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Robotic space exploration to the outer solar system
is difficult and expensive and the space science
community works inventively and collaboratively to
maximize the scientific return of missions. A mission
to either of our solar system Ice Giants, Uranus
and Neptune, will provide numerous opportunities
to address high-level science objectives relevant to
multiple disciplines and deliberate cross-disciplinary
mission planning should ideally be woven in from the
start. In this review, we recount past successes as well
as (NASA-focused) challenges in performing cross-
disciplinary science from robotic space exploration
missions and detail the opportunities for broad-
reaching science objectives from potential future
missions to the Ice Giants.

This article is part of a discussion meeting issue
‘Future exploration of ice giant systems’.

1. Introduction
Robotic space exploration presents unbridled opport-
unities to expand human understanding of the natural
order of our planet, our solar system, our universe and
beyond. Large-scale missions comprise more than just
ground-breaking science [1], they also fuel innovation,
public engagement and global partnership in ways that
few other endeavours can. Deep-space missions that
venture into the outer solar system—such as Galileo
at Jupiter, Cassini at Saturn and, it is hoped, soon
future missions to the Ice Giant planets of Uranus and
Neptune—advance astrophysics, planetary science, solar
system studies, sociology (e.g. studying team dynamics
through multigenerational missions), philosophy and
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beyond. To truly facilitate this scope of influence and capability requires collaborations that
transcend boundaries that sometimes exist due to tradition or funding lines.

NASA funding of robotic space missions comes from the Science Mission Directorate
(SMD) and is predominantly supported by one of four divisions: Astrophysics, Earth Science,
Heliophysics or Planetary Science. Astrophysics focuses on the origin of the universe and extra-
solar system celestial bodies and structures (stars, galaxies, supernovae etc.); Earth Science
on interconnected terrestrial processes including weather, atmospheric dynamics, geophysics,
hydrology and climate change; Heliophysics on solar and space plasma physics, including space
weather, planetary magnetospheric dynamics and aeronomy, and the interaction of our solar
system with the local interstellar medium (LISM); and Planetary Science on the formation and
characterization of all planetary bodies (from the smallest to the largest) within our solar system
and beyond. Obviously, there are large overlaps and synergies across the Divisions. Our emerging
expertise in studying exoplanets (planets orbiting stars besides our own), for example, is spear-
headed by Astrophysics (remote sensing of exoplanets with large space-based telescopes) with
needed expertise also shared across Planetary Science (characterization of exoplanets in the
context of the worlds in our own solar system) and Heliophysics (characterization of planet-stellar
wind interactions in our habitable astrosphere).

The Divisions within NASA’s SMD fund missions and programs based on strategic and/or
Congressionally-directed programs as outlined by implementation plans, strategic plans and
science plans that are regularly updated at both the SMD and Division levels. The respective
science communities outline their priorities in the form of ‘Decadal Survey’ reports administered
by the National Academy of Sciences. These Decadal Surveys, generated with broad community
input, occur every 10 years and outline the successes, challenges and future vision within each
discipline, as defined by the community. The Decadal Surveys are key cornerstones for the
community that define the field’s vision for the near-term future; however, while they provide
references for NASA (and the National Science Foundation), and policymakers, they are not
guiding documents, nor are the Divisions bound (nor at times able) to follow them completely.
Though this review focuses primarily on NASA and the funding processes within the USA, it
should be noted that the Science Programme at ESA is likewise guided by community-driven
long-term plans that occur roughly each decade and place high value in cross-disciplinary
themes [2]. Furthermore, it should be emphasized that most major future space exploration
missions (not just those to the Ice Giants) will benefit greatly from shared opportunities and
coordination between international agencies, which generally have similar or complementary
strategic science goals.

In this review, we recount past successes as well as challenges in performing cross-disciplinary
science from robotic space exploration missions and specifically detail the opportunities for
broad-reaching science objectives from potential future missions to the Ice Giants.

2. Past successes for cross-disciplinary science
Perhaps the greatest example of cross-divisional science from a robotic mission comes from the
Voyager mission. Voyager’s ‘Grand Tour’ of the outer solar system was borne of the realization of
a once-in-a-lifetime cosmic alignment of the outer planets in the late twentieth century (figure 1).
With the ambitious aim to successfully rendezvous with all four of the Giant planets, the dual
Voyager spacecraft (hereafter denoted as ‘V1’ and ‘V2’) were simultaneous developed in the 1970s
and instrumented with a comprehensive payload that included both in situ and remote sensing
instrumentation (figure 2) [3]. The in situ payload included particle and fields instruments, such
as the plasma experiment (PLS), magnetometer (MAG), the cosmic ray investigation (CRS),
the low-energy charged particle experiment (LECP) and the plasma wave sensors (PWS). The
remote sensing payload included, the imaging experiment (ISS), the infrared spectroscopy and
radiometry experiment (IRIS), the planetary radio astronomy experiment (PRA), the ultraviolet
spectrometer experiment (UVS) and the photopolarimeter (PPS), as well as the radio science
investigation (RSS). Together this payload, duplicated on both Voyager spacecraft, revealed early



3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20200222

...............................................................

VOYAGER 1
launch
5 Sep 77

VOYAGER 2
launch
20 Aug 77

VOYAGER 2

VOYAGER 1

Neptune
25 Aug 89

Uranus
24 Jan 86

Saturn
25 Aug 81

Saturn
12 Nov 80

Jupiter
9 Jul 79

Jupiter
5 Mar 79

Figure 1. The Voyager Mission, which visited all of the Giant planets, was an ambitious endeavour and became an exemplar of
what cross-disciplinary missions could achieve. Credit: NASA/JPL.

(and for the Ice Giants, the only) views of the Giant planets: Jupiter from V1 [4] and V2 [5], Saturn
from V1 [6] and V2 [7], Uranus from V2 [8] and Neptune from V2 [9]. V2 also put the solar system
into new perspective by capturing the solar system’s family portrait and the famous ‘Pale Blue
Dot’ image of Earth (figure 3).

Because V1 and V2 planned close flybys of Titan at Saturn and Triton at Neptune, respectively,
they left the ecliptic plane as they careened beyond their final planetary targets: V1’s trajectory
bent northward (or above) the ecliptic and V2 headed southward (or below). Since both Voyager
spacecraft were already outfitted with the necessary in situ instrumentation, these diverging
trajectories presented a unique opportunity for the Heliophysics and Astrophysics communities:
a chance to sample the outer limits of the solar system and its interface with the interstellar
medium for the first time and from two spatially removed vantage points. Thus, on 1 January
1990, the Voyager Mission ended and the Voyager Interstellar Mission (VIM) officially began [10].
Because of the changed nature of the mission, only seven of the original 11 instruments were kept
powered on: all of the particles and fields instruments, as well as the PRA and UVS. These intrepid
explorers yet again boldly went where no spacecraft had gone before, becoming humankind’s first
interstellar explorers and providing our first (and to-date only) in situ observations of our solar
system’s termination shock [11], heliopause, heliosheath [12] and LISM [13].

Other missions have made similar transitions beyond their original mission objectives and
gone on to contribute significant additional cross-disciplinary science in addition to their primary
missions. The lunar reconnaissance orbiter (LRO) was conceived as part of NASA’s New Vision
for Space Exploration [14]. The mission launched in 2009 with an initial 1-year Exploration
Mission focused on supporting the expansion of human exploration throughout the solar system
and under the responsibility of the directorate now known as the Human Exploration and
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Figure 2. Voyager’s ability to provide revolutionary Heliophysics and Astrophysicsmeasurements frombeyond the solar system
was enabled by its comprehensive in situ and remote sensing payload. Credit: NASA/JPL. (Online version in colour.)
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Figure 3. Voyager’s visits to the Gas Giants provided humanity its first views of the Gas Giants, and put Earth and the other
planets into cosmic perspective. Image credit: NASA/JPL-Caltech. (Online version in colour.)

Operations Mission Directorate [15]. After completion of this Exploration Mission, responsibility
for LRO was transferred to SMD’s Planetary Science Division, where it has provided a wealth of
lunar science [16]. Similarly, the Deep Impact mission to comet Tempel 1 (9P/Tempel) [17] first
completed its prime mission of achieving and observing a hypervelocity impact with a comet [18]
and then found a second life as the EPOXI mission, encountering comet Hartley 2 (103P/Hartley
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Figure 4. Though not initially part of its proposed objectives, the Cassini/INCA instrument was able to image the heliospheric
boundary during the cruise to Saturn. Thesemaps suggest a closed, ‘bubble-like’ shape to the heliosphere, which contrast with
the conclusions from the IBEX missions; the issue remains hotly debated in the heliophysics community today. Image credit:
NASA/JPL/JHUAPL. (Online version in colour.)

2) [19] and exploring exoplanets [20]. Finally, the Wide-field Infrared Survey Explorer (WISE)
mission was an astrophysics mission originally intended to complete a mid-infrared survey of
the entire sky [21], but has since provided a wealth of observations of asteroids and near-Earth
objects as the NEOWISE mission [22].

A notable example of fortuitous cross-disciplinary science comes in the form of energetic
neutral atom imaging—a technique that has quite recently been used, with remarkable results,
to map the outermost edges of our Sun’s astrosphere. The Interstellar Boundary Explorer
(IBEX) mission was launched in 2008 with the goal to map the heliospheric boundary to better
understand the nature of the solar system’s interaction with the LISM and provide global context
to the localized in situ measurements from the VIM [23]; though funded by the Heliophysics
Division, the science goals of IBEX are cross-disciplinary and of interest to both the Heliophysics
and Astrophysics communities.

Soon after the launch of IBEX, further heliospheric imaging contributions came from an
unlikely source: the Ion and Neutral Camera (INCA) [24] on the Cassini spacecraft en route to
Saturn [25]. INCA’s initial science objective was to ‘[d]etermine the global configuration and
dynamics of hot plasma in the magnetosphere of Saturn through energetic neutral particle
imaging of ring current, radiation belts and neutral clouds’ [24]. However, during its cruise
to Saturn from 2003 to 2009 INCA obtained images of the heliospheric boundary at energies
not covered by the IBEX instrumentation (figure 4) [26]. Beyond providing an additional
dataset, the Cassini/INCA observations provided evidence that the heliosphere is closed (i.e. a
‘bubble’) [26,27], which directly contradicted the conclusions from the IBEX observations that the
heliosphere is open (i.e. has a comet-like tail) [28,29]. The debate between these two models rages
on in the Heliophysics community, with hopes that it will be resolved by the upcoming Interstellar
Mapping and Acceleration Probe (IMAP) mission, a Heliophysics Division-funded mission that
carries updated versions of both the IBEX and Cassini/INCA instruments [30].

NASA missions have demonstrated many examples of cross-Divisional observations over the
years. Cassini flybys of both Venus and Earth in 1999 [31] provided unique measurements of these
planets, including the first detection of thermal emission from the Venusian surface at 0.85 and
0.9 µm [32], the escape of energetic neutral atoms from Venus’ atmosphere [33], resolution of a
low energy beam in the plasmasheet [34] and potential measurements of Earth’s magnetotail as
far away as 6000 RE [35]. Most recently, the Parker Solar Probe mission [36] completed several of
its planned flybys of Venus as it dives closer into the Sun’s corona [37].

Several missions have made use of Jupiter gravity assists and in doing so, provided additional
measurements of the Jovian system. For instance, the Ulysses (solar physics mission) flyby of
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Figure 5. Flybys not only provide beneficial gravity assists but also additional scientific opportunities at secondary targets that
can provide unexpected results, like this image of Tvashtar erupting on Io captured by New Horizons flyby of Jupiter while en
route to Pluto. Image credit: NASA/JHUAPL/SwRI.

Figure 6. Several missions have had opportunities to make serendipitous observations of comets, like this image of 2P/Encke
from the MESSENGER mission to Mercury. Image credit: NASA/JHUAPL/CIW.

Jupiter accessed previously un-investigated regions of the planet’s magnetosphere, including
higher magnetospheric latitudes, the dusk sector and inner magnetosphere [38]. Similarly, New
Horizons [39] flyby flew down Jupiter’s enormous (extending all the way to Saturn’s orbit)
magnetotail and observed escaping plasmoids [40]. Both Ulysses and New Horizons also revealed
evidence of volcanic activity on Io [41,42], with the latter capturing the impressive eruption of the
volcano Tvashtar (figure 5).

Chance encounters have also provided opportunistic scientific observations for missions
carrying appropriate instrumentation. For example, MESSENGER (mission to Mercury) [43]
unexpectedly obtained images and spectra of comets 2P/Encke (figure 6) and C/2012 S1 (ISON).
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Figure 7. Dedicated campaigns by the Hubble Space Telescope have made significant contributions to planetary science,
including capturing aurora on Uranus (a) and the evolution of large storms on Neptune (b). Image credits: ESA/Hubble & NASA,
L. Lamy/Obs. De Paris; NASA/ESA/GSFC/JPL. (Online version in colour.)

The Sun-focused Ulysses mission also captured in situ observations of multiple comet tails [44,45]
as well as contributing to a catalogue of gamma-ray bursts from throughout the universe along
with Near Earth Asteroid Rendezvous (NEAR; asteroid mission), Wind (solar wind mission) and
Compton Gamma Ray Observatory (CGRO; astrophysics) [46].

Long cruise durations on the way to planetary targets, especially those in the outer solar
system often provide ample opportunities to acquire additional observations, like the previously
discussed heliospheric energetic neutral atom images from Cassini/INCA. Voyager and many
later planetary missions (e.g. Pioneer Venus, Galileo, Cassini and MESSENGER) obtained UV
measurements of interplanetary hydrogen [47] and were also able to contribute to astrophysical
studies via stellar occultations [48] during cruise. Many missions, like New Horizons, have also
made significant studies of solar wind [49], pick-up ionization [50] and interplanetary shock [51]
evolution throughout the outer solar system.

Finally, Earth-based astrophysics space assets also provide invaluable cross-disciplinary
measurements. For instance, the Hubble Space Telescope (HST) has provided a rich legacy of
solar system observations, including giant planet images captured as part of the Outer Planets
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Atmospheres Legacy (OPAL) program [52]. HST images have revealed many features of the Giant
planets, such as the auroral footprints from the Galilean moons at Jupiter [53], the dynamics
of the rings and auroral storms at Saturn [54], auroral emissions at Uranus (figure 7a) [55] and
the development of large storms at Neptune (figure 7b) [56]. HST was also able to capture the
approach, impact and aftereffects of the 2009 impact of the Shoemaker-Levy 9 comet [57] and both
the Spitzer Space Telescope [58,59] and Chandra X-ray Observatory [60–63] had robust programs
of solar system observations.

3. Challenges
These recollections of the missions that transcended their scope are by no means comprehensive.
While such a cogent collection of successes could make the achievement of cross-disciplinary
science seem like a routine or easy occurrence, there are significant challenges to realizing such
cross-disciplinary science opportunities that all of these successful cross-disciplinary missions
have had to navigate. There are several approaches that NASA (and other space agencies such
as ESA and JAXA) and the broad scientific community can adopt to help towards the goal
of creating and successfully capitalizing on more cross-disciplinary science opportunities in
the future: increasingly facilitate and encourage healthy communication both across focused
scientific communities and vertically between the leadership and staff at the respective space
agencies and NASA Divisions; all members of all of scientific communities are able to actively
advocate for cross-disciplinary opportunities and investigations via, for example, white papers
to the respective Decadal Surveys, and by proposing cross-disciplinary science investigations by
leveraging the existing infrastructure for funding (e.g. technology demonstration opportunities,
rideshares, missions of opportunity, etc.). Most importantly the opportunity for cross-disciplinary
science needs to be recognized and purposefully planned, where feasible while remaining
cognizant of the current fiscal realities. As our review has hopefully demonstrated, a lot of these
previous opportunities were not even conceived of until after mission launch; cross-disciplinary
opportunities conceived early in mission development will likely yield the strongest return on
enhancing cross-disciplinary science.

4. Cross-disciplinary science opportunities from a future Ice Giant Mission
The Ice Giants, as the least explored and least well-understood planets in our solar system, leave a
gaping hole in the completeness of our survey of potential planetary regimes. Future missions to
the Ice Giants offer prime opportunities for cross-disciplinary science and can benefit from lessons
learned on previous missions, such as those discussed above.

A decade-long (or longer) cruise to either Ice Giant would provide an opportunity to
study the evolution of the solar wind, acceleration processes and interplanetary shocks with
radial distance from the sun. Understanding the evolution and variability of these is important
for understanding stars and star–planet interactions, and thus informs not only heliophysics
and planetary science, but astrophysics and exoplanetary research as well. Likewise, valuable
observations of interstellar and interplanetary dust throughout the outer solar system could be
obtained, building on the results of New Horizons [64], Cassini [65], Ulysses [66] and others.
Acquiring energetic neutral atom images of the heliospheric boundary, as Cassini did, from
the outermost regions of the solar system could provide the long baselines needed to achieve
useful stereoscopic imaging of targets; images from Uranus (20 AU) or Neptune (30 AU) obtained
concurrently with those from Jupiter (5 AU) and/or Earth (1 AU) could provide 3D mapping of
the heliospheric boundary that could perhaps provide important constraints in the debate over
the shape of the heliosphere. A long cruise would also provide many years for opportunities to
obtain ultraviolet spectra of interplanetary hydrogen and distant stars via occultations. Visible,
infrared and radio measurements of the sun and stars could also be obtained via occultations.
Imagers or spectrometers with sufficient resolution from the distant outer solar system could
continue the search for new Kuiper Belt objects (as New Horizons did) and/or exoplanets. They
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could also perhaps observe the planets of our solar system as exoplanets would be [67] and
could help further put the worlds we know into the context of the ever-expanding catalogue of
known exoplanets [68]. The exploration of the Ice Giants is intrinsically beneficial to exoplanetary
science because understanding all the planetary types we have access to (which may be only
a small sampling of the diversity of exoplanets that exist) helps to bound the characteristics of
exoplanetary systems.

Future missions to the Ice Giants also provide opportunities to investigate additional targets,
like Cassini, New Horizons, Ulysses and other predecessors, these missions would likely provide
a wealth of information from measurements obtained while performing a flyby to obtain a gravity
assist at another planet (likely Jupiter, Earth, Venus and/or Saturn). Those observations may
be even more advantageous if timelines align such that they happen to occur simultaneously
with other missions at the same target, e.g. with Europa Clipper or JUICE in the Jovian system.
Such extended solar system trajectories could also provide chance encounters with comets, like
MESSENGER and Ulysses experienced.

While such cross-disciplinary objectives could largely be met with instruments that already
have high value for Ice Giant exploration [57–59], the opportunity to augment the baseline
payload with additional instruments (perhaps with funding from other Divisions or international
partners) could further expand the science return of future missions.

5. Conclusion
Robotic space exploration, especially to the outer solar system, is by its very nature difficult and
expensive. As such, it behoves the entire space science community to work collaboratively to
maximize the scientific return of missions, regardless of the primary discipline or funding source.
NASA and partner international space agencies have consistently navigated these challenges and
provided many lessons, both positive and cautionary, that can be learned from previous missions
that have successfully bridged traditional disciplinary boundaries.

In particular, future missions to the Ice Giants at the outer reaches of the solar system can
provide many opportunities for cross-disciplinary science, especially if they are purposefully
planned for early on in the development of the missions. In particular, long interplanetary cruise
phases and opportunities to access infrequently visited regions of the solar system beyond 10 AU
should not be squandered. In situ particle and fields measurements advance our understanding
of the evolution of the solar wind throughout the solar system, and remote sensing instruments
provide unique vantage points of the heliosphere and the planets within it. Our future missions to
the Ice Giants not only address outstanding questions about planetary and exoplanetary systems
but also offer the chance to achieve even more far-reaching science objectives if we are willing to
strive for them.
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