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A B S T R A C T

Daptomycin (DAP) is key in treating multidrug-resistant Staphylococcus infections. Diminished suscep-

tibility to DAP is emerging among Staphylococcus epidermidis strains although mechanisms for

non-susceptibility (NS) remain poorly understood. We report a case of persistent S. epidermidis bacter-

emia in which loss of DAP susceptibility arose during prolonged treatment. Whole genome sequencing

identified two mutations, Q371del and P415L, in a single-affected gene, WalK, that coincided with the

emergence of DAP-NS. Protein modeling of the mutations predicted a disruption of WalK protein con-

figuration. The emergence of mutations in a single-gene during DAP exposure raises concerns in an

era of increasingly treatment-resistant infections.
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Lay summary: Daptomycin is an important antibiotic for fighting Staphylococcus infections. We identified variants in the WalK gene

that were coincident with resistance in a clinical Staphylococcus epidermidis infection. Clinicians, hospital epidemiologists, and micro-

biology laboratories need to be aware of the potential for the evolution of drug resistance during prolonged daptomycin therapy.

K E Y W O R D S : Staphylococcus epidermidis; daptomycin; antibiotic resistance

INTRODUCTION

Coagulase-negative Staphylococci (CoNS), including S. epidermi-

dis, are capable of biofilm production, and are therefore one of

the most common causes of endovascular device-related blood-

stream infection (BSI) [1]. Staphylococcus epidermidis strains

causing infections are increasingly multi-drug resistant (MDR)

[2]. Guideline-based management of MDR-S. epidermidis endo-

vascular device-related BSI includes parenteral antibiotics (pri-

marily vancomycin) and removal of the device [3]. However, in

some settings, such as patients with a left ventricular assist de-

vice (LVAD), device removal is often impractical. In these

cases—absence of biofilm removal—prolonged courses of anti-

microbial therapy may increase the potential for further drug-

resistance development.

Daptomycin (DAP), a cyclic lipopeptide, demonstrates

concentration-dependent bactericidal activity against

Staphylococcus spp. [4]. Daptomycin is frequently used as an al-

ternative to vancomycin for the treatment of VAD-related S. epi-

dermidis BSI [5–7]. Although more than 98% of CoNS are

reported to be susceptible to DAP [8], recent reports raise con-

cern for emerging DAP resistance: (i) there are an increasing

number of DAP non-susceptible (DAP-NS) CoNS isolates (min-

imum inhibitory concentrations [MICs] >2 lg/ml) and (ii) DAP-

NS CoNS strains have been recovered from endovascular devi-

ces during DAP therapy [9].

Treatment-emergent DAP-NS S. aureus has been shown to

occur through heterogenous pathways [10]; however, the mech-

anisms of clinically emergent DAP-NS S. epidermidis and other

CoNS remain less well defined. One potentially overlapping

mechanism across multiple Staphylococcus spp. is the environ-

mental sensing apparatus, WalKR (syn: YycG/YycF). WalK is a

sensor protein kinase and a member of the two-component

regulatory system WalK/WalR (WalKR) that regulates genes

involved in autolysis, biofilm formation, and cell-wall metabol-

ism/degradation [11]. Increasing sub-inhibitory doses of DAP

to a biofilm-producing laboratory S. epidermidis strain

(ATCCRP62a) resulted in a DAP-NS phenotype via a single-

nucleotide mutation in the WalK (V500F) [12, 13]. The function-

al relevance of V500F was demonstrated in an isogenic mutant

RP62aWalKV500F with DAP-NS [13]. In a recent report, 6/17 of

DAP-NS CoNS were found to have WalKR mutations [13].

However, whether WalKR mutations are sufficient to result in

clinical-emergent DAP-NS CoNS and/or clinical failure has yet

to be proven. Furthermore, given the potential for antimicrobial

heteroresistance among bacterial sub-populations within a

given biofilm, it is unclear to what extent antibiotic-resistant

strains emerge through: (i) in vivo bacterial evolution during

antibiotic pressure, (ii) antibiotic-mediated selection for a pre-

existing intrinsically resistant subpopulation, and/or (iii) acqui-

sition of an antibiotic resistant mutation from the external

environment.

Here, we report on a case of persistent S. epidermidis bacter-

emia in a patient with an LVAD in which loss of susceptibility to

both vancomycin and DAP arose during prolonged exposure to

DAP. To the best of our knowledge, this is the first report to le-

verage whole genome sequencing (WGS) of isolates before and

after antimicrobials to elucidate potential mechanisms of

treatment-emergent DAP-NS within a patient host. We identi-

fied two mutations in the WalK gene from a single S. epidermidis

strain (ST2) that became fixed after non-susceptible blood-

stream isolates emerged, adding to the growing literature of the

potential role of this gene in S. epidermidis DAP-NS.

CASE PRESENTATION

A 49-year-old woman with a history of non-ischemic cardiomy-

opathy and previous biventricular intra-cardiac defibrillator de-

vice and LVAD placement underwent LVAD exchange owing to

device malfunction. Six weeks later, a percutaneous drain was

placed to evacuate a persistent post-operative fluid collection

near the LVAD. Ten days thereafter (52 days after LVAD ex-

change), she presented with fever. Multiple blood cultures grew

MDR-S. epidermidis (resistant to oxacillin, clindamycin, gentami-

cin, and trimethoprim-sulfamethoxazole) that was susceptible

to vancomycin and DAP by E-test (Supplementary Table 1;

Supplementary Methods). Staphylococcus epidermidis was iso-

lated from the draining fluid, confirming the putative source of

infection. Vancomycin was initiated immediately for VAD-

related S. epidermidis bloodstream infection, but despite achiev-

ing therapeutic vancomycin serum concentrations, bacteremia

persisted. On day 5, vancomycin was changed to DAP (6 mg/kg

IV), the drain was exchanged, and blood cultures resulted with

no growth within 48 h. Daptomycin was continued for 6 weeks

(46 total days) at which time the drain was removed. The pa-

tient was transitioned to oral doxycycline for suppression until

heart transplant; however, on day 10 of doxycycline, fevers and

MDR-S. epidermidis bacteremia recurred despite complete reso-

lution of the fluid collection. Daptomycin was re-initiated, but S.

epidermidis continued to grow in blood cultures, and the new
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isolate demonstrated intermediate susceptibility to vancomycin

(MIC¼ 8.0 lg/ml) and loss of DAP susceptibility

(MIC¼ 2.0 lg/ml).

CASE MANAGEMENT AND OUTCOME

Following the identification of a DAP-NS isolate, ceftaroline was

initiated and bacteremia cleared within 48 h. However, eosino-

philia and infusion-related chest pain after 20 days of ceftaroline

prompted a change from ceftaroline to tigecycline. Surveillance

blood cultures collected on day 6 of tigecycline again grew DAP-

NS S. epidermidis (MIC¼ 4.0 lg/ml). Linezolid did not success-

fully clear bacteremia through 5-day monotherapy and another

4 days in combination with ceftaroline despite linezolid suscep-

tibility (Supplementary Table 1). A combination of DAP–ceftaro-

line eventually led to sustained negative blood cultures and

ultimately resolution of clinical symptoms. The patient was con-

tinued on DAP–ceftaroline without adverse events for more

than 20 weeks until definitive VAD explant with heart transplant-

ation was able to occur.

Microbiologic evaluation

Vancomycin susceptibility testing (MIC) of the blood culture

isolate from day 63 (Fig. 1) revealed both normal S. epidermidis

growth around the E-test strip (Sepi_5a) and a smaller colony

morphotype variant within the zone of inhibition of the E-test

strip (Sepi_5b). To assess the colony heterogeneity, both colony

morphotypes were sub-cultured, confirmed to be S. epidermidis,

and vancomycin and DAP MICs were repeated on each morpho-

type separately and frozen separately (Supplementary Table 1).

Given that distinct clones with different antimicrobial suscepti-

bility patterns have recently been shown in a patient with VAD-

related S. aureus endocarditis [14], we hypothesized that the

presence of these two different morphotypes recovered from

the same blood culture similarly indicated a mixed infection of

two closely related strains.

To determine if there was a genotypic basis for the differing

phenotypic colony morphology and susceptibility patterns, we

performed pulse-field gel electrophoresis (PFGE) and WGS on

the patient’s isolates that were frozen and stored during each

round of antimicrobial susceptibility testing, including both col-

ony morphologies from day 63 (Sepi_5a and Sepi_5b).

Analysis of the PFGE patterns showed that the small colony

morphotype, Sepi_5b, had only a slight shift in one band com-

pared with Sepi_5a that was indistinguishable from the pre-

antibiotic reference Sepi_1 (Supplementary Fig. 2).

Furthermore, these three isolates were distinct from two

archived VAD-related S. epidermidis bacteremia isolates at our

institution, used for comparison.

Genomic analysis

DNA extraction was performed by picking multiple colonies from

the pure subculture of each of the frozen bloodstream isolates to

genetically characterize bloodstream isolates relevant to DAP ex-

posure: seven time points, including both morphotypes from day

63 (Fig. 1). To capture as much genetic variation as possible, we

performed short variant discovery and large structural variant dis-

covery using a set of ‘raw’ (low stringency) and ‘filtered’ (high

stringency) variants produced from reference guided mapping of

paired-end WGS data (Supplementary Methods). In addition, we

identified the species, multi-locus sequence type, resistance

genes, and plasmids using a de novo assembly approach with the

Centers for Genomic Epidemiology Bacterial Analysis Pipeline

(Supplementary Fig. 1; Supplementary Methods) [15]. From these

multiple approaches, we identified only two variants capable of

completely segregating DAP-S isolates (Sepi_1, Sepi_2, Sepi_3,

Sepi_4, and Sepi_5a) from DAP-NS isolates (Sepi_5b, Sepi_6,

and Sepi_7; Supplementary Fig. 3). These sites encoded a three

base-pair deletion (Q371del) and a missense mutation (P415L) in

the WalK gene (NP_763574.1), respectively (Supplementary Fig.

4). Both variants were within the predicted kinase region (AA 384-

602) of the protein (https://www.uniprot.org/uniprot/Q8CU87,

July 2004, date last accessed) [13]. PROVEAN protein analysis

indicated that the Q371del and P415L mutations had a deleteri-

ous predicted effect (Supplementary Table 2). Given the expected

functional change from the mutation, we evaluated if structural

Figure 1. Timeline of clinical course: The clinical course of the patient (middle) with clinical events demarcated in circles while boxes indicate blood cultures

(grey box: no growth; pink box: positive growth). The treatment regimen with days of antibiotic use is included (bottom) alongside the bloodstream isolate

collection with susceptibility testing (top). VAD, ventricular assist device; SE, Staphylococcus epidermidis; NG, no growth; S, susceptible; NS, non-susceptible.
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changes in the protein could be predicted by homology modeling.

The model indicates several disruptions in tertiary structures

along the WalK protein when compared to wild-type protein, con-

sistent with a non-neutral change in protein function

(Supplementary Fig. 5).

DISCUSSION

We report that a deletion of Q371 together with a single substi-

tution mutation in WalK (P415L) arose coinciding with the loss

of DAP susceptibility in an MDR-S. epidermidis (ST2) blood

stream infection after prolonged DAP exposure. To the best our

knowledge, this is the first report of in vivo induction of the

WalK mutation in a CoNS clinical isolate that is absent in other

heterogenous mutations [9] including previously reported MprF

S295L substitutions [2, 16]. We found no evidence of sub-

populations of different strains using both traditional microbio-

logical methods and whole genome analysis. As a result, we

conclude that in vivo mutation resulting from antibiotic pres-

sure was the most likely explanation for clinical failure owing to

the emergence of a DAP-NS S. epidermidis strain. In addition, a

previous study has shown that in vitro selection for DAP-NS

resulted in a V500F WalK, further supporting the relevance of

Q371del/P415L for phenotypic loss of DAP susceptibility [13].

Finally, the Q371del/P415L mutation persisted after discontinu-

ation of DAP (day 67), suggesting that the mutated strain may

not incur a fitness-cost relevant to this clinical setting. Thus,

our findings add to an increasing recognition of the role of

mutations in the WalK/R sensing system and DAP resistance

among CoNS (Table 1).

How Q371del/P415L and V500F functional changes in WalK

result in loss of DAP susceptibility is presently unknown.

Similar to detergents, DAP is a bactericidal cell membrane-

targeting lipopeptide. Perturbations in cell membrane events,

including resistance to cell membrane depolarization and per-

meabilization, and reduced surface binding of DAP can lead to

DAP resistance in S. aureus [17]. Interestingly, although overex-

pression of WalKR in S. aureus reduces susceptibility against

vancomycin [18], the loss of WalKR expression resulting from

mutations in regulatory genes leads to high resistance to cell

lysis by Triton X-100 [11].

After prolonged exposure to a standard dose of DAP at 6 mg/

kg IV, our patient developed a DAP-NS S. epidermidis infection

with possible loss of vancomycin susceptibility. We cannot deter-

mine whether a higher initial dose of DAP may have averted DAP-

NS evolution; however, increasing experience in the use of DAP

for treatment of MRSA bloodstream infections suggests that the

manufacturer-labeled dose may be inadequate, leading many

experts to recommend doses of 8–10 mg/kg [19]. These consider-

ations may be especially important for patients with an implanted

cardiac device that cannot be removed, and when guideline-

recommended adjuvant antibiotics such as aminoglycosides to

promote bacterial clearance and/or rifampin to improve biofilm

penetration [3] carry an unacceptably high risk of toxicity, as it is

often the case of VAD-related bacteremia [1]. Further investiga-

tions are also needed to determine whether material-specific

effects on biofilm production influence antibiotic resistance [20]

in VAD-related infections, including regulation of WalKR [21].

Although we assumed that in our clinical setting, the

Q371del/P415L mutation resulted in a low fitness cost, given

its persistence even after the discontinuation of DAP treatment,

it is possible that this persistence is not evidence of prosperity.

In particular, the reversion of a deletion is highly unlikely and

the Q371del/P415L mutation may represent an inescapable fit-

ness in the absence of the DAP selective pressure. Future study

with wild-type and isogenic knockout strains will be needed to

elucidate this fitness landscape.

Increasing antimicrobial resistance among disease-associated

S. epidermidis strains represents a global public health concern [2].

Given the current low incidence of DAP-R among S. epidermidis in

the United States, DAP susceptibility is not universally reported by

clinical microbiology laboratories and may often only be inferred.

However, increasing reports of DAP-NS CoNS isolates raise the

importance of vigilant monitoring and reporting of highly resistant

isolates when they do occur. This may be of particular importance

among patients with endovascular devices as a prior study found

that only seven clones accounted for the majority of S. epidermidis

infections in patients with VAD-related infection in the United

States [22].

The utility of genomic and bioinformatic approaches for the sur-

veillance, identification, and prediction of antibiotic resistance is

being increasingly recognized as an aid or alternative to traditional

clinical microbiology [23, 24]. In this manuscript, we combine

these two disciplines together in a translational approach to eluci-

date the putative mechanism of antibiotic resistance observed in

the clinic. In the future, similar translational approaches con-

ducted in near real time would help to inform clinical practice by

distinguishing the mechanism of resistance (e.g. in vivo evolution,

selection of standing variation, and acquisition of resistance from

the external environment), which thereby provides information for

a tailored therapeutic response.

CONCLUSION

Clinicians, hospital epidemiologists, and microbiology laborato-

ries need to be aware of the potential for drug-resistance devel-

opment on therapy. Daptomycin dosing is undergoing scrutiny

for MRSA and Enterococcal infections, and our data support

the consideration of using higher than manufacturer label

(6 mg/kg) when treating high-burden endovascular device-

related S. epidermidis bacteremia. Our findings suggest that

DAP promoted the Q371del/P415L WalK mutation, but given
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that other environmental triggers, like detergents and divalent

metals, may also regulate WalKR; further investigations into the

range of hospital chemical inducers of reduced susceptibility to

vancomycin and DAP are warranted.

Supplementary data

Supplementary data is available at EMPH online.
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