architecture was devised to 
predict three types of mood disorders from 36 evaluation indices obtained from functional, physical, 
and cognitive tests on 274 patients. The relationship between mood disorders and motor/cognitive 
functions were comprehensively analysed by performing input dimensionality reduction for the 
neural network. The receiver operating characteristic curve from the prediction exhibited a moderate 
to high area under the curve above 0.85. Moreover, the input dimensionality reduction retrieved the 
evaluation indices that are more strongly related to mood disorders. The analysis results suggest a 
stress threshold hypothesis, in which stroke-induced lesions promote stress vulnerability and may 
trigger mood disorders.

Depression is a common neuropsychiatric symptom, affecting 18–78% of patients during the acute and subacute 
phase after a stroke, and been reported to negatively affect functional and cognitive recovery1–5. Apathy, defined 
as reduced motivation to engage in activities or the lack of motivation, is often observed after a stroke2,6,7. The 
diagnostic term ‘apathy’ does not appear in the Diagnostic and Statistical Manual of Mental Disorders, fourth 
edition (DSM-IV); only a few symptoms of ‘apathy’ appear as part of the diagnostic criteria for a major depressive 
episode; i.e. markedly diminished interest, suggesting apathy to be a part of depression in the psychiatric field3. 
Thus, we previously examined the relationships between post-stroke depression (PSD), functional recovery, and 
lesion location. Following the categorisation of PSD into two core symptom dimensions (namely, depressive and 
apathetic symptoms), we demonstrated that these dimensions may have different underlying neuroanatomic 
mechanisms and different effects on functional recovery1,3,8. These dimensions also appear to be associated 
with cognitive dysfunction, which may impair functional recovery after a stroke3–5. Anxiety is also a common 
mood disorder observed after a stroke, and is highly correlated with symptoms of depression2,9,10. Patients with 
comorbid anxiety and depression may exhibit greater impairment while performing activities of daily living 
(ADL) than those with depression or anxiety alone2,10,11.

Stroke survivors present notable but varying degrees of residual disability, either physical disability or cogni-
tive disorder, which hinder their ability to perform ADL1,12,13. Moreover, residual physical disability causes dis-
tress and depression in many stroke patients1,14,15. This is traditionally thought to be a normal mourning process 
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corresponding to a reactive psychological mechanism. However, when such mood disorders become severe and 
morbid, they indicate neuropsychiatric alterations, such as PSD, impeding patients to actively participate in reha-
bilitation and adversely affecting their functional recovery3. Thus, early diagnosis and intervention are crucial for 
PSD. However, PSD has been diagnosed using various scales as a measure to detect major depression, which is 
yet to be validated for the earlier detection of PSD, given that PSD is multifactorial, and associated neurological 
symptoms may hinder the detection process16. Hence, there is a need for a screening and diagnosis tool for PSD.

PSD has been reported to be associated with stroke severity and the degree of functional physical and cog-
nitive impairment; however, it is uncertain whether the etiological mechanism of PSD is associated with the 
“reactive” psychological mechanism (mourning process against physical impairment) or other biological fac-
tors associated with brain damage4,16. One of the traditional hypotheses on the PSD mechanism was “threshold 
hypothesis”, the accumulation of lesions exceeding a threshold predispose to depression5, consistent with many 
previous reports demonstrating the association between the accumulation of lacunar infarcts within the basal 
ganglia, thalamus, and deep white matter and PSD16. Previous studies on the role of psychosocial stressors as risk 
factors for psychological illnesses (such as depression and anxiety) indicate that the impact of a stressful event 
is determined by the subject’s perception17. Thus, vascular lesions may result in the vulnerability to depression 
through the reduction of stress responses5,17. Stroke itself is a great psychological stress, and it is believed that 
depression can easily occur if a stroke renders patients vulnerable to stress.

After a stroke, various physical disorders, cognitive dysfunction, and mood disorders associated with stress 
responses are intricately intertwined, making it difficult to understand the aetiology of PSD and, therefore, mak-
ing the diagnosis of PSD challenging. Therefore, it is necessary to clarify the relevance of such complicated post-
stroke symptoms to improve rehabilitation outcomes. In this paper, we focus on mood disorders associated with 
the vulnerability to stress, namely, depression, apathy, and anxiety, to clarify their cross-sectional relationship 
with motor/cognitive function after a stroke. We comprehensively analysed this relationship using a machine 
learning approach to unveil the pathogenesis of post-stroke mood disorders.

Materials and methods
Participants.  We used clinical data obtained from 274 stroke inpatients (age: 64.9 ± 10.7 years) at the Hibino 
Hospital, who could perform psychological and cognitive function tests. All patients provided informed consent. 
They were admitted to the Kaifukuki Rehabilitation Ward, where the inpatients were hospitalised (admitted) 
within two months of onset after acute treatment for stroke; rehabilitation was performed for the inpatients for 
up to 180 days and up to 3 hours a day. The patients under treatment of major psychiatric illnesses, such as major 
depression, bipolar disorder, schizophrenia, or schizoaffective disorder, were excluded (in this study, one patient 
had a history of autonomic imbalance, and one had a history of insomnia/neurosis, but underwent the treatment 
and was treatment-free on admission). The type of stroke was haemorrhage or occlusive stroke (infarction and 
transient ischaemic attack; TIA). Infarction in one patient was associated with mild subarachnoid haemorrhage. 
The study was approved by the Ethics Review Committee of the Hiroshima University Epidemiological Research 
and the Ethics Review Committee of the Shinaikai Hibino Hospital, and was performed in accordance with 
relevant guidelines and regulations.

Assessment of cognitive function.  Cognitive function was examined using the Mini-Mental State 
Examination with scores ranging from 0 to 30 and the Trail Making Test. Attention deficit was systematically 
evaluated using the Clinical Assessment of Attention Deficit, as described previously18 along with another Trail 
Making Test. Spatial neglect was examined using the Behavioural Inattention Test, and memory was examined 
using the Rivermead Behavioural Memory Test. The tasks analysed to assess cognitive function are listed in 
Table 1.

Measurements of stroke severity.  The Functional Independence Measure (FIM) version 3.0 contains 
18 items (13 motor and 5 cognitive items) that comprise an observer-rated summed rating scale for evalu-
ating disability in terms of dependency (the lower the score, the greater the disability). The FIM is widely 
used to quantify disability in stroke patients19. Hence, all patients were examined for disability using the 
FIM within a week after admission and at discharge. The FIM improvement rate was calculated as follows: 
[(FIM score on discharge)−(FIM score on admission)]/[period of hospitalisation (weeks)].

Motor impairment in hemiplegic stroke patients was measured using the Brunnstrom Recovery Scale (BRS), 
wherein movement patterns were evaluated in the upper limb, fingers, and lower limb, and motor function 
was evaluated according to the stages of motor recovery19. The scale defines recovery only in broad categories, 
which correlate with those of progressive functional recovery (the lower the score, the greater the disability). 
The following analysis was performed by summing the stages of BRS of the upper limb, fingers, and lower limb.

The presence or absence of ataxia and aphasia was evaluated at admission.
Lesion location of infarction was assessed using magnetic resonance imaging (MRI) and that of haemorrhage 

was assessed using MRI or computed tomography (CT), and categorised into brainstem, cerebellum, right or left 
basal ganglia, right or left subcortical, and right or left cortical.

Psychological assessment.  The Hospital Anxiety and Depression Scale (HADS) was used to identify 
depression and anxiety, and the apathy score was used to identify apathy. We derived HADS-Depression and 
HADS-Anxiety scores using the HADS, and patients with HADS-Depression and HADS-Anxiety scores above 9 
were classified as having PSD and anxiety, respectively. In addition, patients were adjudged to have apathy when 
they had an apathy score above 16. To assess stress, we used the Japanese version20 of the perceived stress scale 
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(JPSS) originally developed by Cohen et al.21. This scale is widely used to measure the degree to which situations 
in a subject’s life are appraised as stressful.

Proposed machine learning approach.  To analyse the relationship between mood disorders and motor/
cognitive functions, we used a probabilistic artificial neural network called log-linearized Gaussian mixture 
network (LLGMN)22. This network enables the estimation of the statistical distribution of sample data based 
on machine learning and the prediction of the posterior probability of the class for unknown input data. We 
propose a mood disorder identification model composed of three LLGMNs, as illustrated in Fig. 1. We indepen-
dently predicted the posterior probabilities of each mood disorder, namely, PSD, apathy, and anxiety. The input 
to each LLGMN is a P-dimensional evaluation index, z(n) = [z

(n)
1 , z

(n)
2 , . . . , z

(n)
P ]T ∈ R

P , obtained from the eight 
abovementioned evaluation tests, where n identifies the patient. The output is a two-dimensional posterior prob-
ability vector, Y(n)

r ∈ R
2 , representing the absence or presence of a mood disorder, with r = 1, 2, 3 indicating 

PSD, apathy, and anxiety, respectively.
We first divided the 274 patients into four groups: control, depression, apathy, and anxiety groups (Table 1). 

The machine learning analysis was conducted for each combination of the control group and mood disorder 
groups. The training dataset comprised evaluation indices z(n) ( n = 1, 2, . . . ,N ) of N patients from each com-
bination as training inputs, and the corresponding labels (absence/presence of mood disorders) Q(n)

r ∈ R
2 . The 

proposed model was trained using error backpropagation, and the prediction accuracy was verified using the 
validation dataset composed of the data excluded from the training dataset. Posterior probabilities Y(n′)

r  of each 
mood disorder were predicted by inputting validation inputs z(n′) ( n′ = 1, 2, . . . ,N ′ ) to the model. The evaluation 
accuracy was then evaluated using the area under the curve (AUC) from the receiver operating characteristic 
(ROC) curve on the predicted posterior probability Y(n′)

r  and true Q(n)
r .

Input dimensionality reduction using partial Kullback–Leibler information.  Estimating the sta-
tistical distribution of a high-dimensional input space (z(n) ∈ R

P) may lead to suboptimal solutions reflecting 
local minima. In addition, it is not possible to clarify the relationship between each evaluation index and mood 
disorder simply by predicting the absence or presence of the mood disorder using the LLGMN. Therefore, we 
reduced the input dimension using the partial Kullback–Leibler (KL) information measure23 and identified the 
most relevant indices related to each mood disorder.

The partial KL information measure is defined as
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Figure 1.   Overview of discriminant machine learning model of mood and functional disorders.
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Control group 
(n = 80)

Depression group 
(n = 40) Apathy group (n = 80) Anxiety group (n = 40) p-value p-value of post-hoc test

Age (years) 65.9 ± 10.0 61.7 ± 11.3 64.4 ± 11.7 65.7 ± 9.8 0.2094

Sex (male), n (%) 67 (83.8%) 32 (80.0%) 65 (81.3%) 34 (85.0%) 0.9143

Past history of stroke, 
n (%) 10 (12.5%) 5 (12.5%) 15 (18.8%) 8 (20.0%) 0.564

Disease

Infarction, n (%) 58 (72.5%) 30 (75.0%) 63 (78.8%) 34 (85.0%)

0.2932Hemorrhage, n (%) 19 (23.8%) 10 (25.0%) 16 (20.0%) 5 (12.5%)

TIA, n (%) 3 (3.8%) 0 (0.0%) 1 (1.25%) 0 (0%)

Lesion location

Rt basal ganglia, n (%) 19 (23.8%) 6 (15.0%) 16 (20%) 5 (12.5%) 0.4394

Rt subcortical, n (%) 25 (31.3%) 12 (30.0%) 27 (33.8%) 13 (32.5%) 0.976

Rt cortical, n (%) 14 (17.5%) 6 (15.0%) 10 (12.5%) 5 (12.5%) 0.8095

Lt basal ganglia, n (%) 19 (23.8%) 17 (42.5%) 18 (22.5%) 13 (32.5%) 0.0907

Lt subcortical, n (%) 25 (31.3%) 17 (42.5%) 29 (36.3%) 18 (45.0%) 0.4307

Lt cortical, n (%) 12 (15.0%) 6 (15.0%) 13 (16.3%) 5 (12.5%) 0.9614

Cerebellum, n (%) 3 (3.8%) 3 (7.5%) 7 (8.8%) 2 (5.0%) 0.5909

Brainstem, n (%) 10 (12.5%) 6 (15.0%) 14 (17.5%) 7 (17.5%) 0.8199

Stroke severity

Motor FIM on admission 62.8 ± 20.8 62.0 ± 22.5 63.7 ± 20.6 66.9 ± 22.0 0.6056

Cognitive FIM on admis-
sion 29.2 ± 5.5 25.3 ± 7.2 26.3 ± 7.3 26.4 ± 8.4 0.0144 C. vs D. 0.0131

Motor FIM at discharge 82.5 ± 10.1 80.2 ± 10.1 81.0 ± 9.8 81.7 ± 8.5 0.4615

Cognitive FIM at dis-
charge 32.2 ± 3.7 29.5 ± 5.0 29.9 ± 4.7 30.4 ± 5.3 0.0002 C. vs D. 0.0025, vs Ap. 

0.0006

Motor FIM improvement 
rate 3.3 ± 3.5 1.9 ± 1.8 2.2 ± 2.2 1.8 ± 2.7 0.0779

Cognitive FIM improve-
ment rate 0.6 ± 1.4 0.4 ± 0.5 0.4 ± 0.5 0.4 ± 0.7 0.6579

Physical disability

Paresis

BRS total score on admis-
sion 15.3 ± 3.9 14.3 ± 4.4 14.8 ± 4.3 14.7 ± 4.4 0.5623

BRS total score at dis-
charge 16.4 ± 3.2 15.9 ± 3.0 16.3 ± 2.8 16.2 ± 2.8 0.2393

Ataxia, n (%) 4 (5.0%) 2 (5.0%) 9 (11.3%) 3 (7.5%) 0.4511

Aphasia, n (%) 8 (10.0%) 8 (20.0%) 11 (13.8%) 6 (15.0%) 0.5192

Period from onset to 
examination (days) 20.8 ± 28.3 25.9 ± 25.0 20.2 ± 19.9 20.1 ± 22.0 0.2999

Hospitalization period 
(days) 49.7 ± 45.4 67.0 ± 47.5 59.1 ± 47.0 60.7 ± 48.0 0.1071

Psychological assessment

HADS-Depression 2.3 ± 1.7 11.1 ± 2.4 6.7 ± 3.4 7.4 ± 3.8

HADS-Anxiety 2.9 ± 2.0 7.9 ± 4.1 6.4 ± 3.3 10.7 ± 2.3

Apathy score 5.1 ± 2.8 16.7 ± 6.9 20.2 ± 4.2 14.5 ± 6.5

JPSS 16.1 ± 6.5 25.7 ± 6.6 23.3 ± 6.4 25.2 ± 6.9 < 0.0001
C. vs D., vs Ap., vs Anx. 
< 0.0001

Cognitive function test

MMSE 27.5 ± 2.4 26.1 ± 3.9 26.2 ± 4.0 26.9 ± 4.0 0.1122

BIT conventional subtest 141.4 ± 8.0 137.9 ± 10.3 138.2 ± 11.0 140.0 ± 7.3 0.0051 C. vs D. 0.0254, vs Ap. 
0.0079

BIT behavioural subtest 78.5 ± 6.9 76.5 ± 6.1 75.7 ± 11.4 77.7 ± 6.0 0.0038 C. vs D. 0.0136, vs Ap. 
0.0208

Digit span forward 5.5 ± 1.1 5.3 ± 1.3 5.4 ± 1.0 5.6 ± 1.4 0.335

Digit span backward 4.1 ± 1.0 3.8 ± 1.3 3.9 ± 1.2 4.3 ± 1.3 0.3308

Tapping span forward 5.7 ± 1.4 5.5 ± 1.2 5.4 ± 1.3 5.7 ± 1.2 0.374

Tapping span backward 4.9 ± 1.4 4.8 ± 1.3 4.4 ± 1.2 4.9 ± 1.4 0.1417

Visual cancellation Kana 
accuracy 93.8 ± 9.9 90.8 ± 11.4 93.1 ± 8.4 93.8 ± 7.2 0.595

Visual cancellation � 
accuracy 97.1 ± 6.9 96.8 ± 5.9 97.1 ± 4.2 98.1 ± 3.4 0.6413

Continued



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19571  | https://doi.org/10.1038/s41598-020-76429-z

www.nature.com/scientificreports/

where I ∈ R
D is a dimension set reduced from the evaluation index vector z(n′) , ī  is the reduction target dimen-

sion, Y(n′)
r,[I] and Y(n′)

r,[I+ī]
 are vectors representing the posterior probability distributions of the classes predicted by 

inputting the evaluation index vector with these dimensions reduced, and Ir(Q,Y) is the KL information between 
arbitrary probability distributions Q and Y . The input dimensionality reduction proceeds as follows. 

1.	 The number of reduced dimensions is initialised as d = 0 ( D = P ), and the reduction dimensions is set as 
an empty set ( I=φ).

2.	 The evaluation index vector z(n
′)

[I] ∈ R
D with the dimension set of I reduced is inputted to the LLGMN, and 

the partial KL information measure Ir(Q(n′)
r ,Y

(n′)
r,[I]) and AUC value A(n′)

r,[I] are calculated.
3.	 Let Ī ∈ R

D be the set of the remainder dimensions that have not been reduced from the evaluation index 
vector. In addition, let ī ∈ Ī be an element of the set of the remainder dimensions. Then, I+ ī represents the 
union in which the remainder dimension ī  is added to the reduced dimension set I . The evaluation index 
vector z(n

′)

[I+ī]
∈ R

D−1 from which I+ ī has been deleted is inputted to the LLGMN. The KL information 
measure Ir(Q(n′)

r ,Y
(n′)

[I+ī]
) is then calculated from the predicted posterior probability, Y(n′)

[I+ī]
.

(1)Er,[I+ī] =
Ir
(

Qr ,Yr,[I]

)

Ir

(

Qr ,Yr,[I+ī]

) =

∑N ′

n′ Ir

(

Q
(n′)
r ,Y

(n′)
r,[I]

)

∑N ′

n′ Ir

(

Q
(n′)
r ,Y

(n′)

r,[I+ī]

) ,

Control group 
(n = 80)

Depression group 
(n = 40) Apathy group (n = 80) Anxiety group (n = 40) p-value p-value of post-hoc test

Visual cancellation * 
accuracy 97.7 ± 9.7 97.3 ± 7.2 97.5 ± 5.9 98.7 ± 3.4 0.2696

Visual cancellation 3 
accuracy 98.0 ± 9.1 97.4 ± 6.0 97.6 ± 6.1 97.8 ± 5.0 0.1724

Visual cancellation Kana 
time 136.8 ± 42.4 183.1 ± 126.5 175.2 ± 100.5 169.0 ± 59.5 0.0007 C. vs D. 0.0148, vs Ap. 

0.0024, vs Anx. 0.0179

Visual cancellation � time 62.6 ± 22.9 78.0 ± 47.9 77.2 ± 38.3 78.2 ± 32.3 0.0017 C. vs Ap. 0.0036, vs Anx. 
0.0170

Visual cancellation * time 74.9 ± 25.5 102.1 ± 94.2 102.2 ± 86.9 91.2 ± 33.8 0.0013 C. vs D. 0.0169, vs Ap. 
0.0039, vs Anx. 0.0320

Visual cancellation 3 time 113.0 ± 31.8 140.7 ± 60.4 137.9 ± 64.1 132.1 ± 41.6 0.0037 C. vs D. 0.0190, vs Ap. 
0.0203

SDMT number of wrong 
answers 0.8 ± 1.6 0.9 ± 1.0 1.0 ± 1.3 1.1 ± 1.4 0.19

SDMT achievement rate 35.9 ± 11.7 28.2 ± 11.0 28.2 ± 12.0 29.4 ± 11.5 < 0.0001
C. vs D. 0.0047, vs Ap. 
0.0002, vs Anx. 0.0257

Memory updating 3 span 
accuracy 64.7 ± 22.4 62.8 ± 23.1 59.1 ± 24.6 60.1 ± 25.5 0.5064

PASAT: 2-second accuracy 47.2 ± 22.5 34.4 ± 19.6 37.2 ± 20.2 38.1 ± 20.2 0.0038 C. vs D. 0.0102, vs Ap. 
0.0184

Position Stroop accuracy 96.0 ± 12.5 90.7 ± 18.9 93.7 ± 12.6 93.1 ± 16.3 0.0095 C. vs D. 0.0216

Position Stroop time 107.3 ± 43.4 138.3 ± 91.8 142.1 ± 81.9 118.6 ± 53.2 0.0139 C. vs Ap. 0.0120

CPT-SRT time 363.7 ± 99.9 410.5 ± 108.1 401.3 ± 91.4 386.1 ± 91.8 0.0141 C. vs Ap. 0.0194

CPT-X time 534.2 ± 87.6 563.2 ± 82.2 574.3 ± 103.1 555.2 ± 105.6 0.0338 C. vs Ap. 0.0355

CPT-AX time 547.3 ± 104.2 581.1 ± 133.0 589.5 ± 118.7 563.2 ± 119.4 0.0413 C. vs Ap. 0.0495

TMT part A time 55.0 ± 29.4 76.9 ± 51.6 70.9 ± 44.1 72.6 ± 45.7 0.006 C. vs D. 0.0357, vs Ap. 
0.0195

TMT part B time 108.2 ± 38.6 146.7 ± 57.9 134.5 ± 58.9 146.1 ± 57.9 0.0063 C. vs D. 0.0302, vs Anx. 
0.0265

Fail of TMT part A, n (%) 3 (3.8%) 1 (2.5%) 5 (6.3%) 1 (2.5%) 0.6961

Fail of TMT part B, n (%) 22 (27.5%) 17 (42.5%) 36 (45.0%) 15 (37.5%) 0.1182

RBMT profile 20.1 ± 3.5 17.8 ± 4.5 17.0 ± 4.7 17.7 ± 4.6 < 0.0001
C. vs D. 0.0105, vs Ap. 
< 0.0001 , vs Anx. 0.0106

Table 1.   Clinical characteristics of subjects categorized into psychiatric group in this study. Differences in 
control and psychiatric grouping (depression, apathy and anxiety). All results are presented as mean ± S.D. 
or number (%). p-value was indicated using the χ2 test for categorial values and Kruskal–Wallis analysis for 
continuous values. The post-hoc tests were done using the Steel–Dwass test. Significant p-values (< 0.05) are 
in bold. TIA Transient Ischemic Attack, FIM Functional Independence Measure, BRS Brunnstrom Recovery 
Scale, BIT Behavioural Inattention Test, MMSE Mini-Mental State Examination, HADS Hospital Anxiety and 
Depression Scale, JPSS Japanese Perceived Stress Scale, SDMT Symbol Digit Modalities Test, PASAT Paced 
Auditory Serial Addition Test, CPT Continuous Performance Test, SRT Simple Reaction Time, TMT Trail 
Making Test, RBMT Rivermead Behavioural Memory Test, C. Control group, D. Depression group, Ap. Apathy 
group, Anx. Anxiety group.
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4.	 The dimension maximising the partial KL information īmax = argmax
ī∈Ī Er,[I+ī] is obtained using Eq. (1), 

and this dimension is added to I as a new reduction dimension.
5.	 After setting d + 1 as a new reduced dimension d, steps 2 to 4 are repeated until d = P − 1.

Following the above procedure, the model with the largest AUC is adopted for prediction.

Relationship between evaluation indices and mood disorders.  The proposed machine learning 
approach based on the LLGMN was evaluated using the dataset obtained from the 274 patients. The dataset was 
composed of the 36-dimensional evaluation index vector containing the results of the evaluation tests and the 
corresponding absence/presence of the mood disorder determined by the HADS and apathy scores. The input 
dimensionality reduction using the partial KL information enabled the extraction or representative indices for 
predicting PSD, apathy, and anxiety. Then, the ROC curve was obtained from the posterior probability of each 
mood disorder predicted by the LLGMN and labels (absence/presence of mood disorder). The prediction accu-
racy of mood disorders was evaluated using the AUC obtained by ten-fold cross-validation.

We compared the prediction accuracy of the proposed model with the reduced input dimension against 
three classification models: stepwise multiple linear regression, logistic regression, and partial least squares 
(PLS) regression. In the stepwise multiple linear regression, variables were selected using a forward-backward 
stepwise selection method. All variables were used in the logistic regression and PLS regression; the number of 
latent factors in the PLS regression was set to 3. The sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV) that provided the maximum AUC were also calculated and compared with those 
of the proposed method. In this experiment, the positive (presence of mood disorder) and negative (absence of 
mood disorder) data included in the dataset were balanced throughout the analyses to eliminate the bias due to 
the mood disorder incidence.

Finally, we analysed and compared the decrease in AUC when one input dimension was disregarded from 
the input indices after dimensionality reduction using the partial KL information. This analysis enabled us to 
rate the importance of each evaluation index for the considered mood disorders.

Statistical analysis.  The differences in control and psychiatric grouping (depression, apathy, and anxiety) 
were assessed using the χ2 test for categorial values and the Kruskal–Wallis analysis for continuous values. A 
post-hoc test was conducted based on the Steel–Dwass test. Values were considered to be significant at p < 0.05 . 
JMP Pro 14.2.0 (SAS Institute Inc., Cary, NC, USA) was used for the analyses. To compare the AUC of the pro-
posed method with those of other methods, a pairwise comparison with the proposed method was performed 
using the DeLong test24 with Holm adjustment. The DeLong test is a statistical test method for comparing two 
AUCs and is widely used owing to its non-parametric approach.

Results
Baseline structures.  Table 1 presents the baseline data for stroke patients categorised into control, depres-
sion, apathy, and anxiety groups. Cognitive FIM was significantly lower in the mood disorder group. Age, the 
hospitalisation period, and physical disabilities (paralysis, ataxia, aphasia) were not significantly different in 
each group. In addition, in the presence of a mood disorder, JPSS was high and several cognitive functions were 
impaired.

ROC analysis.  The results of ROC analysis obtained from the comparison of the proposed model with three 
linear classification models are depicted in Fig. 2. The ROC curves of each method are overwrapped for each 
group (Fig. 2a). The proposed model with reduced input dimensionality revealed an AUC above 0.85 for all 
mood disorders, indicating its suitable classification accuracy, which reaches an AUC above 0.90 for PSD and 
anxiety (Fig. 2b). Overall, the AUC of the proposed model with reduced input dimensionality was the highest 
for all mood disorders among the evaluated models. The evaluation measures for each method are presented in 
Table 2.

We removed the indices one by one to evaluate the effect of the missing index on the classification accuracy of 
the proposed LLGMN model. Specifically, a removed index retrieving a large drop in accuracy would indicate a 
high contribution to mood disorder identification. The results from this evaluation are presented in Tables 3–5. 
The number of input indices after input dimensionality reduction was 11 for PSD, 14 for apathy, and 9 for anxiety. 
Consider Fig. 2 showing the AUC for PSD (0.949), apathy (0.850), and anxiety (0.950). For PSD, removing the 
JPSS, wrong answers in SDMT, and digit span backward results reduced the AUC by 20.1%, 9.82%, and 8.17%, 
respectively. For apathy, removing the JPSS, digit span backward, and tapping span backward results reduced the 
AUC by 15.0%, 6.97%, and 4.74%, respectively. For anxiety, removing the JPSS, digit span backward, and motor 
FIM on admission results reduced the AUC by 20.5%, 13.5%, and 10.3%, respectively.

Discussion
We devised a machine learning approach to analyse the relationship between post-stroke mood disorders and 
indices obtained from functional evaluation tests. We confirmed that the proposed model could predict post-
stroke neuropsychiatric symptoms (i.e. PSD and anxiety) with moderate to high accuracy, with an AUC above 
0.85 for all the evaluated mood disorders (see Fig. 2). The classification characteristics of each method are sum-
marised in Table 2, indicating that the proposed method can classify both negative and positive data with a rela-
tively good balance. Therefore, the proposed non-linear model effectively predicts post-stroke neuropsychiatric 
symptoms and outperforms traditional linear classification.
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PSD is widely thought to be associated with stroke severity and the degree of physical and cognitive impair-
ment. In Table 1, the many cognitive function tests can be seen to be lower in depression, apathy, and anxiety 
groups than in control group. In addition, considering the severity after stroke, cognitive FIM was lower in 
the presence of a mood disorder at the time of admission and discharge. Cerebrovascular lesions, which are 
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Figure 2.   Results of ROC analysis obtained by ten-fold cross-validation. The red, green, blue, and purple lines/
bars represent the proposed method, stepwise multiple regression, logistic regression, and partial least squares 
(PLS) regression, respectively. (a) ROC curve for each model. (b) AUC value for each model. Statistical test 
results obtained using the DeLong test for two correlated ROC curves with the Holm adjustment are also shown 
(* p < 0.05 ; ** p < 0.01).

Table 2.   Evaluation measures providing the maximum area under ROC. PLS Partial Least Squares, PPV 
Positive Predictive Value, NPV Negative Predictive Value.

Group Method

Measures

Sensitivity Specificity PPV NPV

Depression

Proposed method 0.8250 0.9250 0.9167 0.8409

Stepwise multiple linear regression 0.9500 0.6750 0.7451 0.9310

Logistic regression 0.9000 0.7000 0.7500 0.8750

PLS regression 0.8500 0.7250 0.7556 0.8286

Apathy

Proposed method 0.7500 0.8125 0.8000 0.7647

Stepwise multiple linear regression 0.7750 0.7375 0.7470 0.7662

Logistic regression 0.7375 0.7125 0.7195 0.7308

PLS regression 0.7375 0.7250 0.7284 0.7342

Anxiety

Proposed method 0.9250 0.9000 0.9024 0.9231

Stepwise multiple linear regression 0.7750 0.8500 0.8378 0.7907

Logistic regression 0.8750 0.6750 0.7292 0.8438

PLS regression 0.8250 0.8250 0.8250 0.8250
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Table 3.   Indices contributing to PSD presented in descending order according to the reduction in AUC 
caused by their removal from the proposed machine learning approach. JPSS Japanese Perceived Stress Scale, 
PASAT Paced Auditory Serial Addition Test, CPT Continuous Performance Test, SRT Simple Reaction Time, 
TMT Trail Making Test, RBMT Rivermead Behavioural Memory Test.

Rank Removed index AUC reduction (%)

1 JPSS 20.1

2 SDMT wrong answers 9.82

3 Digit span backward 8.17

4 Memory updating 3-span accuracy 4.35

5 PASAT 2-second accuracy 4.28

6 CPT-SRT 3.69

7 TMT part B time 2.50

8 RBMT profile 2.50

9 Visual cancellation Kana time 1.91

10 Position Stroop time 0.791

11 Tapping span forward 0.198

Table 4.   Indices contributing to apathy presented in descending order according to the reduction in AUC 
caused by their removal from the proposed machine learning approach. JPSS Japanese Perceived Stress Scale, 
CPT Continuous Performance Test, SRT Simple Reaction Time, FIM Functional Independence Measure, BIT 
Behavioural Inattention Test, SDMT Symbol Digit Modalities Test.

Rank Removed index AUC reduction (%)

1 JPSS 15.0

2 Digit span backward 6.97

3 Tapping span backward 4.74

4 Visual cancellation Kana time 4.14

5 CPT-SRT 3.44

6 Tapping span forward 3.27

7 Visual cancellation Kana accuracy 2.62

8 Cognitive FIM on admission 1.88

9 Visual cancellation 
�

 accuracy 1.78

10 BIT behavioural subtest 1.77

11 Digit span forward 1.75

12 Position Stroop time 1.34

13 SDMT wrong answers 0.90

14 Visual cancellation × time 0.129

Table 5.   Indices contributing to anxiety presented in descending order according to the reduction in AUC 
caused by their removal from the proposed machine learning approach. JPSS Japanese Perceived Stress Scale, 
FIM Functional Independence Measure, TMT Trail Making Test, CPT Continuous Performance Test, SRT 
Simple Reaction Time.

Rank Removed index AUC reduction (%)

1 JPSS 20.5

2 Digit span backward 13.5

3 Motor FIM on admission 10.3

4 Cognitive FIM improvement rate 6.91

5 TMT part B time 5.46

6 Position Stroop accuracy 4.14

7 Visual cancellation 
�

time 1.84

8 CPT-SRT 1.25

9 Digit span forward 0.263
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associated with depression or cognitive impairment through related mechanisms, result in poor prognosis for 
PSD patients3–5,25. It is believed that the presence of PSD interferes with ADL due to cognitive dysfunction.

To examine the role of psychosocial stressors as risk factors in psychological illnesses (i.e. depression or 
anxiety), the impact of an “objectively” stressful event should be determined by one’s perceptions of their 
stressfulness21. Cohen et al. developed the perceived stress scale, which is one of the most commonly used 
scales to measure the degree to which situations in one’s life are appraised as stressful20,21. Our results revealed 
that post-stroke neuropsychiatric symptoms are correlated with JPSS scores, suggesting that post-stroke mood 
disorders are associated with mental stress. However, our results also demonstrated a weak relation between 
PSD and anxiety and the severity of physical impairment (paresis measured obtained using the BRS). It may 
not always be as simple as when the symptoms are severe, the mental stress increases, leading to the easy onset 
of depressed. This is because even when stress is applied, patients tend to deal with the stress to prevent depres-
sion; however, if they are vulnerable to stress due to stroke (threshold hypothesis), the introduction of a sudden 
and unpredictable life-threatening stressor called stroke could potentially lead to mood disorders5,17. Thus, 
the perceived stress significantly affects post-stroke neuropsychiatric symptoms over objective stress measures.

The aetiology of the post-stroke mood disorder (depression, apathy, and anxiety) is believed to be multifacto-
rial and is poorly understood16. Additionally, cognitive impairment, stroke severity, and physical disability have 
been the most consistently identified associated factors2,16. In this study, we attempted to predict post-stroke 
mood disorders using machine learning by inputting the abovementioned factors, and obtain high prediction 
accuracies for cases of depression, apathy, and anxiety. Currently, a diagnostic kit for major depression is used 
to diagnose PSD; however, unlike major depression, PSD is characterised by variation and different pathological 
conditions, and hence an accurate diagnosis is infeasible16. PSD is therapeutically resistant in comparison with 
major depression2,3, and a more detailed diagnosis of PSD, such as depressed mood, decreased motivation, and 
anxiety, is beneficial for treatment16.

Conclusion and limitations
In conclusion, we found that post-stroke neuropsychiatric symptoms (i.e. PSD and anxiety) may be suitably 
identified using LLGMN based on test scores obtained from stroke patients. Furthermore, we evaluated the index 
contribution to each neuropsychiatric symptom using the partial KL information measure. This study is the first 
step in aiming to accurately diagnose PSD using data obtained in routine practice without any special equipment.

The degree of depression, apathy, and anxiety observed in this study was relatively mild in comparison with 
that typically observed in patients with major depression. Moreover, patients with severe comprehension deficits 
who could not perform the cognitive function tests were excluded from this study. Thus, these results may not be 
applicable to all stroke patients. To categorise the psychiatric grouping, we used simple screening tools; however, 
more in-depth assessment tools are desired and will considered in the future study to improve the accuracy of 
the diagnosis. Moreover, we intend to conduct detailed studies using MRI images to elucidate the aetiology and 
improve diagnostic techniques of PSD.

Data availability
The datasets generated and/or analysed in the current study are available from the corresponding author upon 
reasonable request.
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