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Radiomics features of hippocampal 
regions in magnetic resonance 
imaging can differentiate medial 
temporal lobe epilepsy patients 
from healthy controls
Yae Won Park1, Yun Seo Choi2,3, Song E. Kim2,3, Dongmin Choi5, Kyunghwa Han1, 
Hwiyoung Kim1, Sung Soo Ahn1, Sol‑Ah Kim2,3,4, Hyeon Jin Kim2,3, Seung‑Koo Lee1 & 
Hyang Woon Lee2,3,4*

To investigative whether radiomics features in bilateral hippocampi from MRI can identify temporal 
lobe epilepsy (TLE). A total of 131 subjects with MRI (66 TLE patients [35 right and 31 left TLE] and 
65 healthy controls [HC]) were allocated to training (n = 90) and test (n = 41) sets. Radiomics features 
(n = 186) from the bilateral hippocampi were extracted from T1-weighted images. After feature 
selection, machine learning models were trained. The performance of the classifier was validated 
in the test set to differentiate TLE from HC and ipsilateral TLE from HC. Identical processes were 
performed to differentiate right TLE from HC (training set, n = 69; test set; n = 31) and left TLE from HC 
(training set, n = 66; test set, n = 30). The best-performing model for identifying TLE showed an AUC, 
accuracy, sensitivity, and specificity of 0.848, 84.8%, 76.2%, and 75.0% in the test set, respectively. 
The best-performing radiomics models for identifying right TLE and left TLE subgroups showed AUCs 
of 0.845 and 0.840 in the test set, respectively. In addition, multiple radiomics features significantly 
correlated with neuropsychological test scores (false discovery rate-corrected p-values < 0.05). The 
radiomics model from hippocampus can be a potential biomarker for identifying TLE.

Temporal lobe epilepsy (TLE) is the most frequent type of focal epilepsy, and also the type which is most 
refractory to drug treatment1. For many of these patients, surgical resection of the epileptic focus offers a viable 
treatment option to eliminate seizures, and noninvasive imaging plays a pivotal role in precisely identifying the 
epileptogenic zone2,3. One of the histopathologic landmarks of TLE is hippocampal sclerosis, which presents 
in approximately 54% of surgically treated drug-refractory patients4,5. Previous neuroimaging studies on TLE 
have mainly focused on volumetric analysis, diffusion tensor image (DTI) studies, or functional MRI studies6–8. 
Volumetric analyses revealed abnormalities in the hippocampus ipsilateral to the seizure focus, which is the 
hallmark imaging finding in TLE9–11. However, these studies focused on single parameters such as mean apparent 
diffusion coefficient, mean fractional anisotropy, or volume rather than focusing on the spatial distribution of 
heterogeneity. Also, it is known that TLE patients show cognitive impairments, affecting not only memory, but 
also a broad array of cognitive capacities including executive functions, language, and sensorimotor skills12–14. 
Previous MRI studies have shown structural and functional damage associated with cognitive impairments in 
TLE patients12,15–17, but these studies have also focused on single conventional parameters.

Radiomics is a rapidly developing study field that extracts comprehensive and automated quantifications 
of radiographic phenotypes using data characterization algorithms18. Because radiomics models use high-
throughput imaging features, they are able to discover hidden information that is inaccessible when using 
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single-parameter approaches. High-dimensional radiomics data provide insight into intraregional heterogeneity 
and reflects the spatial complexity of a disease, which are invisible to the human eye. Compared with previous 
techniques that process medical images for visual examination, radiomics introduces a new method for data 
mining and thus offers novel opportunity for clinically assisted diagnosis19. We hypothesized that radiomics fea-
tures from routine conventional MRI would result in distinct combinations of imaging parameters that identify 
TLE. We additionally assessed whether these radiomics features were correlated with cognitive impairments in 
these TLE patients.

Methods
Patient population.  Written informed consent was obtained from legally authorized representatives of 
TLE patients and HCs, and the study protocol was approved by the local Ethical Committee at Ewha Medical 
Center. All the experiment protocol for involving humans was in accordance to guidelines of national/interna-
tional/institutional or Declaration of Helsinki. Sixty-six TLE patients who had visited Ewha Womans Univer-
sity Mokdong Hospital for both long-term video encephalographic (EEG) monitoring and MRI scans between 
July 2013 and August 2018 were enrolled. The clinical diagnosis of TLE was made according to the criteria of 
the International League Against Epilepsy20,21. Based on electroclinical findings, we included TLE patients with 
recurrent unprovoked seizures, with or without secondary generalization, originating from the temporal lobe.

All patients had unilateral temporal interictal spikes or unilateral temporal lobe seizure onset on EEG. TLE 
patients were further divided into those with a right-sided (n = 35) or left-sided (n = 31) seizure focus. The seizure 
focus was determined by predominantly ipsilateral interictal epileptic abnormalities (70% cutoff) and unequivo-
cal seizure onset recorded during prolonged video-EEG monitoring in all patients22. Patients were excluded from 
the study if they had contralateral or extratemporal epileptiform discharges on EEG, previous brain surgery, 
chronic medical illness with central nervous system involvement other than epilepsy, contraindication for MRI, 
or history of drug abuse or psychiatric illness other than axis I depressive disorders. For the control group, 65 
healthy controls (HCs) (age = 40.5 ± 12.1 years, 30 females) were recruited. The HCs had no history of neurologi-
cal disorders and no MRI abnormalities. An institutional cohort of 131 subjects (66 TLE patients and 65 HCs) 
was enrolled in the study.

To differentiate TLE from HCs, the institutional cohort was split into training (n = 90) and test (n = 41) sets, 
with stratification for TLE presence. Also, because TLE is a lateralized disease, we performed subgroup analyses in 
(1) right TLE vs. HC, in which right TLE and HC were included and semi-randomly allocated to training (n = 69) 
and test (n = 31) sets, and (2) left TLE vs. HC, in which left TLE and HC were included and semi-randomly 
allocated to training (n = 66) and test (n = 30) sets.

Verbal memory function, visual memory function, language function, and frontal executive function were 
assessed using a Korean version of the California Verbal Learning Test (CVLT)23, Rey Complex Figure Test 
(RCFT)24, Korean version of the Boston Naming Test (K-BNT)25, sematic Controlled Oral Word Association Test 
(COWAT) and Stroop test, respectively (detailed information in Supplementary Material S1). The Mini-Mental 
State Examination (MMSE) was performed in TLE patients only.

MRI protocols.  MRI was performed using a 3.0 T scanner (Philips Achieva v 2.6, Philips, Andover, MA, 
USA) in all subjects. The MRI included T1-weighted (TR/TE 1160/4.19 ms; field of view 140 × 250 mm, section 
thickness 1.2 mm, matrix 256 × 192 mm, flip angle 15°), T2-weighted axial/oblique coronal and FLAIR axial/
oblique coronal images (5 mm section thickness for each sequence), as well as axial T2* GRE (TR/TE 720/16 ms; 
field of view 220 × 220 mm, section thickness 5 mm, matrix 256 × 229 mm, flip angle 18°) in TLE patients. HCs 
underwent identical T1-weighted MRI sequences.

Image preprocessing and radiomics feature extraction.  Preprocessing of the images was performed 
to standardize the data analysis across patients. We resampled the original images to a 1 mm isovoxel and used 
FreeSurfer 5.3.0 (surfer.nmr.mgh.harvard.edu) to obtain subject-specific masks of brain regions as defined by 
the Desikan-Killany atlas26. This procedure involved motion correction of T1-weighted images, removal of non-
brain tissue27, automatic Talairach transformation, segmentation of subcortical white matter and deep gray mat-
ter structures28, intensity normalization, tessellation of the gray matter/white matter boundary29, automated 
topology correction, and surface deformation following intensity gradients30. Once the cortical models were 
complete, they were registered to a spherical atlas, and the cerebral cortex was parcellated into units with respect 
to gyral sand sulcal structures31. We mapped the brain parcellation mask for each subject from FreeSurfer space 
to the isovoxel native space and extracted two regions of interest (ROI) masks (right and left hippocampi). We 
visually checked for segmentation or registration errors by overlaying each subject’s native-space-transformed 
ROI masks onto their T1-weighted images.

Non-uniform low-frequency intensity was removed by applying the N4 bias correction algorithm. Next, 
arbitrary T1 signal intensities were normalized using the Whitestripe normalization algorithm32. All images 
were resampled to 1 mm isovoxels across all patients.

The following radiomics features were extracted from each ROI on T1-weighted images using an open-source 
package (PyRadiomics, version 1.3.0)33: (1) 14 shape features, (2) 18 first-order features, and (3) 61 s-order 
features (including gray level co-occurrence matrix, gray level run-length matrix, gray-level size zone matrix, 
and neighboring gray tone difference matrix) (detailed information on Supplementary Table S1). A total of 186 
radiomics features were extracted (93 features x two ROIs [right and left hippocampus]).

Statistical analysis.  For univariate analysis of baseline characteristics and neuropsychological test scores, 
either the Student’s t-test or Mann Whitney’s U test was used for continuous variables, depending on the normal-
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ity of the data. Chi-square test was performed for categorical variables. Statistical analysis was performed using 
the statistical software R (version 3.5.1; R Foundation for Statistical Computing, Vienna, Austria).

Radiomics feature selection and machine learning models.  All imaging features were normalized 
using z-score normalization. For feature selection, the F-score, least absolute shrinkage and selection operator 
(LASSO), and mutual information (MI) with ten-fold cross validation was applied. After feature selection, the 
radiomics classifiers were constructed by machine learning models including support vector machine (SVM), 
logistic regression (LR), or AdaBoost, with ten-fold cross-validation.

Hyperparameters were optimized by random search. Thus, a total of 9 combinations of machine learning 
algorithms were trained and validated. Performance was evaluated in the training sets and validated in the test 
sets to differentiate the entire TLE group from HC group, without controlling the alignment of the epileptic 
side. Further analysis was performed to differentiate the ipsilateral TLE group from the HC group. In subgroup 
analyses of (1) right TLE vs. HC and (2) left TLE vs. HC, feature selection and machine learning were performed 
separately. In addition, to overcome data imbalances in subgroup analyses, each machine learning model was 
trained (1) without over-sampling, or (2) with SMOTE (synthetic minority over-sampling technique)34,35. Thus, 
a total of 18 combinations of machine learning algorithms and over-sampling were trained and validated for 
each subgroup. Performance was evaluated in the training set and validated in the test set. Area under the curve 
(AUC), accuracy, sensitivity, and specificity were estimated.

Based on the radiomics classification model in the training set, the best combination of feature selection, 
classification methods, and subsampling in each model was used in the test set.

The different feature selection, over-sampling, and classification methods computed using Machine learning 
were performed using Python 3 with Scikit-Learn library v 0.21.2. The threshold for statistical significance was 
set at p < 0.05. The overall process is shown in Fig. 1.

Comparison of the diagnostic performance with that of human readers.  We tested the diagnostic 
performance to differentiate TLE from HC in training and test set on T1-weighted images by a consensus of 2 
readers (a neuroradiologist with 9 years of experience and a neurologist with 27 years of experience, respec-
tively), who were blinded to the clinical information. The performance of radiomics model and human readers 
were compared using AUC with DeLong’s method36.

Correlations between radiomics features and neurocognitive function.  Pearson’s correlation 
coefficient was calculated to evaluate the relationships between the identified radiomics features and signifi-
cantly different neuropsychological results between TLE and HCs (FDR-corrected p < 0.05).

Figure 1.   Workflow of image processing, radiomics feature extraction, and machine learning.
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Results
Subject characteristics.  The baseline characteristics and neuropsychological test results of TLE patients 
and HCs are summarized in Supplementary Table S2. TLE patients showed significant cognitive decrements 
in all cognitive domains (including language, verbal memory, visual memory, and frontal/executive function), 
compared with HCs. Left TLE patients showed worse language functions than right TLE patients on K-BNT 
scores (32.9 vs. 58.0, p = 0.002). Otherwise, there were no significant differences in verbal memory, visual mem-
ory, and frontal/executive functions between right TLE and left TLE patients (Supplementary Table S3).

The clinical characteristics of the subjects in the training set and test set are summarized in Table 1. There 
were no differences in the clinical characteristics between the training and test sets. 

Radiomics features and classification performance.  Entire TLE vs. HC.  Table 2 summarizes the 
results of the best performing models in the training and test sets. The performance of the 9 combination of 
models in the training set is shown in Fig. 2a. In the training set, the AUCs of the models ranged from 0.680 to 
0.920. LASSO feature selection and SVM showed the best diagnostic performance in the training set, with an 
AUC, accuracy, sensitivity, and specificity of 0.920 (95% confidence interval [CI] 0.870–0.970), 80.5%, 85.7%, 
and 80%, respectively. The selected features (10 from right and 6 from left hippocampus) consisted of 2 first-

Table 1.   Clinical characteristics in the training and test sets. Data are number of subjects. Numbers in 
parentheses are percentages. HC healthy control, TLE temporal lobe epilepsy. *p values were calculated using 
Student’s t-test for continuous variables and Chi-square test for categorical variables, to compare subject 
characteristics of the training and test set.

Training set (n = 90) Test set (n = 41) p value*

TLE vs HC

Age (years) 41.8 ± 11.4 40.8 ± 13.6 0.668

Sex (female) 46 (51.1) 23 (56.1) 0.596

Subjects no. (%) 0.989

 HC 45 (50) 20 (48.8)

 Right TLE 24 (26.7) 11 (26.8)

 Left TLE 21 (23.3) 10 (24.4)

Training set (n = 69) Test set (n = 31) p value*

Right TLE vs HC

Age (years) 41.0 ± 11.6 42.5 ± 12.8 0.587

Sex (female) 33 (47.8) 18 (58.1) 0.344

Subjects no. (%) 0.946

 HC 45 (65.2) 20 (64.5)

 Right TLE 24 (34.8) 11 (35.5)

Training set (n = 66) Test set (n = 30) p value*

Left TLE vs HC

Age (years) 41.6 ± 11.8 39.3 ± 13.3 0.393

Sex (female) 31 (47) 17 (56.7) 0.378

Subjects no. (%) 0.883

 HC 45 (68.2) 20 (66.7)

 Left TLE 21 (31.8) 10 (33.3)

Table 2.   Diagnostic performance of the best performing machine learning model in the training set and the 
test set. AUC​ area under the curve, CI confidence interval, HC healthy control, LASSO least absolute shrinkage 
and selection operator, LR logistic regression, MI mutual information, SMOTE synthetic minority over-
sampling technique, SVM support vector machine, TLE temporal lobe epilepsy.

Feature 
selection

No. of 
features Classification + subsampling

Training set Test set

AUC (95% CI)
Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%) AUC (95% CI)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

TLE vs HC

LASSO 16 SVM + none 0.920 (0.870–0.970) 80.5 85.7 80 0.848 (0.731–0.964) 84.8 76.2 75

Right TLE vs HC

F-score 30 LR + SMOTE 0.920 (0.870–0.970) 81.1 94 68.5 0.845 (0.723–0.968) 77.4 72.7 80

Left TLE vs HC

LASSO 18 LR + none 0.935 (0.893–0.977) 87.8 82.5 93 0.840 (0.699–0.981) 73.3 70 75
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order features, 10 s-order features, and 4 shape features (detailed information in Supplementary Table S4). In 
the test set, the LASSO feature selection with SVM showed an AUC, accuracy, sensitivity, and specificity of 0.848 
(95% CI 0.731–0.964), 84.8%, 76.2%, and 75%, respectively.

Right TLE vs. HC.  The performance of the 18 combination of models in the training set is shown in Fig. 2b. 
In the training set, the AUCs of the models ranged from 0.734 to 0.891. F-score feature selection, with LR and 
SMOTE showed the best diagnostic performance in the training set, with an AUC, accuracy, sensitivity, and 
specificity of 0.920 (95% CI 0.870–0.970), 81.1%, 95%, and 68.5% in the test set, respectively.

The selected features (14 from right and 16 from left hippocampus) included 23 first-order features, 3 s-order 
features, and 4 shape features. In the test set, the F-score feature selection with LR and SMOTE showed an AUC, 
accuracy, sensitivity, and specificity of 0.845 (95% CI 0.723–0.968), 77.4%, 72.7%, and 80%, respectively.

Left TLE vs. HC.  The performance of the 18 combination of models in the training set is shown in Fig. 2c. In 
the training set, the AUCs of the models ranged from 0.845 to 0.935. LASSO feature selection, LR, with SMOTE 
showed the best diagnostic performance in the training set, with an AUC, accuracy, sensitivity, and specificity of 
0.935 (95% CI 0.893–0.977), 87.8%, 982.5%, and 93% in the test set, respectively.

The selected features (5 from right and 13 from left hippocampus) included 2 first-order features, 12 s-order 
features, and 5 shape features. In the test set, the LASSO feature selection with SVM showed an AUC, accuracy, 
sensitivity, and specificity of 0.840 (95% CI 0.699–0.981), 73.3%, 70%, and 75%, respectively.

Comparison of the diagnostic performance of human readers.  The reviewers correctly identified 
14 and 7 cases of TLE in the training and test sets. The AUC, accuracy, sensitivity, and specificity was 0.617 
(0.452–0.764), 17.1%, 23.3%, and 100% in the test set, respectively. The radiomics model showed significantly 
better performance than human readers did (p-value = 0.001).

Correlations between radiomics features and neuropsychological scores.  Among the 16 signifi-
cant radiomics features from LASSO in differentiating TLE from HC, three were significantly correlated with 
K-BNT score, two were significantly correlated with CVLT direct recall score, and one was significantly corre-
lated with RCFT immediate recall score (all FDR-corrected p-values < 0.05) (Table 3).

Discussion
In our study, radiomics analysis of hippocampus showed promising results, with an AUC of 0.848, 0.845, and 
0.840 for identifying the entire TLE as well as right TLE and left TLE in the test set, respectively. Surgical resection 
of the epileptogenic zone, the region which is necessary and sufficient for the initiation of seizures, is an additional 
treatment option which can achieve seizure freedom37. Our radiomics approach with machine learning may 
be applicable to surgical planning by early identification, and thus allow for an improved patient selection and 
counseling. Our radiomics model was particularly useful in showing better diagnostic performance than visual 
inspection of human readers, which is the current standard approach, showing its utility. Previous radiomics 
studies in the neuroradiology field have mostly focused on brain tumors38–42. Our study shows that a radiomics 
model can be a useful biomarker for identifying TLE.

Figure 2.   Heatmap of AUC values achieved from the machine learning classifiers in the training sets for (a) 
differentiating TLE from HC, (b) differentiating right TLE from HC, and (c) differentiating left TLE from HC. 
AUC​ area under the curve, MI mutual information, LASSO least absolute shrinkage and selection operator, LR 
logistic regression, MI mutual information, SMOTE synthetic minority over-sampling technique, SVM support 
vector machine.
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Notably, our model included both right and left TLE in the entire TLE dataset. TLE is considered to display 
a strong asymmetrical distribution of abnormalities such as volume loss or white matter abnormalities, primar-
ily observed ipsilateral to the seizure onset site7. However, it is also known that the contralateral side of seizure 
onset may also show volume loss or white matter alterations, although less prominently than the ipsilateral 
side7,17,43,44. Our radiomics model showed a good performance (AUC 0.848) in differentiating the entire TLE 
from HC, indicating that radiomics has the potential for creating a generalized model that is not influenced by 
the laterality of TLE. Our results are in agreement with previous studies reporting that microstructural changes 
precede macroscopic atrophy45, and that radiomics may reflect microstructural information different from that 
provided by volumetric measures.

Neuropathological research has revealed various patterns of neuronal cell loss or gliotic changes within the 
hippocampus, including hippocampal sclerosis, which is the most common histopathologic abnormality46,47. 
MRI T1 relaxation time is a direct reflection of tissue characteristics and has been reported to independently 
predict histological measures of neuronal density in TLE48. Such variations in relaxation time, which directly 
cause variations in MRI signal intensity, may provide information beyond that provided by volumetric measures. 
Radiomics features, especially second-order features, capture the spatial variation in T1 signal intensity that may 
reflect the underlying pathophysiology, which may explain our observation.

In our study, we have applied domain knowledge in performing radiomics analysis in bilateral hippocampi, 
which is the key structure involved in TLE7. However, because radiomics features tend to extract agnostic infor-
mation that is invisible to human eyes, one cannot assume which feature will be most important in identifying 
TLE. Thus, we have further narrowed down the significant features by using various feature selection methods. 
This methodology results in creating a more generalized and stable classifier that is robust against the idiosyn-
crasies of the training data49,50.

Further, it is known that TLE patients show cognitive impairments, affecting not only memory, but also a 
broad array of cognitive capacities including executive functions, language and sensorimotor skills12–14. Previ-
ous MRI studies have shown structural and functional compromises associated with cognitive impairment in 
TLE patients12,15–17, but these studies were also focused on single conventional parameters. Other studies have 
shown dysfunctional networks related to cognitive impairment, seizure severity, or seizure related change in TLE 
patients in task-based and/or resting-state functional MRI studies8,50–55. In our study, significant correlations 
were found between radiomics features and neuropsychological test scores, suggesting that radiomics features 
can also serve as imaging biomarkers for cognitive capacity in TLE patients.

Our study has several limitations. First, this is a retrospective study in a single institution with a relatively 
small sample size. Further studies with a larger dataset and external validation are warranted for better assess-
ment. Second, because only the hippocampus masks were included, other important regions such as the amyg-
dala and parahippocampus should be investigated in future studies. Third, T2-weighted or FLAIR images were 
not included in this study because the MRI protocol for healthy controls did not include the aforementioned 
sequences. Further studies including radiomics features from T2-weighted or FLAIR images should be per-
formed. Fourth, we preserved the laterality of TLE rather than flipping (right to left or left to right TLE) to evalu-
ate the radiomics model. However, flipping would have allowed using sampling algorithms sparingly. We have 
performed this method because previous studies have shown that right and left TLE demonstrate asymmetrical 
and different qualities of hippocampal injuries53–58.

In conclusion, radiomics model from the hippocampus can be a potential biomarker for identifying TLE.

Data availability
Our anonymized data can be obtained by any qualified investigators for the purposes of replicating procedures 
and results, after ethics clearance and approval by all authors.

Code availability
The code for machine learning was modified from our previous available radiomics analysis package (https​://
githu​b.com/ChoiD​M/YBIGT​A_AI_HeLP).

Table 3.   Summary of radiomics features showing significant correlation with neuropsychological test results. 
CVLT California verbal learning test, FDR false discovery rate, GLSZM gray level size zone matrix, K-BNT 
Korean version of the Boston Naming Test, RCFT Rey complex figure test.

Radiomics features Pearson’s correlation coefficients FDR-corrected p-value

K-BNT

right_T1_GLSZM_SmallAreaLowGrayLevelEmphasis − 0.303 0.022

Left_T1_shape_MeshVolume 0.378 0.004

Left_T1_shape_Maximum2DDiameterColumn 0.296 0.023

CVLT-direct recall

Left_T1_shape_Maximum2DDiameterRow 0.230 0.003

Left_T1_shape_MeshVolume 0.241 0.016

RCFT-direct recall

Left_T1_shape_MeshVolume 0.308 0.020

https://github.com/ChoiDM/YBIGTA_AI_HeLP
https://github.com/ChoiDM/YBIGTA_AI_HeLP
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