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What Is the Storage Effect, Why Should It
Occur in Cancers, and How Can It Inform
Cancer Therapy?
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Abstract
Intratumor heterogeneity is a feature of cancer that is associated with progression, treatment resistance, and recurrence.
However, the mechanisms that allow diverse cancer cell lineages to coexist remain poorly understood. The storage effect is a
coexistence mechanism that has been proposed to explain the diversity of a variety of ecological communities, including coral reef
fish, plankton, and desert annual plants. Three ingredients are required for there to be a storage effect: (1) temporal variability in
the environment, (2) buffered population growth, and (3) species-specific environmental responses. In this article, we argue that
these conditions are observed in cancers and that it is likely that the storage effect contributes to intratumor diversity. Data that
show the temporal variation within the tumor microenvironment are needed to quantify how cancer cells respond to fluctuations
in the tumor microenvironment and what impact this has on interactions among cancer cell types. The presence of a storage effect
within a patient’s tumors could have a substantial impact on how we understand and treat cancer.
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Introduction

Ecosystems in nature include coexisting species that compete for

space, resources, and safety from predators.1-4 Similarly, tumors

exhibit microenvironmental heterogeneity that contains coexist-

ing cancer cell types that experience variations in nutrients, toxic

metabolites, and diverse types of normal cells.5 In nature,

mechanisms of coexistence can explain the diversity of species

within a community. Typical mechanisms include food-safety

trade-offs (one species is the better competitor, while the other is

better at avoiding predation), diet separation (each species has a

subset of resources on which it is the more successful consumer),

habitat selection (each species has a habitat within which it is

more successful), and competition-colonization trade-offs (one

species slowly outcompetes the other at a given spot, while the

other is more successful at dispersing to unoccupied spots). Sim-

ilar mechanisms likely explain some of the diversity of cancer

cell types within and among a patient’s tumors.6

Long underappreciated in ecology was a mechanism of

coexistence now known as the storage effect.7-11 Three ingre-

dients can promote the coexistence of species by the storage

effect: (1) temporal variability in environmental conditions that

include periods favorable and unfavorable for survival and

reproduction (we shall refer to these as good and bad), (2) the

presence of 2 life-history states within each species (one
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conducive to proliferation during good periods, the other con-

ducive to survival during bad periods), and (3) differences in

how species perceive and invest effort to grow, or do not, in

good and bad periods, reflecting some underlying trade-offs

and adaptation to somewhat different environmental

conditions.

Here, we posit that the storage effect may promote the coex-

istence of at least some cancer cell types within the tumors of

some or many different cancers. To demonstrate the plausibil-

ity of the storage effect, we discuss how, as in ecosystems in

nature, conditions (1) and (2) are universal properties of most

tumor microenvironments. Next, we discuss why there may be

trade-offs in the way cancer cells experience good and bad

periods. We then discuss how the storage effect manifests in

nature, followed by a simple mathematical model for cancer

tumor cells, illustrating how the storage effect works. We con-

clude with a discussion of how knowledge of the presence of a

storage effect in a patient’s disease might inform therapies.

Temporal Variation in Nature and the Tumor
Microenvironment

Very few, if any, ecological communities experience temporally

constant environments. Migratory birds escape the harsh winter

conditions of higher latitudes by migrating to destinations closer

to the equator. Deciduous trees lose their leaves during dry and/

or cold seasons. Year-to-year variation in temperature and pre-

cipitation may portend droughts or floods and hot spells and cold

snaps. Fire, disease, or pestilence occurs episodically within

ecosystems. A beaver damming a stream can raise water tables,

drown surrounding terrestrial vegetation, and create a wetland.

This wetland can revert when the beaver dam breaks or decays.

Virtually, all living organisms experience predictable and

unpredictable variability in environmental conditions that influ-

ence growth, reproduction, and survivorship.

Like natural ecosystems, cancer cells inhabiting a tumor

microenvironment experience both regular and irregular tem-

poral fluctuations. Blood flow changes due to unstable vascu-

lature on time scales of minutes to hours.12 This instability

arises as cancer cells adapt to local hypoxic conditions by

recruiting new blood vessels, which enable the delivery of

nutrients and the removal of toxic metabolites so that cancer

cells can survive when nutrients are low. However, as cancer

cells induce the growth of new blood vessels, the vascular

network becomes more irregular and disorganized, leading to

unpredictable spatial and temporal variations in blood flow.13

Consequently, transient changes in perfusion lead to cycling

hypoxia. Local fluctuations between hypoxia and reoxygena-

tion affect cells adjacent to the poorly perfused blood vessels.

This is in contrast to chronic hypoxia, which affects cells far

away from vessels due to limited diffusion. Cycling hypoxia is

associated with an increase in cell migration, metastatic poten-

tial, and resistance to treatments compared to chronic

hypoxia.14

While changing patterns of blood flow likely create the

greatest source of temporal variability in oxygen, pH, immune

infiltration, nutrients, and toxins, the architecture of cells

within and around a tumor microenvironment also may change

temporally. The rate of diffusion of nutrients (such as glucose

and glutamine) toward a neighborhood of cancer cells and the

diffusion of metabolites away (such as lactate, free-oxygen

radicals, and pyruvate) may vary temporally as other neighbor-

hoods of cancer cells block or unblock intracellular channels,

as immune cells move in or out of an area, and as fibroblasts

change extracellular matrices and/or the secretion of growth

factors. Regardless of its source or regularity, coexisting cancer

cells experience considerable temporal variability in opportu-

nities and hazards that likely create good and bad periods in

terms of their proliferation and survival rates, setting the poten-

tial for the storage effect to promote diversity of cancer cells

within tumors.

Proliferative and Nonproliferative
Life-History States in Nature and Cancer

In response to fluctuations that generate good and bad periods,

many organisms have evolved different life-history states: one

that is best at exploiting the good times and the other best at

surviving through the bad times. Many single-celled protists

have a proliferative state that allows the cell to feed, move, and

proliferate.15 This state, however, may not be able to survive

bad periods when their pool of water dries up or the environ-

ment offers only toxins and no nutrients. Such protists also

have an encysted state. This state, although unable to prolifer-

ate, is highly resistant to desiccation, toxins, and nutrient depri-

vation. This state may be the only way the protist survives

through bad periods. Having a fraction of the protist population

in an encysted state means that some opportunities are lost

during good periods, but survival is ensured during the bad.

Baker’s yeast is a classic example. The dry packet of encysted

yeast can survive for years without an opportunity for growth

and reproduction. Upon activation and favorable conditions,

this yeast enters a feeding and proliferative state. Among spe-

cies in nature, “quiescence” or “dormancy” refers to a range of

cellular or organismal states characterized by slowed metabo-

lism and relatively high resistance to hardships from their sur-

rounding environment.16-21

In cancer, cells that are reversibly arrested in the G0 phase

of the cell cycle are referred to as quiescent, whereas “cell

dormancy” typically refers to a long-term quiescence.22 Many

cancer cells respond to hypoxia by becoming quiescent and

upregulating autophagy to survive lower levels of nutrients and

oxygen.13 Cancer cells may survive harsh environments (eg,

hypoxia, low pH, toxins) by forming poly-aneuploid cancer

cells (also referred to in the literature as polyploid giant cancer

cells), a population of reversibly quiescent cells that form rap-

idly (within 72 hours) in response to environmental stress and

later divide asymmetrically to repopulate a tumor with cells of

normal ploidy that have increased resistance to chemother-

apy.23,24 In their nonproliferative state, dormant or quiescent

tumor cells are able to evade treatments that preferentially

target highly proliferative cells. After treatment, these cells can
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resume proliferation, which can result in tumor growth and

relapse. Quiescent states are ubiquitous in cancer and can be

associated with metastasis and relapse of cancerous growth.25

As such, dormancy and quiescence challenge our ability to

treat, control, or moderate cancer.

Some readers may see similarities between cancer stem cells

(CSCs) and our description of quiescent and dormant cancer

cells. The similarity does manifest when CSC refers to a subset

of heterogeneous cancer cells that exhibit plasticity, drug resis-

tance, and tumor-initiating capability. But, CSC concepts

diverge from our use of quiescence and dormancy when CSCs

are seen as a small population of undifferentiated, self-

renewing cells that give rise to and sustain a population of

terminally differentiated cells. Once fully differentiated, these

cells are viewed as being nonproliferative even as they make up

the bulk of the tumor. Cancer stem cells can undergo either

symmetric or asymmetric cell division, where the former

increases the CSC population and the latter promotes the dif-

ferentiated population. For the storage effect, the proliferative

state is vulnerable to harsh conditions while the nonprolifera-

tive quiescent state is not. Each state can phenotypically shift

into the other.

In nature, quiescent and resistant states can have a powerful

effect. They can allow populations to survive despite exposure

to conditions that limit or preclude population growth. They

can buffer populations against variation in favorability for

growth on many time scales, including seasonal, annual, and

multiannual; they can contribute to more diverse communities

than would exist without them.9,10,26-28 Given how common

dormancy/quiescence is in cancer, we expect to find similar

ecological effects of these life-history stages for the cancer

ecosystem. Quiescent or dormant states could maintain diverse

cancer phenotypes that may proliferate, coexist, or displace

each other over the course of time within the patient. For

instance, disseminated cancer cells that stay dormant, some-

times for many years, and then reemerge as metabolically

active cells that proliferate, often leading to the death of

patients. These emergent metastases appear to result from

enhanced cell lineage persistence through dormancy.23-25,29,30

The movement of cells into and out of dormancy, as the envi-

ronment around them changes, could affect what clones co-

occur in a tumor or in a patient by changing the ways in which

cell–cell interactions such as competition play out at the level

of populations of different cell types. The presence of quiescent

and dormant, resistant states of cancer cells sets the potential

for the storage effect to promote the diversity of cancer cells

within tumors. These possibilities have clear relevance for can-

cer control.

Evidence for Population-Specific Behaviors
and Trade-Offs in the Way Cancer Cells
Experience Good and Bad Times

As in nature, where a year with plentiful but not excessive

water would be expected to be generally a good year for

vegetation, cancer cells also would share many environmental

needs and so experience good and bad times in part together.

However, as with plants that differ in tolerance to low water

availability or high temperatures, cancer cells differ in their

sensitivities to hypoxia, low pH, immune infiltration, the

absence of growth factors, and the stromal (created by normal

cells) architecture of their microenvironment, generating

potential for trade-offs that make some periods better for some

cell clones and others better for other clones. The heterogeneity

of cancer cells in many features, including their proliferative

potential, hormone receptor expression, immunogenicity, sen-

sitivity to drugs, motility, and angiogenic potential,31 enables

cancer cells to have population-specific environmental

responses, an essential component of the storage effect. For

example, in stage 2 invasive breast cancers, cells on the tumor

edge tend to have an acid-producing invasive, proliferative

phenotype, whereas those in the hypoxic tumor core have a

less proliferative phenotype.32 Tumors also have metabolic

heterogeneity in the form of acid-resistant or glycolytic pheno-

types.33 Mathematical models of cancer evolution suggest that

high nutrient variability (cycling hypoxia) gives a competitive

advantage to cancer cells that have a higher rate of phenotypic

transition, which promotes high levels of phenotypic

heterogeneity.34

Cancer cells, and even normal cells, have a wide range of

behaviors associated with entering and exiting from nonproli-

ferative states, which provide the buffering life-history stage

that enables a storage effect. Cancer cells may remain in these

states for times ranging from the very short (1 to several days)

to the very long (decades, as observed for emergence of meta-

static cancer growth after years of healthy remission).25,35 In

fibroblasts, cells move deeper into quiescence following longer

durations of serum starvation or contact inhibition and require a

stronger growth stimulation to exit quiescence compared to

cells in shallow quiescence.36 Interactions between cancer cells

and the tumor microenvironment can promote quiescence or

dormancy. For example, bone-lining osteoblasts and endothe-

lial cells on stable vasculature secrete factors that keep disse-

minated tumor cells dormant,37 and adhesion of multiple

myeloma cells to extracellular matrix components such as

fibronectin leads to quiescence.38

The time of exit from quiescence can vary within a clonal

population, even when cultured in the same growth condi-

tions.39 Dormant cells awaken due to environmental changes.

Bone is highly dynamic, undergoing constant remodeling,

which can reawaken dormant cancer cells.40 The growth of

new blood vessels provokes sufficient change to the microen-

vironment to reactivate breast cancer cells.41,42 Age-related

inflammation promotes the outgrowth of dormant cells in pan-

creatic ductal adenocarcinoma liver metastases.43 Poly-

aneuploid cancer cells emerge from quiescence after removal

of chemotherapy, and they do so after a range of quiescence

durations (Sarah Amend, PhD, email communication, February

2020). Drug resistance is associated with a heterogeneous pop-

ulation of nonproliferative cells, including drug-tolerant pers-

isters, therapy-induced senescent cells, hypoxic drug-resistant,
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and disseminated tumor cells. These populations differ in their

propensities to remain in or exit the growth-arrested state.22

A Simple Model of the Storage Effect in
Cancer

Mathematical models have been useful to understand cancer

biology and to help test what treatment strategies might

improve patient outcomes over the standard of care. Many

model types have been used, including game theory mod-

els,44-51 agent-based models,33,52-57 and Lotka-Volterra-type

dynamical models that consider cancer clonal cells as interact-

ing populations.58,59 So far, very few of these models consider

variation in the environment of cancer cells in time. It is unsur-

prising that temporal variation in the tumor environment has

had little attention in dynamical models. This was long the case

in models of natural ecosystems, and the data available for

cancer tend to be static snapshots of a tumor. Radiographic and

histologic images show cancer at a point in time. Although they

reveal, and provide data for, modeling spatial heterogeneity in

cancer, they do not capture or inform the potential variation in

time that small-scale physiological studies indicate is there as

well.12,14,60

Stochastic dynamic models of interacting populations of

cancer cells are a straightforward way to incorporate temporal

environmental variation and are the class of models that have

primarily been used to develop an understanding of the storage

effect. The simple Lotka-Volterra-type population models so

far used to study cancer are not sufficient to capture coexis-

tence mechanisms such as the storage effect because they do

not incorporate a nonproliferative life-history state nor do they

incorporate species-specific demographic responses to a vary-

ing environment.3,61,62 Variation in the environment can be

proxied as stochastic variation in demographic parameters,

such as entry to and exit from quiescence and rates of growth,

reproduction, or survival of cancer cells.

To show how coexistence can occur via the storage effect,

we construct a simple discrete-time stochastic model that

includes 2 species, each with 2 life-history stages (proliferative

and quiescent) and stochastic variation in good and bad

periods.

Illustrating the Storage Effect

The plausibility of the storage effect promoting the coexistence

of different cell types within a tumor microenvironment

emerges from (1) temporal variability in blood flow, immune

infiltration, stromal architecture, and physical conditions and

(2) the widespread occurrence of cell arrest, quiescence, and/or

dormancy that allows cancer cells to exist in 2 states—prolif-

erative and nonproliferative. Coexistence can occur if there is a

trade-off in how 2 cell types experience good and bad periods.

To illustrate how storage effects can work, we propose a

simple model that aims to keep assumptions to a minimum

while containing the essential elements. We imagine that each

cancer cell type has 2 stages: an arrested state and a

proliferative state. A fraction of cells, y, leave the arrested state

during each period. Those that enter the proliferative state have

a mortality rate that depends on whether it is during a “good” or

“bad” period. These periods could represent a microenviron-

ment of a tumor where fluctuations in blood flow, hypoxia,

and/or growth factors contribute to times of plenty and times

of famine. Upon emerging from the arrested state, cells suc-

cessfully survive to proliferate at fraction s. Let sg >> sb be

these survival rates during good and bad periods, respectively.

The biology here is that if a cell attempts to be proliferative,

it may lack key resources even as the cell commits to cell

division. The consequence is cell mortality that would not have

happened had the cell remained in an arrested state. For exam-

ple, providing estrogen to breast cancer cells that otherwise

have no other nutrients can cause mortality, as cells are tricked

into trying to proliferate (Robert Gatenby, MD, email commu-

nication, February 2020). Those cells that survive produce a

maximum number of daughter cells, f, that declines with com-

petition from other cells in a proliferative state. We use a

Ricker model to describe the competition between proliferative

cells for resources. In the absence of competitors, a prolifera-

tive cell produces its maximum number of daughter cells; with

competitors, the production of daughter cells declines exponen-

tially with the density of other proliferative cells. We imagine

that f can take on a positive value that represents the expected

number of daughter cells that might accrue during a period

sufficiently long to permit 1 or more rounds of cell division.

At the end of the period, daughter cells enter the pool of cells in

an arrested state.

Now let there be 2 cell types that are equal in all ways,

except that they do not always experience good and bad periods

in the same way. Although unlikely that 2 cell types would be

identical, this assumption allows us to illustrate coexistence

that only manifests because of the storage effect.

For cancer cell types, it is likely that what is good for one is,

in part, good for the other type. However, differences in nutri-

ent metabolism, sensitivity to growth factors, resistance to

hypoxia, the ability for immune evasion, and/or physical con-

ditions like pH mean that at times one cell type may experience

a bad period while the other a good period. Let q be the prob-

ability of a good period, and let 0 � r � 1 represent the degree

to which the 2 cell types experience good and bad periods

similarly. The term (1 � r) then represents the probability that

the 2 cell types are experiencing the type of period indepen-

dently of each other. Thus, the probabilities of both experien-

cing good periods (pGG), both experiencing bad periods (pBB),

type 1 experiencing good and type 2 experiencing bad (pGB),

and vice versa (pBG) are given by:

pGG ¼ rqþ ð1� rÞq2
pBB ¼ rð1� qÞ þ ð1� rÞð1� qÞ2
pBG ¼ pGB ¼ ð1� rÞqð1� qÞ:

As they must, pGG, pBB, pBG, and pGB sum to 1.

Let xk(t) be the number of cells of type k in an arrested state

following time period t, where k¼ 1 or 2. The 2 species growth
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equations take on the following form:

x1ðt þ 1Þ ¼ ð1� yÞð1� dÞx1ðtÞ þ ysi1x1ðtÞfe
�
yðsi1x1ðtÞ þ sj2x2ðtÞÞ

R

x2ðt þ 1Þ ¼ ð1� yÞð1� dÞx2ðtÞ þ ysi2x2ðtÞfe
�
yðsi1x1ðtÞ þ sj2x2ðtÞÞ

R

where i, j ¼ g or b, and d is the mortality rate of cells in an

arrested state per period, and R scales the limits to growth by

representing some measure of resources available to cells that

are in a proliferative state.

The above model easily generates a coexistence via a storage

effect. This can be seen by showing how either species 1 or 2 can

invade a resident population of the other and that when together

they settle on a dynamic equilibrium but with more or less tem-

poral variation in the frequency of the 2 cell types within a

microenvironment (Figure 1). When averaged over many

microenvironments, the cell type frequencies might appear rel-

atively stable across time. If a storage effect is operating within a

tumor, then there may be surprisingly large fluctuations in cell

composition at the level of small neighborhoods of cancer cells.

The storage effect is not possible in the absence of an arrested

state. For y ¼ 1, the 2 cancer cell types exist as a stochastic

random walk with neither one having an advantage. An arrested

state buffers a cell type when it experiences a bad period, while

the other experiences a good period. Similarly, if r ¼ 1, then a

storage effect is not possible, as both cell types perceive good

and bad years identically. The 2 will simply experience a sto-

chastic random walk of population sizes with neither

experiencing an advantage when rare. Once r < 1 and y < 1, the

coexistence of cell types by the storage effect will happen, but

the strength of this will increase as r approaches 0. The advan-

tage that a cell type gains when it is rare (thus driving it to

increase in time at the expense of the other cell type) derives

from the occurrence of periods where the rare species experi-

ences a good and the resident cell type experiences a bad period,

giving the rare species opportunity to realize the high growth

potential of a good period without strong depression by compe-

tition. This is maximized when r¼ 0 and when q¼ 0.5 (good and

bad periods are equally likely). Furthermore, as a long-term

dynamic equilibrium, the average tumor burden increases as r

goes from 1 to 0; and as q goes from 0 to 1 (Figure 2).

How Might Consideration of the Storage
Effect Inform Cancer Therapy?

The existence of the storage effect contributing to diversity in

cancer would have consequences for clinical treatments. It is

recognized that intratumor and intertumor heterogeneity should

inform cancer therapy.63,64 For instance, intratumor heteroge-

neity is established as a marker for poor prognosis. Additional

therapeutic challenges arise if some of the diversity of cancer

cell types involve storage effect dynamics. The presence of a

storage effect presents a double challenge for therapy. First is

the task of targeting quiescent cells, and second is the challenge

of finding drugs effective on each or all of the cancer cell types.

Quiescence or dormancy now appears to be a major mechan-

ism by which cancers evade drug therapies and initiate
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metastases,23-25 so there is great interest in whether quiescent or

dormant cells can be targeted by therapies.65 This article argues

that we must also consider that there may be many coexisting

clonal lineages of cancer cells that differ in physiologies of their

nonproliferative and proliferative life-history states. If cancer cell

types coexist via the storage effect, then one is not targeting just a

single cell type, but a diversity of cell types with potentially

differing susceptibilities to therapy. Longitudinally monitoring

tumors and responses to therapy may require more frequent mag-

netic resonance imaging and other imaging techniques as nonin-

vasive tools for identifying and tracking different tumor habitats

based on vascularity, hypoxia, necrosis, and so on.66,67

Pseudo-Resistance

Heterogeneity in quiescence could obscure detection of resis-

tance to treatment through the phenomenon of pseudo-resis-

tance, a situation where an otherwise treatment-sensitive

population of cancer cells appears to be resistant. Pseudo-

resistance could result from temporal variation that selects

for cell lineages that maintain a high fraction of cells within a

quiescent state. Many cytotoxic chemotherapies target pro-

liferating cells that are actively dividing, and nonproliferative

cells may be insensitive to these therapies. Those parts of a

tumor that experience the greatest temporal variability may

have the greatest fraction of nonproliferative cells. In this case,

therapy may appear effective in eliminating tumor cells, but

continued efficacy may slow, as the remaining cancer clonal

populations have lower fractions of cells in a proliferative

state. The storage effect, by maintaining the coexistence of

cancer clones that vary in their propensity for remaining quies-

cent or arrested, could exacerbate pseudo-resistance.

With pseudo-resistance, continuing the same drug regimen

would continue to cull cancer cells as they emerge into a pro-

liferative state. However, the fraction of cancer cells killed with

each dosing would decline, generating the appearance of

declining tumor burden, but without entirely eradicating the

tumor. Prolonging the therapy may increase the likelihood of

true resistance emerging from the surviving cancer cells and

also may induce undue toxicities to the patient. The possibility

that pseudo-resistance might reflect a storage effect would sug-

gest novel therapeutic strategies. One approach might be to

maintain the ongoing therapy, but reduce dosage or make it

more intermittent (akin to maintenance therapy for patients in

remission). Frequent and accurate measures of tumor burden

might identify breakpoints in the rate of tumor burden decline,

which would indicate the presence of different clones with

different propensities to remain quiescent. A second therapeu-

tic approach could be to include in tandem an intervention

designed to amplify the rate at which cancer cells return from

quiescence into a proliferative state. It might also be useful to

begin with the first therapy and then add to it, rather than

replace it with, additional therapies; if possible, the second

therapy would be chosen for toxicity to quiescent cells.
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The Storage Effect and Multidrug Therapies

The existence of a storage effect implies that additional data are

needed to predict tumor progression. Knowing to what extent

the variability that one sees in space also occurs in time at each

spot becomes a valuable and critical piece of information.

There is recognition of the need for serial histologies, but the

destructive nature of histological sampling means exact resam-

pling is impossible. Variable temporal dynamics means that

local fluctuations could work against traditional therapies. An

underlying storage effect would indicate that cell types differ in

their dependence on or sensitivity to specific microenviron-

mental conditions that are fluctuating. Each of them could have

an Achilles’ heel. If one can identify or suggest the trade-off

promoting a storage effect, then a background therapy targeting

quiescent cells could be combined with a standard chemother-

apy and a therapy known to target the specific attributes of the

cancer cell types.

Caveats

As a first step, our focus here has been on how the storage

effect could contribute toward the diversity of cancer cell types

seen in a tumor. This would be in addition to other sources of

intratumor heterogeneity and the many interactions and types

of stromal cells such as fibroblasts, macrophages, and peri-

cytes. Understanding the full community ecology of these

diverse cell types and how the extracellular matrix, for

instance, influences therapy resistance is important.68,69 From

the vantage point of the storage effect, it would be of interest to

know how these other members of the tumor microenviron-

ment influence temporal and spatial fluctuations in key

resources or hazards. If fibroblasts amplify (or dampen) tem-

poral variability, then they may facilitate (or prevent) the coex-

istence of cancer cell types via the storage effect.

Even if the storage effect contributes to 2 coexisting cell

types, identifying them poses challenges. First, each should

have a proliferative and quiescent state, meaning that there

should be 2 identifiably distinct proliferative cell types, 2 dis-

tinct quiescent types, and the correct proliferative types must be

matched with their corresponding quiescent. This is not unlike

the challenge of having 2 yeast species in the same sample

where each yeast species has an active and an encysted form.

Living biopsies or collections of circulating tumor cells may

provide source material for single-cell culturing and the use of

microfluidics to determine the presence of both life-history

stages emerging from the single cell.70,71

Summary

Here, we have described the diversity-promoting mechanism

known as the storage effect and suggested that the conditions

that make the storage effect relevant to ecosystems in nature

also are found in cancer. Research is needed to better identify

and quantify the features of cancer that characterize the storage

effect. These features include population-specific responses to

the environment, which could give differential use of condi-

tions in time by different cancer cell populations; and behaviors

associated with entry into, exit from, and duration of quies-

cence in cancer cells, which could enable buffering of those

populations to environmental fluctuations, allowing them to

evade losses in bad times and realize strong growth in good

times. The possibility that the storage effect is involved in the

clonal ecological heterogeneity and quiescence/dormancy of

cancer cells, both of which pose serious conundrums for cancer

therapies, dictates that more attention should be paid to under-

standing the temporal dimensions of cancer. To do this, both

the data and the models that inform our understanding of cancer

must be expanded to better reveal and account for temporal

variation. If temporal variation in environmental suitability for

growth contributes significantly to population interactions

within the cancer ecosystem, the implications to how we under-

stand and treat cancer would be substantial.
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