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A B S T R A C T   

This work is the consideration of a fractal fractional mathematical model on the transmission and control of 
corona virus (COVID-19), in which the total population of an infected area is divided into susceptible, infected 
and recovered classes. We consider a fractal-fractional order SIR type model for investigation of Covid-19. To 
realize the transmission and control of corona virus in a much better way, first we study the stability of the 
corresponding deterministic model using next generation matrix along with basic reproduction number. After 
this, we study the qualitative analysis using “fixed point theory” approach. Next, we use fractional Adams- 
Bashforth approach for investigation of approximate solution to the considered model. At the end numerical 
simulation are been given by matlab to provide the validity of mathematical system having the arbitrary order 
and fractal dimension.   

1. Introduction 

Our discussion is about covid-19 which was started firstly from 
Chines city Wuhan, transmitted throughout the globe very rapidly. This 
disease of COVID-19 named after the attack of corona virus in Chines 
city Wuhan at the end of 2019. Due to this disease more than 0.616 
million individuals in initial eight months have been died. The pandemic 
of a terrible and much more spreading virus of recent time is of covid-19 
and this is tested in the “Wuhan (Chinese city)” on 31st of December, 
2019 [1,2]. This outbreak has affected an about 13.5 millions all over 
the globe. The discovery of Crona virus was done in “1965”, as “Tyrrell” 
and “Bynoe” have find and passes a virus called “B814” [3], which is 
situated in human beings “embryonic tracheal organ” grows through 
respiratory system organs of an aged one [4]. Such kind of bacteria 
transmits in air through social gathering of infected people to healthy 
ones by droplets of coughing or sneezing. It is also spreading through 
keeping hands or fingers on the area or surface of different things 

touched by the infected ones, which is then transmitted to healthy 
people by touching nose, mouth and eye. This will affects “respiratory 
system” and the transmitted peoples will symptoms of high fever, 
coughing and breathing problem . The infection and the onset of 
symptoms ranges from one to fourteen days. Infectious person shows 
symptoms within five to six days. To overcome the spreading of such 
kind of disease peoples must follow hand washing after every 20 mi-
nutes, taking masks, and isolate from gathering in different areas. 

Scientists and politicians are trying to stabilize the aforesaid infec-
tion from transmission and spreading. The reason of transmission of 
such kind of pandemic is the traveling of affected persons from one area 
to another which infect much more community of peoples of different 
areas and spread the disease. For this various steps on national and in-
ternational level have been taken so far, as different countries of the 
globe have stopped traveling and journeys of aeroplanes, trains, busses 
for fixed time and also closed different economic and business activities 
in cities for applying some careful ways to minimize large number of loss 
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of lives of peoples. Further each and every government of the world try 
to minimize gurnets of peoples and to decrease number of infection ones 
in their government territory [5]. 

As scholars and analyst are making different experiments and anal-
ysis to find cure or vaccine for the afore mentioned pandemic to control 
and stabilized it. Knowing the transmission of a disease has vital work in 
stabilizing the pandemic in a community. Accepting of a proper thinking 
about the disease spreading is also another important task for imple-
menting. Engineering in medical sides aware the people and pointed out 
the importance of modeling approach of mathematics, which is one of 
the important formulation for handling and understanding such kind of 
pandemic. Mathematical formulation like modeling have been applied 
for various infections in past [6–9]. Mathematical models have a lot of 
property and aspect to give information to the researchers and scholars 
of physical and medical sciences about how to control such type of 
pandemic or epidemic. These models can also be applied for prediction 
of the expected patients in the incoming days by any controlling policy 
and to obtained their aims and objectives. Basic research is made by 
scholars and scientists to formulate viral diseases and was applied by 
politicians to minimize such outbreak, (for detail see [10–15]). There-
fore, the afore mentioned diseases has been analyzed in many journals 
[16,1,17–24]). 

The models of mathematics formulation are generally ordinary 
(ODEs) or partial differential equations (PDEs), saturated with equations 
of integrations of natural orders (IDEs). Since the 1990, the arbitrary 
order (ODEs) and (PDEs) can be applied to model real problems with 
much better results having accurate result. Next, uses of such type of 
equations will be available in various fields of physics and medicine, 
engineering, economical problems, business and in analysis of various 
diseases. Fractional calculus is the vide range of arbitrary order differ-
ential and integral calculus. The scope of applying FDEs in formation of 
ODEs and PDEs of real global issues is because of its well known prop-
erties of heredity which are not found in integer order ODEs and PDEs. 
Inspire of IDEs, which are localized for global problems, the FDEs are 
delocalized and have the past study of history effects, which is the 
reason of their superiority then IDEs. Another factor is, in different 
conditions the coming state of the mathematical formulation not only 
effected by the recent state but also on the past[25,26,4,27]. These 
properties make FDEs to model the real world problems having “non- 
Markovian behavior”. Next, the integer order differential equations 
(IDEs) are not able to give it behavior between any two natural order 
numbers. Different types of fractal dimensions and arbitrary-order de-
rivatives were presented in Books to solve such limit of natural-order 
derivatives. Such type of derivatives can be applied to different areas 
of physical and natural sciences. The most suitable field of applied 
research in present era is devotion to analysis of epidemiological 
formulation of infectious pandemic. More analysis about the models of 
mathematical formulation are developed to discuss predictions by 
simulation, “stability theory”, “existence results” and “optimization”, 
see [28–32]. 

Because of the recent conditions, many analysis have been done on 

modeling of terrible pandemic of “COVID-19”, see [33–35,5]. In present 
this field of mathematical formulation for the “COVID-19” infected 
diseases is an interested field of research. Because of such importance in 
[36] scientists analyzed the mathematical model of three individuals, 
namely “healthy or susceptible population” $(t), the “infected popula-
tion” I(t) and the “recovered class” R(t) at time t as 
⎧
⎪⎪⎨

⎪⎪⎩

$̇(t) = a − μ$ − bc$I,

İ(t) = I(bc$ − μ − k − λ),
Ṙ(t) = kI − μR,

$(0) = $0⩾0, I(0) = I0⩾0, R(0) = R0⩾0,

(1)  

having the rate of new born and migrated individuals is denoted by a, 
transmission rate from susceptible to infected is denoted by b, contact 
rate of susceptible with infected by c, μ is naturally death rate or without 
infection, k is the recovery rate while λ is the death rate of infected class 
from aforesaid virus. 

We are going to study the model given in (1) by including recovered 
individuals equation for fractal-fractional order derivative with 0 < ω⩽1 
and 0 < r ≤ 1 as given by 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ABCDω,r
t $(t) = a − μ$ − bc$I,

ABCD
ω,r
t I(t) = I(bc$ − μ − k − λ),

ABCD
ω,r
t R(t) = kI − μR,

S(0) = S0⩾0, I(0) = I0⩾0, R(0) = R0⩾0, 0 < ω, r⩽1.

(2) 

The Transfer diagram for (2) is given in Fig. 1 which shows the 
interaction among the compartments and various rates. 

For the last few decades, it is noted that arbitrary-order equations of 
differentiations (FDEs) and integrations (FIDEs) can be use for modeling 
real world problems by much better way than integer order ODEs, PDEs 
and IDEs. In the 1750s when “Reimann and Liouvilli”, “Euler and 
Fourier” give interesting analytical results in integer order of differential 
and integral calculus. Due to their work the field of fractal-fractional 
calculus was also introduced and some best analysis has been done 
later on. Because of their much more uses of non-integer differential and 
integral calculus in the field of formulation, in which much more he-
reditary ideas and memorizing ways cannot be cleared by old or integer 
order calculus. Due to non-integer order calculus much more error has 
been reduced present in integer order derivative or anti-derivative. The 
useful uses of the aforesaid calculus may be seen in [4,25–27,37–42]. 
Due to these uses scholars and doctors have given more valuable time in 
studding of arbitrary order calculus. Surely non-integer order derivative 
is antiderivative of definite type which means the summation of the 
entire function or spectrum which make it generalized and globalized. 
As compared to integer order derivative which is a special derivative of 
the non-integer order. Investigation of various mathematical models for 
existence and uniqueness, approximation and maximization or mini-
mization, beneficial efforts have been done by scholars, see as [43–49]. 
This is also notable that arbitrary-order operators of differentiation have 
been formulated by large number of ways. Definite integration has no 
kernel of regular type, so, different types of “kernel” are in different 
lemmas. One such type of formula having currently gained more interest 
is of “ABC” non-integer derivative defined by “Attangana-Baleanu” and 
“Caputo” [50] in 2016. This arbitrary order derivative changed the 

Fig. 1. Dynamical behavior of all the three compartments for the fractal- 
fractional model (2). 

Table 1 
Description and numerical values of the parameters.  

Parameters Description value 

S0  Initial susceptible class 220 millions [68]  
I0  Initial infected class 0.142 million [68]  
R0  Initial value of recovered class 0.0125 million [68]  
a  Natural birth rate rate 0.00009  
b  Transmission rate 0.001664, 0.001663, 0.0016628  
c  Contact rate 0.49  
μ  Natural death rate 0.019 [68]  
λ  death rate due to virous 0.00134  
k  recovery rate 0.001   
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“singular kernel” by “non-singular kernel” and because of this, it is 
studied on high level [51–57]. Now the question how to solve these 
problems. In this regards plenty of methods available in literature which 
has been applied to the old definitions of fractional derivative. For 
instance, to handle nonlinear problems analytically, famous decompo-
sition and homotopy methods were increasingly used (see [9,58,59]). 
For numerical purpose in simulation usually Runge Kutta methods were 
used in large number for dealing of mathematical modeling. Here for 
numerical simulation we will use fractional AB method for numerical 
simulation. The mentioned method is simple two step technique and 
more powerful than Euler’s, Taylor’s and RK methods. The concerned 
method is powerful as well as rapidly converging and stable, (for detail 
see [60,61]). 

2. Basic Definitions 

. 

Definition 2.1. [33,54,55,62] Let us take the continuous and differ-
entiable mapping ℧(t) in (a, b) with 0 < r ≤ 1 order, then the fractal- 
arbitrary order derivative of ℧(t) in ABC form with fractional order 0 <

ω ≤ 1 and the law of power is given as 

ABCDω,r(℧(t)) =
ABC(ω)

1 − ω
d

dzr

∫ t

0
℧(z)κω[

− σ
1 − ω(t − zω)

ω
]dz.,

We find that if we replace κω

[
− ω
1− ω(t − z)

ω
]

by κ1 = exp
[
− ω
1− ω (t − z)

]
, we 

will than get the type of derivative known as “Caputo-Fabrizo differ-
ential operator”. Next it is written that 

ABCDω,r [Constant] = 0.

In this result ABC(ω) is known as “normalization mapping” which is 
given as ABC(0) = ABC(1) = 1. κω is the well known mapping called 
“Mittag-Leffler” which is also known as general case of the exponential 
mapping [37–39]. 

Definition 2.2. Let us take the continuous and differentiable mapping 
℧(t) in (a, b) with 0 < r ≤ 1 dimensional order, then the fractal-arbitrary 
order integral of ℧(t) in ABC form along with arbitrary order 0 < ω ≤ 1 
and the law of power is given by”: 

ABCIω
0 (℧(t)) =

1 − ω
ABC(ω)t

r− 1℧(t)+
rω

ABC(ω)Γ(ω)

∫ t

0
(t − z)ω− 1zr− 1℧(z)dz.

(3)   

Lemma 2.1. [63] The solution of the given problem for 0 < ω, r ≤ 1 
ABCDω

0 ℧(t) = rtr− 1Y(t,℧(t)), t ∈ [0, T],
℧(0) = ℧0, 0 < ω, r ≤ 1,

is provided by 

℧(t)=℧0+
(1− ω)

ABC(ω)
tr− 1Y(t,℧(t))+

rω
Γ(ω)ABC(ω)

∫ t

0
(t− z)ω− 1zr− 1Y(z,℧(z))dz.

Note: For finding existence and uniqueness, we take “Banach space” 

Z = Y = F([0,T] × R3,R)

, where Y = F[0,T] having the norm in the space is 

‖W‖ = ‖℧‖ = max
t∈[0,T ]

[|S(t)|+ |I(t)|+ |R(t)|]

. 
Here we present a theorem on fixed point which will be utilize to 

prove our next results. 

Theorem 2.1. [64–67] statement: Let A be a subset convexed in space 
Zalong with assumption that F1 and F2 are the operators with 

1. F1(w)+F2(w) ∈ A for every w ∈ A; 
2. F1 will satisfy the conditions of contraction; 
3. F2 will satisfy the conditions of continuity and compactness. 

Then the operators or functional equations F1w+F2w = w has one or 
more than one solution. 

3. Feasibility and Stability 

. 

Lemma 3.1. The roots or zeros of (2) in the feasible region have 
bounds, as 

T =
{(

$, I,R
)
∈ R3

+ : 0⩽N(t)⩽
a

μ

}
.

Proof. By adding all equations of (2), we have 

dN

dt
= a − μ$ − bc$I + I(bc$ − μ − k − λ)

+kI − μR,

= a − μ($(t) + I(t) + R) − λI(t),

⩽ a − μ($(t) + I(t) + R(t)),

⩽ a − μ(N(t)),

dN

dt
+ μN⩽ a.

(4) 

Solving (4), we have 

N(t)⩽
a

μ+Cexp( − μt), (5)  

if t→∞, N(t)⩽a
μ, the last result proved our required result. Next we 

to prove some basics results about stability analysis, for this we have to 
compute free equilibrium point and pandemic equilibrium point of (2) 
as 

ABCDω,r
t $(t) = 0,

ABCDω,r
t I(t) = 0,

ABCDω,r
t R(t) = 0.

As earlier mentioned that We will compute two equilibria points 

which are given as: E0 =
(
a
μ, 0, 0

)
is the pandemic free equilibrium 

point of (2) and the pandemic is E* = ($*, I*, R*), and 

$* =
μ + k + λ

bc
,

I* =
abc − μ(μ + k + λ)

bc(μ + k + λ)

and 

R* =
abck − μk(μ + k + λ)

μbc(μ + k + λ)

Theorem 3.1. The basic reproductory number for (2) is computed as 

R0 =
bca

μ(μ + k + λ)
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Proof. Let we to prove the reproduction number by taking 2nd equa-
tion of (2) as X = I,

ABCDω,r
t (X) = ABCD

ω,r

t (I) = bcI$ − I(μ + k + λ),
ABCD

ω,r
t (X) = F − V,

where F = bcI$, V = I(μ + k + λ), F is the infected term of non-linearity 
and V term of linearity. Further, the next generation matrix is FV− 1, and 

F =

[
∂
∂I
(bcI$)

]

= [bc$],

and 

V =

[
∂
∂I
(I(μ + k + λ))

]

= [(μ + k + λ)], V− 1 =

[
1

μ + k + λ

]

,

then 

FV− 1 =

[
bc$

(μ + k + λ)

]

.

So R0 is the greater eigen value of our considered matrix FV− 1 at 
pandemic free equilibrium point E0 = (aμ, 0, 0), given as follows 

ρ(FV− 1)E0
=

[
bca

μ(μ + k + λ)

]

. (6)  

Hence basic reproduction number is proved and is given by 

R0 =
bca

μ(μ + k + λ)
.

The last result shows the the required result. 

Theorem 3.2. StatementThe pandemic free of disease equilibrium 
point of (2) is locally asymptotically stable if R0 < 1 and unstable if 
R0 > 1. 

Proof. Let matrix of Jacobian of (2) will be written as  

or 

J =

⎡

⎣
− μ − bcI − bc$ 0

bcI bc$ − (μ + k + λ) 0
0 k − μ

⎤

⎦. (7) 

Using the values of E0, we get 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− μ − bca
μ 0

0
bca
μ − (μ + k + λ) 0

0 k − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Now the characteristics equation can be find as 

Det(J − ΛI) =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

− μ − Λ
− bca

μ 0

0
bca
μ − (μ + k + λ) − Λ 0

0 k − μ − Λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0.

Thus the eigen values are given by 

Λ1 = − μ,

Λ2 =
bca
μ − (μ + k + λ),

Λ3 = − μ 

Further, Λ2 can be written as 

Λ2 =
bca

μ(μ + k + λ)
− 1.

Last result shows that 

“Λ2 = R0 − 1”  

and Λ2 will be non-positive if “R0 < 1”. So all “eigen values” are non- 
positive , So (2) is locally asymptotically stable” at E0, and will be un-
stable otherwise. 

Theorem 3.3. StatementThe pandemic or after infection the equi-
librium point E* = (S

*
, I

*
, R

*
) is locally asymptotically stable if R0 >

1 and globally asymptotically stable if the minors of Routh-Hurwitz 
matrix are positive. 

Proof. Putting the values of E* = ($*, I*,R*) in (7), we get 

J =

⎡

⎣
− μ − bcI* − bc$* 0

bcI* bc$* − (μ + k + λ) 0
0 k − μ

⎤

⎦. (8) 

After simplification we get 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− μ − (
abc

μ + k + λ
− μ) − (μ + k + λ) 0

abc
μ + k + λ

− μ 0 0

0 k − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

or 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−
abc

μ + k + λ
− (μ + k + λ) 0

abc
μ + k + λ

− μ 0 0

0 k − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The characteristics equation becomes 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂$(ϕ1(t, $(t), I(t),R(t)))

∂
∂I
(ϕ1(t, $(t), I(t),R(t)))

∂
∂R

(ϕ1(t, $(t), I(t),R(t)))

∂
∂$(ϕ2(t, $(t), I(t),R(t)))

∂
∂I
(ϕ2(t, $(t), I(t),R(t)))

∂
∂R

(ϕ2(t, $(t), I(t),R(t)))

∂
∂$(ϕ3(t, $(t), I(t),R(t)))

∂
∂I
(ϕ3(t, $(t), I(t),R(t)))

∂
∂R

(ϕ3(t, $(t), I(t),R(t)))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Det(J − ΛI) =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

−
abc

μ + k + λ
− Λ − (μ + k + λ) 0

abc
μ + k + λ

− μ − Λ 0

0 k − μ − Λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0,

or 

Λ3 +( − μ+
abc

μ + k + λ
)Λ2 +(

μabc
μ + k + λ

+ abc − μ(μ+ k+ λ))Λ+ μ(abc)

− μ(μ+ k+ λ) = 0,

or 

a0Λ3 +(a1)Λ2 +(a2)Λ+ a3 = 0,

Making Hurwitz matrix, as follows 
⎡

⎣
a1 a0 0
a3 a2 a1
0 a4 a3

⎤

⎦.

On applying Routh-Hurwitz criteria, all the principle minors be 
positive than as given below 

| a1 |> 0,

this implies that a1 = − μ+ abc
μ+k+λ or a1 = − 1+R0 or a1 > 0 if R0 > 1. By 

similar way one can show that the following minors must also be 
positive. 
⃒
⃒
⃒
⃒

a1 a0
a3 a2

⃒
⃒
⃒
⃒> 0.

and 
⃒
⃒
⃒
⃒
⃒
⃒

a1 a0 0
a3 a2 a1
0 0 a3

⃒
⃒
⃒
⃒
⃒
⃒
> 0.

By R0 > 1 and positivity of all minors achieved the local asymptotical 
and global stability for the considered system. 

4. Existence and uniqueness of model (2) 

It is of great importance to ask weather a dynamical problem we 
investigate exist really or not. This is the basic question and will 
answered by the theory of fixed points. Here we analyze the concerned 
need for our considered problem (2) in this part of the paper. Regarding 
to the aforesaid need as the integral is differentiable, we can write the 
right sides of model (2) as 
⎧
⎪⎪⎨

⎪⎪⎩

ABCDω($(t)) = rtr− 1G1($(t), I(t),R(t)),
ABCDω(I(t)) = rt

r− 1G2($(t), I(t),R(t)),
ABCDω(R(t)) = rt

r− 1G3($(t), I(t),R(t)),

$(0) = $0, I(0) = I0, R(0) = R0.

(9)  

where 
⎧
⎨

⎩

G1($(t), I(t),R(t)) = a − μ$ − bc$I,

G2($(t), I(t),R(t)) = I(bc$ − μ − k − λ),
G3($(t), I(t),R(t)) = kI − μR.

(10) 

With the help of (9) and for t∊g, the (10) follows as 
ABCDω

0 ℧(t) = rtr− 1Y(t,℧(t)), t ∈ [0, T],
℧(0) = ℧0, 0 < ω, r ≤ 1,

(11)  

with solution 

℧(t) =℧0 +
(1 − ω)
ABC(ω)t

r− 1Y(t,℧(t))

+
rω

Γ(ω)ABC(ω)

∫ t

0
(t − z)ω− 1zr− 1Y(z,℧(z))dz,

(12)  

where 

℧(t)=

⎧
⎨

⎩

$(t)
I(t)
R(t)

℧0(t)=

⎧
⎨

⎩

$0
I0
R0

, Y(t,℧(t))=

⎧
⎨

⎩

G1($(t),I(t),R(t)t)

G2($(t),I(t),R(t),t)

G3($(t),I(t),R(t),t).

(13) 

Now, transform the (2) into the fixed point problem. Define mapping 
T :V→V given as: 

T℧(t) = ℧0 +
(1 − ω)

ABC(ω)
tr− 1Y(t,℧(t))+

rω
Γ(ω)ABC(ω)

∫ t

0
(t − z)ω− 1zr− 1Y 

(z,℧(z))dz. (14) 

Assume 

T = F +G,

where 

F(℧) = ℧0(t) +
(1 − ω)
ABC(ω)t

r− 1[Y(t,℧(t))],

G(Z) =
rω

ABC(ω)Γ(ω)

∫ t

0
(t − z)ω− 1zr− 1Y(z,℧(z))dz.

(15)  

take growth cognition and Lipschitzian assumption for existence and 
uniqueness as: 

(C1) There will be a constants L Y,M Y, such that 

|Y(t,℧(t))|⩽L Y|℧| +M Y.

(C2) There exists constants LY > 0 such that for each ℧, f ∈ ℧ such 
that 

|Y(t,℧) − Y(t, f)|⩽LY[|℧| − f|];    

Theorem 4.1. “Applying hypothesis (C1, C2), the Integral equation 
(12) has at least one solution which consequently means that the 
considered system (2) has the same number of solution if 
(1− ω)

ABC(ω)
tr− 1LY < 1”. 

Proof. We prove the theorem in two step as bellow:Step I: Let f ∈ A, 
where A = {℧ ∈ ℧ : ‖℧‖⩽ϕ,ϕ > 0} is closed convex set. Then using the 
definition of F in (15), one has 

‖F(℧) − F(f)‖ =
(1 − ω)
ABC(ω)t

r− 1max
t∈[0,τ]

|Y(t,℧(t)) − Y(t, f(t))|

⩽
(1 − ω)
ABC(ω)t

r− 1LY‖℧ − f‖.

(16)  

Hence F will obey the property of contraction.Step-II: To prove that G is 
relatively compact, we have to prove that G is bounded, and equi- 
continuous. As G is continuous, Y is also continuous and for any 
℧ ∈ A, we have 
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‖G(℧)‖ = max
t∈[0,τ]

‖
rω

ABC(ω)Γ(ω)

∫ t

0
(τ − z)ω− 1zr− 1Y(z,℧(z))dz|

⩽
rω

ABC(ω)Γ(ω)

∫ t

0
(s)ω− 1

(1 − s)r− 1
|Y(s,℧(s))|ds

⩽
r[L Y|℧| + M YTω+r− 1]

ABC(s)Γ(s)
[B(ω, r)].

(17)  

Hence (17) shows that G is bounded. Next for “equi-continuity” let t1 >

t2 ∈ [0, τ], we have  

Right side in (17) becomes zero at t2→t1. Since G is continues and so 

|G(℧(t2) − G(℧(t1)|→0, as t2→t1.

Therefore we have as G is bounded operator and continuous so one has 

‖G(℧(t2) − G(℧(t1)‖→0, as t2→t1.

So G is uniformly continuous and bounded. Thus by Arzelá-Ascoli the-
orem G is relatively compact and hence completely continuous. Thus by 
Theorem 4.1, the equation (12) has one or more than one solution and 
therefore, the (2) has one or more than one solution. For uniqueness 
we give the next result. 

Theorem 4.2. Using assumption (C2), (12) has one solution which 
gives the information that the system (2) has one solution if 
[
(1− ω)tr− 1LY

ABC(ω) +
r[LYTω+r− 1 ]B(ω,r)

ABC(ω)Γ(ω)

]

< 1”. 

Proof. Let the operator T : ℧→℧ defined by 

T℧(t) = ℧0(t) + [Y(t,℧(t)
)
− Y0(t)]

(1 − ω)tr− 1

ABC(ω)

+
rω

ABC(ω)Γ(ω)

∫ t

0
(t − y)ω− 1tr− 1Y(y,℧(y))dy, t ∈ [0, τ].

(19) 

As ℧, f ∈ ℧, so we can take 

‖T℧ − Tf‖⩽
(1 − ω)tr− 1

ABC(ω) max
t∈[0,τ]

|Y(t,℧(t)) − Y(t, f(t))|

+
rω

ABC(ω)Γ(ω)max
t∈[0,τ]

|

∫ t

0
(t − y)ω− 1tr− 1Y(y,℧(y))dy 

−

∫ t

0
(t − y)ω− 1tr− 1Y(y, f(y))dy| ⩽Θ‖℧ − f‖, (20)  

and 

Θ =

[
(1 − ω)tr− 1LY

ABC(ω) +
r[LYTω+r− 1]B(ω, r)LY

ABC(ω)Γ(ω)

]

. (21) 

Thus T is contraction from (20). So the equation (12) has one solu-
tion. Hence (2) has one solution. 

5. Ulam-Hyer Stability 

Here, we define and give well-known results on stability analysis of 
(2), we take Φ(t) as perturbed parameter which depends on the solution 
having condition of Φ(0) = 0 as  

• |Ψ(t)|⩽∊ for ∊ > 0;  
• ABCD

(
t ω, r)℧(t) = Y(t,℧(t)) + Ψ(t).

Lemma 5.1. The solution of the perturbed problem 
ABCDω,r

t ℧(t) = Y(t,℧(t)) + Φ(t),
℧(0) = ℧0,

(22)  

satisfies the given relation   

Theorem 5.1. Using assumption (C2) and (23), the solution of the (12) 
is “Ulam-Hyers” stable and therefore, the analytical results of the system 
are“ Ulam-Hyers” stable if Θ < 1, where Θ is given in (21). 

Proof. Take ℧ ∈ ℧ be the solution and f ∈ ℧ be at most solution of 
(12), then    

|G(℧(t2) − G(℧(t1)| =
rω

ABC(ω)Γ(ω)|
∫ t2

0
(t2 − y)ω− 1yr− 1Y(y,℧(y))dy −

∫ t1

0
(t1 − y)ω− 1yr− 1Y(y,℧(y))dy|

⩽
r[L Y|℧| + M YTω+r− 1]B(ω, r)

ABC(ω)Γ(ω)
[tω

2 − tω
1 ]. (18)   

|℧(t)−
(

℧0(t) + [Y(t,℧(t)) − Φ0(t)]
(1 − ω)
ABC(ω)t

r− 1 +
rω

ABC(ω)Γ(ω)

∫ t

0
(t − y)ω− 1yr− 1Y(y,℧(y))dy

)⃒
⃒
⃒
⃒,

⩽
Γ(ω)tr− 1 + rTω+r− 1

ABC(ω)Γ(ω) B(ω, r)ε = ωω,rε.

(23)   
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From (24), we can write as 

‖℧ − f‖⩽
Ωω,r

1 − Θ
‖℧ − f‖. (25) 

Hence the results about the required stability is received. 

6. Numerical Solution 

In this part of the paper, we are going to find numerical solutions of 
fractal-arbitrary order model (2) using ABC derivative by fractal- 
fractional “Adams-Bashforth method”. The the approximate solution 
are obtained by the aforesaid iterative scheme. For such objective, we 

uses the fractal-fractional AB techniques [38] to provide an approximate 
way for the graphing of the system (2). For this to prove an approximate 
techniques, we go further with (9) can be noted as : 
⎧
⎪⎪⎨

⎪⎪⎩

ABCDω($(t)) = rtr− 1G1($(t), I(t),R(t), t),
ABCDω(I(t)) = rt

r− 1G2($(t), I(t),R(t), t),
ABCDω(R(t)) = rt

r− 1G3($(t), I(t),R(t), t),

$(0) = $0, I(0) = I0, R(0) = R0.

(26)  

where G1,G2 and G3 are defined in (10) By applying antiderivative of 
fractional order and fractal dimension to the 1st equation of (9) using 
ABC form, we get 

$(t) − $(0) =
(1 − ω)

ABC(ω)
tr− 1[G1($(t), I(t),R(t), t) ]+

rω
ABC(ω)Γ(ω)

∫ t

0
(t − y)

ω− 1
yr− 1G1($(y), I(y),y(t),y)dy.

Set t = tn+1 for i = 0,1,2⋯,

Now, we approximate the function G1 on the interval [tq, tq+1]

through the interpolation polynomial as follows 

G1 ≅
G1

Δ
(t − tq− 1) −

R1

Δ
(t − tq)

which implies that  

|℧(t) − f(t)| = |℧(t) −
(

℧0(t) +
[
Y(t, f(t)) − Y0(t)

] (1 − ω)

ABC(ω)t
r− 1 +

rω
ABC(ω)Γ(ω)

∫ t

0
(t − y)ω− 1yr− 1Y(y, f(y))dy

)⃒
⃒
⃒
⃒,

⩽|℧(t) −
(

℧0(t) + [Y(t,℧(t)) − Y0(t)]
(1 − ω)
ABC(ω)t

r− 1 +
rω

ABC(ω)Γ(ω)

∫ t

0
(t − y)ω− 1yr− 1Y(y,℧(y))dy

)⃒
⃒
⃒
⃒,

+ |

(

℧0(t) + [Y(t,℧(t)) − Y0(t)]
(1 − ω)
ABC(ω)t

r− 1 +
rω

ABC(ω)Γ(ω)

∫ t

0
(t − y)ω− 1yr− 1Y(y,℧(y))dy

)

−

(

℧0(t) +
[(

t, f(t)) − Y0(t)
] (1 − ω)

ABC(ω)t
r− 1 +

rω
ABC(ω)Γ(ω)

∫ t

0
(t − y)ω− 1yr− 1Y(y, f(y))dy

)⃒
⃒
⃒
⃒,

⩽ Ωω,r +
(1 − ω)LY

ABC(ω)
tr− 1‖℧ − f‖ +

rTω+r− 1LY

ABC(ω)Γ(ω)
B(ω, r)‖℧ − f‖,

⩽ Ωω,r + Θ‖℧ − f‖.

(24)   

$(tn+1) − $(0) =
(1 − ω)
ABC(ω)

(tr− 1
n+1)[G1($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)

∫ tn+1

0
(tn+1 − y)

ω− 1
yr− 1G1($(y), I(y),R(y))dy.

=
(1 − ω)
ABC(ω)

(t
r− 1
n+1)[G1($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)

∑n

q=0

∫ tq+1

q

(tn+1 − y)
ω− 1

yr− 1G1($(y), I(y),R(y))dy.

$(tn+1) = $(0) +
(1 − ω)
ABC(ω)

(tr− 1
n+1)[G1($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)

∑n

q=0

(
G1($(tn), I(tn),R(tn))

Δ

∫ tq+1

q

(t − tq− 1)(tq+1 − t)
ω− 1

t
r− 1
q

)

dt

−
G1($(tn), I(tn),R(tn))

Δ

∫ tq+1

q

(t − tq)(tn+1 − t)
ω− 1

t
r− 1
q dt

)

.
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$(tn+1) = $(0) +
(1 − ω)
ABC(ω)

(tr− 1
n+1)[G1($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)

∑n

q=0

(
t

r− 1
q G1

(
$(tj), I(tq),R(tq)

)

Δ
Iq− 1,ω

−
t

r− 1
q− 1G1

(
$(tq− 1), I(tq− 1),R(tq− 1)

)

Δ
Iq,ω

)

.

(27) 

Calculating Iq− 1,ω and Iq,ω we get 

Iq− 1,ω =

∫ tq+1

q
(t − tq− 1)(tn+1 − t)ω− 1dt

= −
1
ω
[(

tq+1 − tq− 1)(tn+1 − tq+1)
σ
− (tq − tq− 1)(tn+1 − tq)

σ]

−
1

ω(ω − 1)
[
(tn+1 − tq+1)

ω+1
− (tn+1 − tq)

ω+1]
,

and 

Fig. 2. Dynamics of susceptible population of the fractal-fractional model (2) at 
various arbitrary order and fractal dimension. 

Fig. 3. Dynamics of infected population of the fractal-fractional model (2) at 
various arbitrary order and fractal dimension. 

Fig. 4. Dynamics of recovered population of the fractal-fractional model (2) at 
various arbitrary order and fractal dimension. 

Fig. 5. Dynamics of “susceptible population” of the fractal-fractional model (2) 
at various arbitrary order and fractal dimension. 

Fig. 6. Dynamics of “Infected population” of the fractal-fractional model (2) at 
various arbitrary order and fractal dimension. 
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Iq,ω =

∫ tq+1

q
(t − tq)(tn+1 − t)ω− 1dt

= −
1
ω
[(

tq+1 − tq)(tn+1 − tq+1)
ω]

−
1

ω(ω − 1)
[
(tn+1 − tq+1)

ω+1
− (tn+1 − tq)

σ+1]
,

put tq = qΔ, we get 

Iq− 1,ω= −
Δω+1

ω [(q+1− (q− 1))(n+1− (q+1))ω
− (q− (q− 1))(n+1− qω]

−
Δω+1

ω(ω− 1)
[
(n+1− (q+1))ω+1 

− (n+1− q)ω+1]
,

=
Δω+1

ω(ω− 1)
[
− 2(ω+1)(n− q)ω

+(ω+1)(n+1− q)ω
− (n− q)ω+1 

+(n+1− q)ω+1]
,

=
Δω+1

ω(ω− 1)
[(n− q)ω

(− 2(r+1)− (n− q))+(n+1− q)ω
(ω+1+n+1− q)],

=
Δω+1

ω(ω− 1)
[(n+1− q)ω

(n− q+2+ω)− (n− q)ω
(n− q+2+2ω)],

(28)  

and 

Iq,ω = −
Δω+1

ω [(q+1 − q)(n+1 − (q+1))ω
] −

Δω+1

ω(ω − 1)
[
(n+1 − (q+1))ω+1 

− (n+1 − q)ω+1]
,=

Δω+1

ω(ω − 1)
[
− (ω+1)(n − q)ω

− (n − q)ω+1

+(n+1 − q)ω+1]
,

=
Δω+1

ω(ω − 1)
[
(n − q)ω

(− (q+1) − (n − q))+(n+1 − q)ω+1]
,

=
Δω+1

ω(ω − 1)
[
(n+1 − q)ω+1

− (n − q)ω
(n − q+1+ω)

]
,

(29)  

substituting the values of (28) and (29) in (27), we get  

$(tn+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

$(0) +
(1 − ω)

ABC(ω)
(tr− 1

n+1)[G1($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)
∑n

q=0

(
t

r− 1
q G1

(
$(tq), I(tq),R(tq)

)

Δ

×

[
Δω+1

ω(ω − 1)
[(n + 1 − q)

ω
(n − q + 2 + ω) − (n − q)

ω
(n − q + 2 + 2ω)]

]

−
t

r− 1
q− 1G1

(
$(tq− 1), I(tq− 1),R(tq− 1)

)

Δ

[
Δω+1

ω(ω − 1)
[
(n + 1 − q)

ω+1
− (n − q)

ω
(n − q + 1 + ω)

]
])

.

(30) 

Similarly for the other two compartments I and R we can find the  
same numerical scheme as 

I(tn+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(0) +
(1 − ω)

ABC(ω)
(tr− 1

n+1)[G2($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)

∑n

q=0

(
t

r− 1
q G2

(
$(tq), I(tq),R(tq)

)

Δ

×

[
Δω+1

ω(ω − 1)
[(n + 1 − q)

ω
(n − q + 2 + ω) − (n − q)

ω
(n − q + 2 + 2ω)]

]

−
t

r− 1
q− 1G1

(
$(tq− 1), I(tq− 1),R(tq− 1)

)

Δ

[
Δω+1

ω(ω − 1)
[
(n + 1 − q)

ω+1
− (n − q)

ω
(n − q + 1 + ω)

]
])

.

(31)  

R(tn+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(0) +
(1 − ω)
ABC(ω)(t

r− 1
n+1)[G3($(tn), I(tn),R(tn)) ]

+
rω

ABC(ω)Γ(ω)

∑n

q=0

(
t

r− 1
q G3

(
$(tq), I(tq),R(tq)

)

Δ

×

[
Δω+1

ω(ω − 1)
[(n + 1 − q)

ω
(n − q + 2 + ω) − (n − q)

ω
(n − q + 2 + 2ω)]

]

−
t

r− 1
q− 1G1

(
$(tq− 1), I(tq− 1),R(tq− 1)

)

Δ

[
Δω+1

ω(ω − 1)
[
(n + 1 − q)

ω+1
− (n − q)

ω
(n − q + 1 + ω)

]
])

.

(32)   
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7. Approximate solution by using values of different parameters 
with initial conditions 

We now take the values for the considered system (2) in the Table 1. 
The data have been taken for Pakistan. The total susceptible cases of the 
given country is about N = 220.0.142 millions. 

7.1. Case-A, when b = 0.001664 

Using data of 1, we can calculate R0 as 

R0 =
bca

μ(μ + k + λ)
=

(0.00009)(0.0001664)(0.49)
0.019(0.019 + 0.001 + 0.00134)

= 8.242 × 10− 9 < 1.

Similarly for the remaining two cases we can find that R0 < 1 as for 
case-A. Otherwise if R0 > 1 as in [69], R0 = 5.7 then our considered 
system will be unstable and the infection will be on the top. Hence our 
system is stable and we achieved the the fractional order model 2 by 
applying the given AB techniques in (30). 

From 2, we observed that in future 12 weeks the susceptible popu-
lation will decrease with very high rate i.e in short time. The seen 

decrease will be rapid at smaller non-integer order and will be slow at 
larger fractional order and fractal dimension and predicts that in the 
beginning susceptible class will go towards infected class. Fig. 3 provide 
a result that on the available data in future few months the infected cases 
will go up to the maximum peak value 0.8 million in “Pakistan” if pre-
cautionary measures are not applied. The increase is high at low arbi-
trary order with fractal dimensions and as the order raises the rate of 
infected class goes slow and slow. Similarly Fig. 4 shows that the 
recovered cases which may also increases by precautionary measures 
and isolation and the increase occur at smaller fractional order and 
fractal dimension. All the three figures shows stability and convergency. 
see Fig. 5–7 

7.2. Case-B, when b = 0.0016630 

Now we take the transmission rate as 0.0016630 and get the result 
through iteration method as shown in (5) to (7). We observe that as the 
susceptible class is decaying, then the infection population also de-
creases by decreasing the transmission rate through social gathering of 
the people. As the transmission rate decreased the peak value also 
decreased to 0.6 million. Therefore, we say that in future four or five 
months increasing transmission rate, the maximum infection cases may 
have nearly 0.6 million. The number here is less than as compare to the 
preceding case which shows the effect of lock-down or implementation 
of the precaution among the society. The figures of case-B also implies 

Fig. 7. Dynamics of “recovered population” of the fractal-fractional model (2) 
at various arbitrary order and fractal dimension. 

Fig. 8. Dynamics of “susceptible population” of the fractal-fractional model (2) 
at various arbitrary order and fractal dimension. 

Fig. 9. Dynamics of “infected population” of the fractal-fractional model (2) at 
various arbitrary order and fractal dimension. 

Fig. 10. Dynamics of “recovered population” of the fractal-fractional model (2) 
at various arbitrary order and fractal dimension. 
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stability and convergency which can also be showed by plugging values 
in the formula of R0 as in case-A. 

7.3. Case-C, when b = 0.0016628 

Now we notify the same procedure for b = 0.0016628, the model 
behaves decrease in the population of infections class as compared to the 
previous one, and the peak value decreased attained it in less time. 
which means that in future it will decrease the number of infected cases 
addressing the COVID-19. So our numerical solutions provide the best 
prediction that by decreasing the transmission rate will decrease the 
infected cases and vice versa in all over the country with other pre-
cautionary measure as described earlier would be implemented. The 
dynamical system has been shown for different compartments in 
Figs. 8–10 respectively. 

8. Conclusion 

In our discussion we have investigated the SIR fractal-fractional 
model for the future prediction of COVID-19 in Pakistan and its pro-
cess using ABC fractal-arbitrary order derivatives. The global and local 
stability for the considered model have been found by techniques of 
equilibrium points along with the method of next generation matrix and 
“Routh-Hurwitz criteria”. Next the positivity along with boundedness 
has been shown by applying non-linear techniques. Few “fixed point 
results” for the existence of one or more than one solution and “Hyers- 
Ulam” stability results have been provided for the system (2). Using 
“Adams-Bashforth method”, we have provided an approximate solution 
for the considered model. By using real data given for “Pakistan”, we 
have graphed the solution and its behavior under the changing of the 
transmission parameter for various arbitrary order and fractal dimen-
sion. On decreasing the transmission rate and implementing the rules 
and regulation for precaution will give best beneficial effect on the 
controlling or slowing the spread of the Covid-19. This is also seen that 
for minimizing the contact with others peoples, the taken system give 
good output to overcome of the terrible infection. 
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