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Abstract

Research suggested accumulation of tau proteins might lead to the degeneration of functional 

networks. Studies investigating the impact of genetic risk for Alzheimer’s disease (AD) on early 
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brain connections might shed light on mechanisms leading to AD development later in life. Here, 

we aim to investigate whether the polygenic risk score for Alzheimer’s disease (AD-PRS) 

influences the connectivity among regions susceptible to tau pathology during childhood and 

adolescence. Participants were youth, aged 6–14 years, and recruited in Porto Alegre (discovery 

sample, n = 332) and São Paulo (replication sample, n = 304), Brazil. Subjects underwent 

genotyping and 6-min resting state funcional magnetic resonance imaging. Connections between 

the local maxima of tau pathology networks were used as dependent variables. The AD-PRS was 

associated with the connectivity between the right precuneus and the right superior temporal gyrus 

(discovery sample: β = 0.180, padjusted = 0.036; replication sample: β = 0.202, p = 0.031). This 

connectivity was also associated with inhibitory control (β = 0.157, padjusted = 0.035) and 

moderated the association between the AD-PRS and both immediate and delayed recall. These 

findings suggest the AD-PRS may affect brain connectivity in youth, which might impact memory 

performance and inhibitory control in early life.
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1. Introduction

The accumulation of neurofibrillary tangles of hyper phosphorylated tau is one of the 

earliest and most important features of Alzheimer’s disease (AD), leading to neuronal 

damage and impaired cognition (Nordberg, 2015). It has been hypothesized that this process 

progresses along functional brain networks for decades before disease onset (Palop et al., 

2006; Seeley et al., 2009), causing variations in their activity and leading to clinical 

manifestations later in life. Understanding how genetic risk for AD affects brain connectivity 

in youth might shed light on mechanisms leading to AD development later in life.

Previous evidence has shown brain regions exhibiting excessive tau accumulation coalesce 

into 10 tau pathology networks, which have been associated with clinical outcomes, such as 

disease stage and global cognition dysfunction, and with segments of several well-

established functional networks, such as default mode network and language network 

(Hoenig et al., 2018). Examining the connections among regions susceptible to accumulate 

the tau protein is particularly important given that AD seems to affect several higher-order 

cognitive networks (Badhwar et al., 2017) but is not specific to any large-scale functional 

brain network as a whole (Hansson et al., 2017). This might be partially explained by 

regional differences in the vulnerability to tau accumulation (Hansson et al., 2017). These 

abnormalities in brain connections have been found not only within functional networks but 

also among them, leading to the hypothesis of a disconnection syndrome (Elman et al., 

2016; Liao et al., 2018; Wang et al., 2015).

Abnormalities associated with AD appear to manifest decades before disease’s diagnosis 

(Braak and Del Tredici, 2011; Su et al., 2017). Postmortem studies found pre-tangle tau 

alterations (stages a-c) in 25% of children aged up to 10 years and almost 70% of 

adolescents aged 10 to 20 in a few susceptible brain regions, whereas β amyloid plaques 
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only appeared after ages 30–40 years (Braak et al., 2011). Furthermore, previous studies 

found that the presence of the apolipoprotein E (APOE) ε4 allele and family history of AD 

relate to impairments in functional brain networks in asymptomatic adults (Su et al., 2017; 

Wang et al., 2012). Nevertheless, to our knowledge, no previous study has investigated the 

impact of genetic susceptibility to AD in functional brain connectivity during childhood and 

adolescence.

Our study aimed to investigate the implications of the polygenic risk score for Alzheimer’s 

disease (AD-PRS) on the connectivity patterns among tau pathology networks’ nodes in 2 

samples of children and adolescents. We also aimed to investigate the association of these 

connections with the APOE gene and with nondeclarative memory performance and 

executive function.

2. Materials and methods

2.1. Participants

Our samples were composed of children and adolescents from the Brazilian High-Risk 

Study for Psychiatric Disorders (Salum et al., 2015). Subjects were recruited in Porto Alegre 

(discovery sample) and São Paulo (replication sample), Brazil. Eligibility criteria were the 

following: (1) being 6–12 years old at enrollment and (2) being registered in school by a 

biological parent who was a primary carer and could provide information about their 

children’s behavior. After a screening phase (n = 9937), a high-risk subgroup for psychiatric 

disorders (n = 2371) and a random-selection subgroup (n = 1500) were selected. In the high-

risk subgroup, 14% did not fulfill inclusion criteria and 24% refused to participate or lost 

contact; in the random-selection group, these numbers were 12% and 27%, respectively. 

Finally, 958 (64%) and 1554 (66%) subjects completed household evaluation in the high-risk 

subgroup and the random-selection subgroup, respectively. A subsample of 636 subjects 

(332 in Porto Alegre and 304 in São Paulo) underwent genotyping and funcional magnetic 

resonance imaging acquisition in 2010. Participants and parents provided written or verbal 

consent. This study was approved by the Ethics Committee of the University of São Paulo 

and of the Hospital de Clinicas de Porto Alegre. Further information about participant 

selection can be found elsewhere (Salum et al., 2015).

2.2. Genotyping and polygenic risk score

After blood collection in EDTA tubes, we isolated genomic DNA using GentraPuregene Kit 

(Qiagen). We performed genotyping using the HumanOmniExpress V1 (Illumina), 

excluding single-nucleotide polymorphisms (SNPs) with a minor allele frequency < 1%, 

locus missingness > 10%, or Hardy-Weinberg equilibrium significance < 0.000001 and 

subjects with genotype missingness > 10% and estimation of identity by descent greater than 

0.12. Genotype imputation was performed in https://imputationserver.sph.umich.edu, using 

the 1000G Phase 1 v3 and the Pre-phasing algorithm SHAPEIT2.

We calculated the AD-PRS using the PRSice software (Euesden et al., 2015), based on the 

summary statistics of the International Genomics of Alzheimer’s Project (Lambert et al., 

2013; available at http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php). P-
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value-informed clumping was performed retaining the SNP with the smallest p-value within 

a 250-kb window and excluding SNPs in linkage disequilibrium (r2 > 0.1). We selected a 

priori a p-value threshold of <0.01 (nSNPs = 5116), in keeping with previous studies 

(Axelrud et al., 2018; Mormino et al., 2016).

To investigate APOE polymorphisms, we extracted a total of 19 SNPs within the APOE 

gene including a window of 500 bp upstream and downstream (HG19 chr19: 45, 408, 539–

45, 413, 150). The APOE gene was not included in the AD-PRS.

2.3. Neuroimaging

Images were acquired using 1.5-T functional magnetic resonance image systems (GE Signa 

HD in the discovery sample and GE Signa HDX in the replication sample), with the 

following parameters: TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, gap = 0.5 mm, 

flip angle = 80°, matrix size = 80 × 80, NEX = 1, slices = 26. We used a resting-state 

protocol, in which subjects looked at a fixation point, with a total acquisition time of 6 

minutes. Data were processed in AFNI (version 2011_12_21_1014) and FSL (version 5.0) 

packages.

The preprocessing consisted of several steps, as previously described (Sato et al., 2015). The 

first 4 volumes of echo-planar images were excluded, and the skull was stripped to reduce 

head movement. Images were motion corrected, despiked, and normalized to a grand-mean 

of 10,000. Data were band-pass filtered to frequencies between 0.01 Hz and 0.1 Hz and 

detrended using first- and second-order polynomials.

Images were spatially smoothed using a gaussian kernel (full width at the half maximum = 8 

mm). They were registered to standard space using the Montreal Neurological Institute 

template. We excluded volumes in which the framewise displacement (Yan et al., 2013) or 

the temporal derivative of the RMS variance over the voxels (Power et al., 2012) was larger 

than the 95% percentile of the total sample. We regressed out the following nuisance 

covariates: cerebral spinal fluid, white matter, global signal, and 6 linear motion parameters.

The mean blood oxygenation level dependent signal of each region of interest was extracted 

using spheres with a 5-mm radius, and the scrubbing procedure was conducted in R platform 

for computational statistics (www.r-project.org). The pairwise functional connectivity 

weights were obtained using the Spearman correlation coefficient also in R. We calculated 

the connectivity among the main nodes from each of the 10 tau pathology networks 

previously described (Hoenig et al., 2018), which included the left temporal middle gyrus, 

left precentral gyrus, right precuneus, right superior occipital region, left fusiform gyrus, left 

posterior cingulate cortex, right cuneus, right frontal medial orbital region, right superior 

temporal gyrus, and left parahippocampal gyrus.

2.4. Cognitive function

2.4.1. Nondeclarative memory—Nondeclarative memory was assessed using the Rey-

Osterrieth Complex Figure Test (ROCFT). Participants were asked to draw the ROCFT 

figure in 3 steps: while looking at it (copy) and from memory, after 3 and 30 minutes 

(immediate and delayed recall, respectively). The ROCFT scores were calculated using the 
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mean percent-retained items for each item (i.e., recall score/copy score), as previously 

described (Axelrud et al., 2018). Dependent variables were factor scores for each task after 

regressing out age trends by saving studentized residuals. Previous research reported 

associations between the AD-PRS and impaired performance in ROCFT in children and 

adolescents (Axelrud et al., 2018).

2.4.2. Executive function—Executive function was evaluated using tasks that 

investigated working memory, inhibitory control, and time processing. Working memory 

was assessed using the backward digital span (Wechsler et al., 2002), in which individuals 

were asked to repeat sequences of numbers in the order stated or in the reverse order; and 

backward Corsi blocks (Wechsler et al., 2002), in which participants were asked to repeat a 

spatial sequence tapped in 9 identical blocks. Inhibitory control was assessed using the 

conflict control task (Vandierendonck et al., 2004), which involved indicating the direction 

of an arrow and the go/no go task (Hogan et al., 2005) in which individuals had to inhibit the 

tendency to press a button indicating the directing of arrows when a double-headed arrow 

appeared. Time-processing task was investigated with a task in which subjects had to 

anticipate the appearance of a visual stimulus after 400 ms and 2,000 ms (Bitsakou et al., 

2008). All indexes were combined into a global executive function score using confirmatory 

factor analysis (Martel et al., 2017). Dependent variables were factor scores for each task 

after regressing out age trends by saving studentized residuals.

2.5. Statistical analyses—We selected spheres with a 5-mm radius centered at 

coordinates reported previously (Hoenig et al., 2018). The correlation of the blood 

oxygenation level dependent signal between regions was calculated using the Pearson 

coefficient, creating a matrix with 45 correlations. We used Student t-tests against 0 to 

determine if brain regions were functionally connected in our samples. Only nodes 

functionally connected (p < 0.05, adjusted for multiple comparisons using the Benjamini-

Hochberg method) were considered for further analyses.

Main analyses were tested with multiple regression models using connections between the 

main node of each tau pathology network as dependent variables and the AD-PRS as an 

independent variable. We used as covariates 4 principal components from genotyping, to 

adjust for genetic population stratification, and mean framewise displacement after 

scrubbing, to minimize head movement bias. The 4 principal components from genotyping 

were derived both separately for each sample (for the discovery/replication analyses) and 

considering both samples together (for the exploratory analyses). We also calculated 

ancestry using the Admixture software (Alexander et al., 2009). All analyses considered 

sampling weights, which adjust for our high-risk selection procedure (Martel et al., 2017). 

We used a discovery/replication approach, arbitrarily choosing the Porto Alegre site as the 

discovery sample, as in our previous study (Axelrud et al., 2018). All analyses in the 

discovery sample were adjusted for multiple comparisons using the Benjamini-Hochberg 

method. Significant associations in the discovery sample were then tested in the replication 

sample (São Paulo site), using a threshold of p < 0.05.

For the connections significantly associated to the AD-PRS, we also conducted 4 sensitivity 

analyses (i.e., investigating how strong the findings are allowing for variation in 

Axelrud et al. Page 5

Neurobiol Aging. Author manuscript; available in PMC 2020 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methodological decisions), 2 exploratory analyses (i.e., assessing the meaning of the 

findings in terms of association with clinically relevant phenotypes), and 2 specificity 

analyses (i.e., assessing whether results were specific to the AD-PRS and not found in PRS 

for other disorders).

Sensitivity analyses included (1) adjusted analysis for sex and age, APOE genotype, 

European ancestry scores, and 10 principal components from genotyping (instead of 4); (2) 

selecting only Caucasian subjects (n = 374); (3) assessing the impact of distinct p-thresholds 

of the AD-PRS; and (4) evaluating associations with the APOE genotype. Exploratory 

analyses were performed in the total sample and included (1) regressions investigating 

associations of the AD-PRS related connections with executive function and its 3 domains 

(adjusting for multiple testing) and nondeclarative memory and (2) an analysis examining 

whether these connections moderated the association between the AD-PRS and 

nondeclarative memory. For the latest analysis, we used marginal effects estimation, which 

represents the effects on predicted levels of memory recall for one standardized unit change 

of the AD-PRS or the connectivity of the significant tau pathology networks, when the other 

predictor (connectivity or AD-PRS) is held constant at different values (−2.0 to 2.0 standard 

deviations [SDs]). The interaction was graphically represented using R packages “interplot” 

(Solt and Hu, 2015) and “persp3D” (Soetaert, 2016), and marginal effects were explored 

using STATA, version 13 (StataCorp, College Station, TX). Specificity analyses included 

regressions between the AD-PRS–related connections and the PRS for schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) and major 

depression (Wray et al., 2018), which were calculated similarly to the AD-PRS. We selected 

a p-threshold lower than 0.05 (nSNP schizophrenia: 13,092; nSNP depression: 9549) based 

on previous studies (Musliner et al., 2019).

3. Results

3.1. Participants

Participants’ description can be found in Table 1. Compared with the original sample (N = 

2512), individuals who underwent genotyping had a similar mean age (original sample: 

mean = 124.6 months, SD = 23.05; genotyped sample: mean = 121.2 months, SD = 22.31) 

and sex distribution (original sample: 46.7% female; genotyped sample: 45.9% female). The 

AD-PRS was significantly lower in the discovery sample than in the replication sample (F = 

21.5, p < 0.001). Also, the AD-PRS was not associated with age (B = −0.017, p = 0.571), 

gender (F = 0.162, p = 0.688), and family income (B = −0.08, p = 0.141).

3.2. Main analyses

Student t-test analyses showed 35 connections were significantly different from 0 in the 

discovery and replication samples (see Supplemental Material).

Regressions revealed a one-unit increase in the AD-PRS z-score corresponded to a 0.18 z-

score increment in the connectivity between the right precuneus and the right superior 

temporal gyrus (pcrude = 0.005, padjusted = 0.036). Similar results were obtained for the 

replication sample (β = 0.202, p = 0.031) (Fig. 1). We also found associations that reached 
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trend-level replications between the AD-PRS and the connectivity between the right superior 

temporal gyrus and the left middle temporal gyrus (β= −0.198, padjusted = 0.017 for the 

discovery sample, β = −0.176, p = 0.051 for the replication sample). No other replicable 

associations of the AD-PRS with connections of tau pathology networks emerged from this 

analysis (see Supplemental Material).

3.3. Sensitivity analyses

The association between the AD-PRS and the connectivity between the right precuneus and 

the right superior temporal gyrus remained significant when adjusting for age and sex, 

European ancestry, APOE genotype, and for 10 principal components (see Supplemental 

Material). Results were also significant for a Caucasian subsample (β = 0.179, p = 0.004). 

Furthermore, associations between the AD-PRS and the connectivity between the right 

precuneus and the right superior temporal gyrus were significant when using the AD-PRS 

calculated using the stringent thresholds 0.05 to 0.2 and trend level using p-thresholds lower 

than 0.3 to 0.5 in the discovery sample (see Supplemental Material). We did not find an 

association of this connectivity with the APOE genotype (F = 0.046, p = 0.830).

3.4. Exploratory analysis

We did not find an association of the connectivity between the right precuneus and the right 

superior temporal gyrus with global executive function (β = 0.064, p = 0.120). Regarding 

executive function domains, we found an association between this connectivity and 

inhibitory control (β = 0.157, padjusted = 0.035), but not working memory (β = 0.049, 

padjusted = 0.222) and time processing (β = 0.055, padjusted = 0.222).

We also did not find associations of the connectivity between the right precuneus and the 

right superior temporal gyrus with immediate (β = −0.025, p = 0.537) and delayed recall (β 
= −0.031, p = 0.426). Nevertheless, we found this connectivity moderated the associations of 

AD-PRS with both immediate (p = 0.004) and delayed recall (p = 0.016), which were 

described in a previous study (Axelrud et al., 2018).

Marginal effect analysis revealed that, for subjects with high levels of genetic susceptibility 

to AD (≥1.5 z-score), the connectivity between the right precuneus and the right superior 

temporal gyrus was negatively associated with immediate recall, whereas for subjects with 

low genetic susceptibility to AD (≤−0.5 z-score), this association was positive (Table 2 and 

Fig. 2, Panel B). Furthermore, the AD-PRS was significantly associated with lower 

performance in immediate recall only for subjects in which the connectivity between the 

right precuneus and the right superior temporal gyrus was higher than average 

(representation in Fig. 2, Panel C). The effect of both the AD-PRS and the connectivity 

between the right precuneus and the right superior temporal gyrus quantiles on immediate 

recall z-score is represented in Fig. 2, Panel A. Similar results were found for delayed recall 

(Table 3).
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3.5. Specificity analyses

We did not find associations of the connection between the right precuneus and the right 

superior temporal gyrus with the PRS for schizophrenia (β = −0.038, p = 0.707) and 

depression (β = 0.008, p = 0.955).

4. Discussion

We found that the AD-PRS, but not APOE, was associated with an increased connectivity 

between the right precuneus and the right superior temporal gyrus. These regions are the 

local maxima of tau pathology networks that most likely represent the ventral default mode 

network and the language network (Hoenig et al., 2018), which are known to be impaired in 

AD (Weiler et al., 2014). Furthermore, we found this connectivity is associated with 

inhibitory control and moderates the association of the AD-PRS with both immediate and 

delayed recall. These findings suggest the connectivity between regions susceptible to tau 

pathology in late life may be affected in early life in individuals with genetic susceptibility 

to AD, which might impact both inhibitory control and memory.

The stereotypical anatomical propagation of tau pathology in AD might result from the 

network degeneration hypothesis, in which misfolded tau proteins would spread along 

functional networks (Hoenig et al., 2018; Seeley et al., 2009). Here, we showed connections 

between regions associated with the ventral default mode network and language networks 

are already aberrant in children and adolescents with higher genetic susceptibility to AD. 

Abnormalities in this connection were also revealed in a previous study, which showed 

significant, but not replicable, associations between higher levels of p-tau and increased 

connectivity between these areas (Tucholka et al., 2017). Our findings are also supported by 

previous studies, which have shown reduced volume and altered metabolism in the 

precuneus and in temporal regions in cognitively normal adults with a family history of AD 

(Mosconi et al., 2014) and in infant ε4 carriers (Dean et al., 2014). In keeping with the 

literature (Axelrud et al., 2018; Su et al., 2017), our findings suggest brain connectivity 

might be affected by genetic risk for AD in childhood and adolescence and predispose 

individuals to this disease later in life contingent on other genetic factors and environmental 

influences.

Furthermore, previous research showed associations of the AD-PRS with memory and 

hippocampal volume in youth (Axelrud et al., 2018). Our findings extend past evidence 

showing the association between the AD-PRS and memory is only significant in subjects 

with a strong connectivity between the right precuneus and the right superior temporal 

gyrus. This provides further insights on AD pathogenesis and on implications of genetic 

susceptibility to AD development in the brain during childhood and adolescence. Future 

studies can examine biological mechanisms that could explain this interaction and 

investigate whether this connectivity could help understand pathways leading to 

susceptibility to dementia in older individuals with high genetic risk to AD.

Limitations of this research need to be addressed. First, the use of multiple comparisons 

might increase the risk of type 1 error. Nevertheless, the correction for multiple comparisons 

in the main analyses and the replication in a second sample decrease this possibility. Second, 
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analyses were performed cross-sectionally, and therefore, it is not possible to determine 

whether this connectivity would still be associated with AD risk later in life. Future studies 

could investigate the implications of the AD-PRS in tau pathology networks over the 

lifespan. Third, given that the AD-PRS is not specific to tau pathology and that few tau 

abnormalities are present in such young ages, different neurological pathways, such as β 
amyloid accumulation and inflammation, might be contributing to our results and limiting 

their specificity. This nonspecificity might also explain the lack of association with the 

APOE gene.

Our results suggest brain connectivity may be affected during childhood and adolescence in 

individuals with genetic susceptibility to AD, which might impact memory performance and 

inhibitory control. Further research is necessary to replicate those findings and to continue 

advancing on the impact of genetic susceptibility to AD in early life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Associations of the polygenic risk score for Alzheimer’s disease (AD-PRS) with the 

connectivity between the right precuneus and the right superior temporal gyrus (RP-RSTG) 

for the discovery and replication samples. Note: Weights represent sampling weights, as 

explained in Section 2.
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Fig. 2. 
Interaction and marginal effects of the connectivity between the right precuneus and the 

right superior temporal gyrus and the AD-PRS on immediate recall. Note: Panel A depicts 

the immediate recall test performance (z-scores) according to deciles of the AD-PRS and the 

right precuneus and the right superior temporal gyrus connectivity. Average marginal effects 

for the linear prediction of immediate recall (y-axis) are depicted in Panels B and C. In Panel 

B, the estimated marginal effect of increasing levels (1 SD) of the right precuneus and the 

right superior temporal gyrus connectivity are demonstrated by each z-score of AD-PRS (x-

axis). In Panel C, the estimated marginal effect of increasing levels (1 SD) of the AD-PRS is 

demonstrated by each z-score of the right precuneus and the right superior temporal gyrus 
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connectivity (x-axis). Abbreviations: SD, standard deviation; AD-PRS, polygenic risk score 

for Alzheimer’s disease.
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