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Most patients with epithelial ovarian cancer (EOC) are diagnosed
at advanced stage and have a poor prognosis. However, a small
proportion of these patients will survive, whereas others will die
very quickly. Clinicopathological factors do not allow precise
identification of these subgroups. Thus, we have validated a
molecular subclassification as new prognostic factor in EOC. One
hundred and ninety-four patients with Stage II–IV EOC were char-
acterized by whole-genome expression profiling of tumor tissues
and were classified using a published 112 gene set, derived from
an International Federation of Gynecology and Obstetrics (FIGO)
stage-directed supervised classification approach. The 194 tumor
samples were classified into two subclasses comprising 95 (Sub-
class 1) and 99 (Subclass 2) tumors. All nine FIGO II tumors were
grouped in Subclass 1 (P = 0.001). Subclass 2 (54%% of advanced-
stage tumors) was significantly correlated with peritoneal carci-
nomatosis and non-optimal debulking. Patients with Subclass 2
tumors had a worse overall survival for both serous and non-ser-
ous histological subtypes, as revealed by univariate analysis (haz-
ard ratios [HR] of 3.17 and 17.11, respectively; P � 0.001) and in
models corrected for relevant clinicopathologic parameters (HR
2.87 and 12.42, respectively; P � 0.023). Significance analysis of
microarrays revealed 2082 genes that were differentially
expressed in advanced-grade serous tumors of both subclasses
and the focal adhesion pathway as the most deregulated path-
way. In the present validation study, we have shown that, in
advanced-stage serous ovarian cancer, two approximately equally
large molecular subtypes exist, independent of classical clinoco-
pathological parameters and presenting with highly different
whole-genome expression profiles and a markedly different over-
all survival. Similar results were obtained in a small cohort of
patients with non-serous tumors. (Cancer Sci 2012; 103: 1334–
1341)

T o estimate the prognosis of malignant diseases, classical
clinicopathological parameters are primarily taken into

account. Molecular studies of several types of cancers describe
subclasses of tumors with regard to prognosis that will hope-
fully allow for a more precise prognostication and reveal pos-
sible new targets for anticancer treatment. Perou et al.(1)

introduced microarray data for the molecular subclassification
of breast cancer more than 10 years ago. Since then, research-
ers have published similar gene signatures for the molecular
subclassification of a variety of tumor entities.(2–4) Especially
for breast cancer, gene signatures predicting similar tumor

subclasses have been established, most of them using single
sample predictors (SSPs) to define the various subclasses, such
as Luminal A, Luminal B, basal like, human epidermal growth
factor receptor 2 (HER2), and normal breast like.(5) Neverthe-
less, a retrospective study evaluating three SSPs on four breast
cancer data sets revealed poor consistency in predicting the
subtypes using these SSPs, whereby only basal-like tumors
were consistently classified.(5)

Epithelial ovarian cancer (EOC) is the most lethal gyneco-
logic malignancy, afflicting approximately 6% of women.(6) It
has become the fourth most frequent cause of cancer-related
deaths in women in Western countries. Approximately 75% of
patients with EOC are diagnosed at advanced stage (Interna-
tional Federation of Gynecology and Obstetrics [FIGO] III/
IV).(6) Further subclassification is urgently needed because a
significant proportion of these patients will fare very well, with
a prognosis similar to that of patients with early stage disease,
whereas others die very quickly from their disease. A better
understanding of the molecular changes in ovarian cancer will
improve therapy choice and guide the search for additional tar-
geted therapeutics. Histopathologic subtyping of ovarian cancer
includes the following groups: high-grade serous, clear cell, en-
dometrioid, mucinous, and low-grade serous tumors.(7) A
recently described nine-marker set (cyclin-dependent kinase
inhibitor 1A [CDKN1A], Dickkopf-related protein 1 [DKK1],
hepatocyte nuclear factor 1-β [HNF1β], mouse double minute
2 [MDM2], progesterone receptor [PGR], trefoil factor 3 [intest-
inal] [TFF3], tumor protein p53 [TP53], vimentin [VIM] and
Wilms Tumor 1 [WT1]) determined by immunohistochemistry
can predict these subtypes with high sensitivity and specific-
ity.(8) Molecular signatures for the subclassification of ovarian
cancer are rare, but include the following. De Cecco et al.(9)

published a molecular signature of significantly enriched 74
genes related to the extracellular matrix and the fibroblast
growth factor (FGF) 2 pathway, dividing the samples into two
approximately equally large groups, but with no significant
association with any clinicopathologic or prognostic parameters.
Tothill et al.(10) described a k-means clustering approach using
microarray data of 285 ovarian cancer tissues yielding an opti-
mal number of six clusters (C1–C6), two of which were associ-
ated with low malignant potential (LMP) tumors and early-stage
endometrioid tumors (C3 and C6, respectively), with consider-
ably better prognosis. Among the remaining four subtypes,
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patients with a high stromal response signature (C1) had the
poorest overall survival (OS) compared with patients with a
higher number of CD3+ cells and lower expression of stromal
response genes (C2 and C4), whereas the C5 cluster, a mesen-
chymal-associated subtype, exhibited a trend for reduced OS
compared with subtypes C2 and C4.(10) In 2009, Yoshihara
et al.(11) described a gene signature comprised of 112 genes to
subdivide advanced-stage serous ovarian cancer samples into
two subtypes. This signature was derived from a comparison
of eight FIGO I tumors with that of 35 Stage III/IV tumors.
Interestingly, a non-negative matrix factorization analysis
revealed two stable clusters, one consisting of all eight FIGO I
tumors and a further 14 Stage III/IV tumors and the other con-
sisting of the remaining 21 Stage III/IV tumors. These 21
tumors exhibited significantly reduced resectability, signifi-
cantly reduced progression-free survival (PFS), and reduced
OS (P = 0.068) compared with the cluster containing the 14
other Stage III/IV tumors. Nonetheless, it is difficult to come
to any conclusion on the basis of these studies because of the
small sample size. None of the nine aforementioned markers
for histological subclassification were among the 112 genes
differently expressed in the two molecular subtypes.
To examine the role of the 112 gene signature determined by

Yoshihara et al. with regard to clinical outcome, we used
whole-genome transcriptome data of 194 tumor tissues from
non-FIGO I ovarian cancer patients produced during the course
of the European Union project OVCAD (Ovarian Cancer: Diag-
nosis of a silent killer; no. 018698) to subclassify these tumors
and to correlate the subclasses obtained with clinicopathologic
parameters, gene expression profiles, and outcomes in patients
with serous and non-serous tumors (excluding clear cell tumors).

Materials and Methods

Patients. The EU OVCAD project included patients from five
European university hospitals (Gynecologic Oncology Clinics
of the University Hospitals Berlin, Hamburg, Innsbruck, Leu-
ven, and Vienna; OVCAD Consortium). Tissue samples were
collected according to standard surgical procedures. Informa-
tion on clinical and histopathological characteristics, as well as
follow-up data, was collected and documented by experienced
clinicians. All histological types of EOC, except clear cell,
were included. Patients with benign ovarian diseases, borderline
ovarian cancer, secondary malignant tumors, or with FIGO
Stage I EOC were excluded. The study protocol was approved
by the ethics committees of the participating OVCAD partners.
Presurgical written informed consent was obtained from each
patient before their inclusion in the study. All patients received
standard treatment, including debulking surgery and platinum-
based chemotherapy. Residual tumor was defined as negative if
a macroscopically complete resection was accomplished. The
evaluation of tumor response to chemotherapy was made
according to World Health Organization (WHO)(12) criteria:
progression of disease after first-line chemotherapy was defined
as an at least twofold increase in the nadir serum CA-125 level
according to the Gynecological Cancer Intergroup (GCIG) cri-
teria(13) or confirmed radiologically. The response to first-line
treatment was evaluated by experienced gynecologic oncolo-
gists in the participating university clinics. At the time of anal-
ysis, the median follow-up was 31 months, with 57
documented cases of cancer-related deaths.

Microarray analysis. Total RNA from 213 fresh frozen tumor
tissues was isolated using the ABI PRISM 6100 Nucleic Acid
PrepStation (Applied Biosystems, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions and quantified spectro-
scopically. The quality of the RNA was assessed with an
Agilent 2100 Bioanalyser (Agilent, Santa Clara, CA, USA)
and the RNA integrity number (RIN) in all cases was >5.

Total RNA (15 lg) was labeled using the Applied Biosystems
Chemiluminescent RT Labeling Kit and hybridized to the
Human Genome Survey Microarray v.2.0 (Applied Biosystems),
washed, and scanned according to the manufacturer’s instruc-
tions. Raw microarray data were filtered using the quality flags
provided with the proprietary analysis software and quantile
normalized using the Bioconductor R script ABarray v.1.2
(open source software). A principal component analysis
(PCA)-guided signal-to-noise (S/N) cut-off (>5400 probe IDs
with S/N > 3 in each data set) filtered out nine of the 213
samples, leaving 204 arrays of acceptable quality. Because of
differences between microarray batches, the normalized data
were corrected as follows. First, signals were quantile normal-
ized within each batch. Second, we subtracted the batch-
specific mean from each gene and added the overall mean. The
success of this method to remove batch effects was confirmed by

Table 1. Clinicopathologic characteristics of patients and correlations

with subclasses

Subclass 1 Subclass 2 P-value
Adjusted

P-value

Serous EOC (n = 171)

Total 81 (47.4%) 90 (52.6%) 0.313*

Mean (±SD)

age (years)

56.9 (12.3) 58.7 (11.7)

FIGO stage

FIGO II 5 (6.2%) 0 (0.0%) 0.049†

FIGO III 63 (77.8%) 72 (80.0%)

FIGO IV 13 (16.0%) 18 (20.0%)

Grade (one missing)

Grade 1 1 (1.2%) 5 (5.6%) 0.322†

Grade 2 18 (22.2%) 21 (23.6%)

Grade 3 62 (76.6%) 63 (70.8%)

Residual tumor

No 63 (77.8%) 58 (64.4%) 0.056‡

Yes 18 (22.2%) 32 (35.6%)

Peritoneal carcinomatosis

No 30 (37.0%) 16 (17.8%) 0.005† 0.030

Yes 51 (63.0%) 74 (82.2%)

Ascites

�500 mL 55 (67.9%) 46 (51.1%) 0.026‡ 0.130

>500 mL 26 (32.1%) 44 (48.9%)

Non-serous EOC§ (n = 23)

Total 14 (60.9%) 9 (39.1%) 0.675*

Mean (±SD)

age (years)

57.1 (11.5) 55.1 (9.5)

FIGO stage

FIGO II 4 (28.6%) 0 (0.0%) 0.127†

FIGO III 63 (71.4%) 9 (100.0%)

Grade (one missing)

Grade 1

and 2

3 (21.4%) 2 (22.2%) 1.000†

Grade 3 11 (78.6%) 7 (77.8%)

Residual tumor

No 13 (92.9%) 3 (33.3%) 0.005† 0.030

Yes 1 (7.1%) 6 (66.7%)

Peritoneal carcinomatosis

No 10 (71.4%) 1 (11.1%) 0.009† 0.045

Yes 4 (28.6%) 8 (88.9%)

Ascites

�500 mL 10 (71.4%) 6 (66.7%) 1.000†

>500 mL 4 (28.6%) 3 (33.3%)

Unless indicated otherwise, data show the number of patients in each
group, with percentages given in parentheses. *t-test; †Fisher’s exact
test; ‡v2 test. §Endometrioid n = 5; mixed epithelial n = 7; mucinous
n = 3; undifferentiated carcinoma n = 8. EOC, epithelial ovarian
cancer; FIGO, International Federation of Gynecology and Obstetrics.
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three-dimensional plots of the first three principal components,
in which the individual batches no longer showed any visible
clustering. Finally, 10 patients were excluded during follow-up
by the stringent OVCAD exclusion criteria, mainly due to miss-
ing standard chemotherapy or fatal complications during or
shortly after debulking surgery.

Subclassification. One hundred and six of the 112 genes used
for subclassification by Yoshihara et al.(11) could be mapped
to the annotation of the Human Genome Survey Microarray
v.2.0 (Applied Biosystems), yielding 126 probe Ids, including
some double and triple coverages. The expression values of
these 126 probe IDs were used to classify the 194 tumor tissues
with non-negative matrix factorization (NMF) implemented in
the MultiExperiment Viewer (MeV) v.4.6 (open source soft-
ware)(14) using the parameters rank range “2–6”, number of runs
“200”, maximum iterations “2000”, and cost measurement
“divergence”, essentially following the classification approach
by Yoshihara et al.(11)

Statistical analysis. Statistical correlations of the subclasses
to clinicopathologic parameters were assessed by t-tests, v2

tests, and Fisher’s exact tests, as appropriate. Results were cor-
rected for multiple testing by the Holm–Bonferroni method.(15)

Impact on recurrence-free survival and OS was determined by
univariate and multiple Cox regression analyses(15) and the
univariate impact illustrated by Kaplan–Meier estimates.(17)

The proportion of explained variation (PEV) was calculated
according to Heinze and Schemper.(18)

Significance analysis of microarrays and functional annota-
tion. The impact of the subclass classification on whole-gen-
ome expression changes was determined by significance
analysis of microarrays (SAM) implemented in MeV v.4.6(14)

using a false discovery rate (FDR) of 5%. Therefore 9708
probe IDs were prefiltered so that in one of both subclasses
75% of samples showed an S/N value > 2. Functional analysis

of differentially expressed genes was performed using the
Database for Annotation, Visualization and Integrated Discov-
ery tool (DAVID) v.6.7.(19)

Results

Subclassification and correlation to clinicopathologic parame-
ters. One hundred and ninety-four advanced-stage EOC tissues
were classified using 126 probe IDs representing 106 of the
112 subclass-specific genes used by Yoshihara et al.(11) and
the NMF method. The cophenetic correlation coefficient was
highest allowing two groups for classification (0.94) compared
with using more than two groups (i.e. three to six groups
[cophenetic correlation coefficients always <0.69]). Ninety-five
of the 194 tissues were classified into one group, including all
nine FIGO II samples (adjusted P = 0.028) and this group was
therefore named Subclass 1; 99 tissues were classified into
another group (Subclass 2). Age, grade, nodal status, and
amount of ascites did not differ significantly between the two
subclasses (data not shown) or if patients were grouped
according tumor histology (Table 1). In addition to the lack of
FIGO II patients in Subclass 2, patients with peritoneal carci-
nomatosis (adjusted P = 0.030 and 0.045 for serous and non-
serous tumors, respectively) and, in the case of non-serous
tumors only, patients with residual tumor after debulking sur-
gery (adjusted P = 0.030) were significantly over-represented
in subclass 2. As already stated by Yoshihara et al.,(11)

advanced stage (i.e. FIGO III and IV) tumors were divided
into approximately similar large cohorts, in our case 86 Sub-
class 1 and 99 Subclass 2 tumors. In Table 1, correlations are
shown for subclasses and the clinicopathologic parameters of
the histological serous and non-serous tumor subtypes.

Impact of subclassification on the prognostication of PFS and
OS for patients with serous and non-serous tumors. For analysis
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Fig. 1. Kaplan–Meier estimates of the impact of molecular subclasses on (a,c) progression-free survival for patients with (a) serous (P = 0.089)
and (c) non-serous (P < 0.001; log rank test) epithelial ovarian cancer (EOC) and (b,d) overall survival for patients with (b) serous (P = 0.001) and
(d) non-serous (P < 0.001; log rank test) EOC.
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of PFS and OS, especially to validate the results of Yoshihara
et al.,(11) patients were divided into two groups, those with
serous or non-serous tumors. The nine patients with FIGO II
tumors were excluded from outcome analyses because they
were expected to show a generally better prognosis. Figure 1
shows the univariate impact of the subclassification on prog-
nostication of PFS and OS of these two groups as estimated
by Kaplan–Meier plots. The impact of the subclassification
on FIGO III and IV high-grade serous tumors was analyzed
by multivariate Cox regression (Table 2) . In the final model
for OS, only peritoneal carcinomatosis (hazard ratio [HR]
4.56; P = 0.012) and subclass (HR 2.87; P = 0.004) showed
significant independent impact. For PFS, only FIGO (Stage

IV vs III) and peritoneal carcinomatosis showed significant
independent impact, but not the subclass. For OS, the PEV
of the subclassification alone was 8.45%, already represent-
ing 60% of the PEV of the combined model using all clini-
copathologic parameters except our subclassification
(PEV = 14.10%). Checking the proportional hazards assump-
tion of the Cox model by including interactions of covari-
ates with time, we noticed that the effect of subclassification
increases consistently over time, roughly doubling the risk
every year (data not shown). In Table 3, results from uni-
variate Cox regression analysis for patients with non-serous
tumors are shown, which, owing to limited event numbers,
were adjusted only for peritoneal carcinomatosis by stratifi-
cation. Again, subclassification can be confirmed as an inde-
pendent predictor for OS with similar HRs as obtained with
serous tumors. In contrast with the analysis of serous tumors,
subclassification showed a significant effect on PFS in non-
serous tumors. In Figure 2, Kaplan–Meier estimates for
patients with FIGO III serous and non-serous tumors are
shown, stratifying the patients in three groups using the two
strongest predictive factors only, subclass and peritoneal
carcinomatosis. One group of patients (Subclass 1 and no
peritoneal carcinomatosis) presents with a very good prog-
nosis (75th percentile not reached), one group (either
Subclass 2 or peritoneal carcinomatosis) has a slightly worse
prognosis (50th percentile not reached), and one group
(Subclass 2 and peritoneal carcinomatosis) appears to have
considerably worse prognosis (50th percentile reached at 33
and 18 months for patients with serous and non-serous
tumors, respectively).

Significance analysis of microarrays and functional analysis of
the differences. To assess the difference in the transcriptome
between Subclass 1 and Subclass 2 tumors from patients pre-
senting with FIGO III and IV high-grade serous tumors, an
SAM was performed that resulted in 2082 significantly different
expressed probe IDs with an FDR of 5% (see Table S1 available
as Supplementary Material to this paper). These represent
21.4% (2082/9708) of all probe IDs analyzed. Of these, the
expression of 1289 probe IDs was higher in Subclass 2 tumors,
whereas that of 793 was lower. Functional analysis using
DAVID of these 2082 probe IDs (1595 of which were annotated
in DAVID) revealed highly enriched annotation clusters termed
“cytoskeleton”, “cell adhesion”, “extracellular matrix”, and
“cell motion” (Table 4). The most prominent over-represented
pathway was “focal adhesion”, with 42 genes involved, corre-
sponding to a 2.1-fold enrichment (FDR 0.5%; see Fig. S1).

Discussion

The present study describes a validation analysis of a previ-
ously defined gene signature to establish its relevance as a
clinically useful prognostic factor. Evaluating the prognostic
outcome of women with ovarian cancer is considered a key
part in the treatment planning for patients with ovarian cancer,
especially those with high-grade serous ovarian cancer. Cur-
rently, typical clinicopathologic parameters, such as age, his-
tology, FIGO stage, grade, and residual tumor mass following
primary surgery, are considered prognostic factors for patients
with advanced-stage EOC. Unfortunately, the routine use of
thus far published new prognostic factors in clinical practice has
had limited success.(20)

Histology has been described as independent predictor of
prognosis. However, considering that more than two-thirds of
advanced EOC are reported to be of the serous type,(21) histol-
ogy cannot be used as prognostic predictor within this large
group of patients. In addition, tumors classified in the past as
high-grade endometrioid carcinoma are actually mostly of the
serous type.(22)
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Fig. 2. Kaplan–Meier estimates of overall survival of patients with
International Federation of Gynecology and Obstetrics (FIGO) Stage III
(a) serous and (b) non-serous epithelial ovarian cancer, stratified by
molecular subclasses and peritoneal carcinomatosis (both P < 0.001;
log rank test).
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Evaluating the care and treatment of ovarian cancer patients
is, to a large extent, related to tumor stage and grade. Consid-
ering grade, it has to be taken into account that high-grade ser-
ous carcinoma represents the dominant subtype of ovarian
carcinoma.(22) In advanced ovarian carcinoma, it has been
observed that grade has no strong prognostic value, or even
lacks a significant impact on prognosis,(23) as confirmed by our
study. Addressing FIGO stage, our Cox proportional hazards
model revealed a significant influence of advanced FIGO stage
(IV vs III vs II) only on PFS (HR 2.03; P = 0.002) and not on
OS (HR 1.60; P = 0.182), analyzed over all histological sub-
types. In accordance with previous studies,(24) we observed in
the present study that patients with no macroscopic residual
tumor mass after primary surgery have a far better PFS, but
only a slightly better OS.
New and reliable prognostic factors for patients with high-

grade serous tumors, such as molecular subclassifications, could
help detect patients who may benefit from different treatment
regimens. Several microarray studies have been conducted to
find prognostic gene sets or to subclassify different subtypes of
ovarian carcinoma.(25) Using a robust statistical method, Yoshi-
hara et al.(11) published such a set, consisting of 112 genes,
dividing advanced-stage serous tumors into two groups: one
group with characteristics similar to early stage tumors and a
better prognosis, and the other group with different characteris-
tics and a worse prognosis. However, the sample size in that
study was only 35 and therefore the survival analysis lacks
power. The aim of the present study was to validate the sub-
classification system of Yoshihara et al.(11) using a large and
extensively documented patient cohort of advanced-stage ser-
ous ovarian cancers and to assess the potential impact of this
signature on the outcome of patients with non-serous tumors.
Indeed, we were able to reproduce the subclassification system
of Yoshihara et al.(11) and divided the advanced-stage tumors

into 86 Subclass 1 tumors with a better OS and 99 Subclass 2
tumors with a significantly worse prognosis. The prognostic
effect on OS remained significant and stable in the multiple
Cox regression model, corrected for all relevant known clinico-
pathologic parameters, for both histological serous and non-ser-
ous types, with mainly the same HRs. Furthermore, both types
of tumors showed a marked difference in their transcriptomes,
with 2082 probe IDs exhibiting significantly different expres-
sion between high-grade serous Subclass 1 and Subclass 2
tumors. A functional analysis of these genes revealed adhesion
proteins and proteins involved in attachment to the extracellular
matrix as the most over-represented functional groups of genes.
Focal adhesion as one of the most over-represented pathways
indicates that the differences in cell–cell and cell–extracellular
matrix attachment, with corresponding signaling, play a major
role in EOC biology and prognosis. Focal adhesion kinase
(FAK), the central protein in the focal adhesion pathway, was
shown to be overexpressed in several tumors and plays a signif-
icant role in cell survival, migration, and invasion.(26) Further-
more, an FAK inhibitor was shown to increase survival in a
mouse model of ovarian cancer(26) and the phosphorylated (p-)
version of FAK Y397, in combination with missing deleted in
liver cancer (DLC1) expression (shown to dephosphorylate
p-FAK), indicated a significant decrease in OS.(27) Yoshihara
et al.(11) described zinc finger E-box binding homeobox 2
(ZEB2), a regulator of E-cadherin (CDH1), as important gene
deregulated in Subclass 1 compared with Subclass 2 tumors,
speculating that epithelial–mesenchymal transition (EMT)
could play an important role in the worse outcome of Subclass
2 patients. Despite the fact that, in the present study, ZEB2
expression was also significantly higher (P < 0.001) in Sub-
class 2 patients and CDH1 expression tended to be lower
(although not significantly different), typical EMT-associated
genes were not over-represented in the differentially expressed
genes (data not shown). Therefore, we would propose that clas-
sical EMT seems not to be the leading factor for stratifying
advanced EOCs according to this 112 gene signature in two
prognostic different subclasses.
Despite the fact that this subclassification correlates signifi-

cantly with the occurrence of diffuse peritoneal carcinomatosis,
both factors are significant, independent, and strong predictors
for OS (peritoneal carcinomatosis HR of 4.56 and 5.36 for
patient with serous and non-serous tumors, respectively, and
subclassification HR of 2.87 and 2.75, respectively).
In particular, patients presenting with the combination of

Subclass 2 tumors and peritoneal carcinomatosis seem to
have a exceptionally bad prognosis, regardless as to the histo-
logically type of tumors. For PFS, only the occurrence of

Table 2. Multiple Cox regression analyses for progression-free and overall survival, as well as the proportion of explained variations of

clinicopathologic parameters and the subclassification, for late stage serous ovarian cancer patients (n = 165)

Progression-free survival Overall survival

HR 95% CI P
PEV

alone

PEV

model

Cumulative

PEV
HR 95% CI P

PEV

alone

PEV

model

Cumulative

PEV

Age (per decade) 1.07 0.89 1.28 0.492 0.82% 1.02 0.99 1.05 0.103 3.15%

FIGO (IV vs III) 2.17 1.36 3.46 0.001 4.84% 1.86 0.92 3.77 0.083 3.13%

Grade (3 vs 1&2) 1.47 0.87 2.46 0.148 3.14% 2.13 0.87 5.23 0.098 4.38%

Residual tumor

(yes vs no)

1.41 0.93 2.13 0.108 3.19% 1.07 0.56 2.02 0.840 1.04%

Peritoneal

carcinomatosis

(yes vs no)

2.69 1.55 4.67 <0.001 8.20% 14.60% 4.56 1.39 14.99 0.012 7.90% 14.10%

Subclass (2 vs 1) 1.25 0.84 1.87 0.269 1.37% 0.61% 2.87 1.40 5.88 0.004 8.45% 6.69%

HR, hazard ratio; PEV, proportion of explained variations; 95% CI, 95% confidence interval.

Table 3. Multiple Cox regression analyses for progression-free

survival and overall survival and proportion of explained variations

(PEV) of clinicopathologic parameters and the subclassification for

late stage non-serous ovarian cancer patients (n = 19)

Progression-free survival Overall survival

HR* 95% CI P HR* 95% CI P

Subclass

(2 vs 1)

4.04 1.02 15.97 0.047 12.42 1.41 106.46 0.023

*Adjusted for peritoneal carcinomatosis by stratification. HR, hazard
ratio; 95% CI, 95% confidence interval.
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Table 4. Functional clustering of differentially expressed genes (1595 annotated) with Database for Annotation, Visualization and Integrated

Discovery (DAVID) v6.7

Category Term Count % Fold enrichment P-value FDR

Annotation Cluster 1 Enrichment Score: 3.46

GOTERM_MF_FAT GO:0046983–protein dimerization activity 75 4.70 1.6 3.81E � 05 6.10E � 02

GOTERM_MF_FAT GO:0042802–identical protein binding 82 5.14 1.5 2.27E � 04 3.63E � 01

GOTERM_MF_FAT GO:0042803–protein homodimerization activity 44 2.76 1.5 4.66E � 03 7.21E + 00

Annotation Cluster 2 Enrichment Score: 3.36

GOTERM_CC_FAT GO:0043232–intracellular

non-membrane-bounded organelle

294 18.43 1.3 1.69E � 06 2.47E � 03

GOTERM_CC_FAT GO:0043228–non-membrane-bounded organelle 294 18.43 1.3 1.69E � 06 2.47E � 03

GOTERM_MF_FAT GO:0003779–actin binding 53 3.32 1.9 8.73E � 06 1.40E � 02

SP_PIR_KEYWORDS Actin binding 41 2.57 2.1 1.84E � 05 2.76E � 02

GOTERM_CC_FAT GO:0015629–actin cytoskeleton 45 2.82 1.9 5.17E � 05 7.54E � 02

SP_PIR_KEYWORDS Cytoskeleton 80 5.02 1.6 8.37E � 05 1.25E � 01

GOTERM_MF_FAT GO:0008092–cytoskeletal protein binding 69 4.33 1.6 1.10E – 04 1.77E � 01

GOTERM_BP_FAT GO:0030036–actin cytoskeleton organization 36 2.26 1.8 6.89E � 04 1.25E + 00

GOTERM_CC_FAT GO:0005856–cytoskeleton 156 9.78 1.3 9.63E � 04 1.40E + 00

GOTERM_BP_FAT GO:0030029–actin filament-based process 37 2.32 1.7 1.14E � 03 2.07E + 00

GOTERM_BP_FAT GO:0007010–cytoskeleton organization 57 3.57 1.5 2.50E � 03 4.48E + 00

GOTERM_CC_FAT GO:0015630–microtubule cytoskeleton 62 3.89 1.3 3.99E � 02 4.48E + 01

GOTERM_CC_FAT GO:0005815–microtubule organizing center 32 2.01 1.4 4.14E � 02 4.61E + 01

GOTERM_CC_FAT GO:0005813–centrosome 28 1.76 1.4 6.38E � 02 6.18E + 01

GOTERM_CC_FAT GO:0044430–cytoskeletal part 98 6.14 1.2 8.30E � 02 7.17E + 01

Annotation Cluster 3 Enrichment Score: 3.29

GOTERM_BP_FAT GO:0007155–cell adhesion 94 5.89 1.5 3.12E � 05 5.72E � 02

GOTERM_BP_FAT GO:0022610–biological adhesion 94 5.89 1.5 3.30E – 05 6.04E � 02

SP_PIR_KEYWORDS Cell adhesion 55 3.45 1.6 5.24E � 04 7.83E � 01

GOTERM_BP_FAT GO:0016337–cell-cell adhesion 31 1.94 1.3 1.32E � 01 9.26E + 01

Annotation Cluster 4 Enrichment Score: 3.14

SP_PIR_KEYWORDS ECM 55 3.45 2.8 4.16E � 12 6.24E � 09

GOTERM_CC_FAT GO:0031012–ECM 70 4.39 2.3 8.15E � 11 1.19E � 07

GOTERM_CC_FAT GO:0005578–proteinaceous ECM 65 4.08 2.3 4.01E � 10 5.85E � 07

GOTERM_CC_FAT GO:0005581–collagen 16 1.00 5.1 9.18E � 08 1.34E � 04

GOTERM_CC_FAT GO:0044420–ECM part 30 1.88 2.9 2.59E � 07 3.78E � 04

SP_PIR_KEYWORDS Hydroxylation 21 1.32 3.7 5.20E � 07 7.79E � 04

SP_PIR_KEYWORDS Triple helix 13 0.82 5.2 2.48E � 06 3.72E � 03

SP_PIR_KEYWORDS Hydroxylysine 12 0.75 4.8 1.74E � 05 2.60E � 02

SP_PIR_KEYWORDS Trimer 11 0.69 5.2 1.85E � 05 2.78E � 02

GOTERM_BP_FAT GO:0030198–ECM organization 24 1.50 2.6 2.79E � 05 5.11E � 02

SP_PIR_KEYWORDS Collagen 21 1.32 2.7 6.04E � 05 9.05E � 02

SP_PIR_KEYWORDS Hydroxyproline 12 0.75 4.0 1.11E � 04 1.67E � 01

GOTERM_BP_FAT GO:0043062–extracellular structure organization 30 1.88 2.1 1.89E � 04 3.45E � 01

GOTERM_CC_FAT GO:0005583–fibrillar collagen 7 0.44 6.6 2.81E � 04 4.09E � 01

GOTERM_CC_FAT GO:0005604–basement membrane 18 1.13 2.6 4.06E � 04 5.91E � 01

KEGG_PATHWAY hsa04512: ECM–receptor interaction 20 1.25 2.4 4.49E � 04 5.49E � 01

INTERPRO IPR008160: collagen triple helix repeat 18 1.13 2.5 5.57E � 04 9.46E � 01

GOTERM_BP_FAT GO:0030199–collagen fibril organization 10 0.63 3.9 6.06E � 04 1.10E + 00

SP_PIR_KEYWORDS Ehlers–Danlos syndrome 6 0.38 6.7 1.05E � 03 1.56E + 00

UP_SEQ_FEATURE Domain: fibrillar collagen NC1 6 0.38 6.7 1.08E � 03 1.97E + 00

INTERPRO IPR000885: fibrillar collagen, C-terminal 6 0.38 6.5 1.27E � 03 2.14E + 00

GOTERM_MF_FAT GO:0048407–PDGF binding 6 0.38 6.3 1.38E � 03 2.18E + 00

SMART SM00038: COLFI 6 0.38 6.0 1.73E � 03 2.31E + 00

UP_SEQ_FEATURE Domain:TSP N-terminal 8 0.50 4.3 1.78E � 03 3.24E + 00

UP_SEQ_FEATURE Region of interest:triple-helical region 8 0.50 4.3 1.78E � 03 3.24E + 00

UP_SEQ_FEATURE Propeptide:C-terminal propeptide 5 0.31 7.7 2.34E � 03 4.24E + 00

GOTERM_MF_FAT GO:0005201–ECM structural constituent 17 1.07 2.3 2.43E � 03 3.82E + 00

INTERPRO IPR003129:Laminin G, TSP-type, N-terminal 7 0.44 3.8 8.17E � 03 1.31E + 01

SMART SM00210:TSPN 7 0.44 3.5 1.13E � 02 1.42E + 01

GOTERM_MF_FAT GO:0046332–SMAD binding 10 0.63 2.5 1.49E � 02 2.14E + 01

UP_SEQ_FEATURE Region of interest: non-helical region 4 0.25 6.1 2.20E � 02 3.38E + 01

GOTERM_CC_FAT GO:0005588–collagen Type V 3 0.19 11.2 2.23E � 02 2.80E + 01

SP_PIR_KEYWORDS Pyroglutamic acid 9 0.56 2.4 2.97E � 02 3.64E + 01

UP_SEQ_FEATURE Glycosylation site: O-linked (Gal…) 4 0.25 5.5 3.11E � 02 4.42E + 01
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Table 4. (continued)

Category Term Count % Fold enrichment P-value FDR

GOTERM_BP_FAT GO:0043588–skin development 7 0.44 2.7 3.75E � 02 5.04E + 01

PIR_SUPERFAMILY PIRSF002257: collagen a1 (V) chain 3 0.19 8.5 4.08E � 02 4.65E + 01

PIR_SUPERFAMILY PIRSF002255: collagen a1 (I) chain 3 0.19 6.8 6.41E � 02 6.30E + 01

UP_SEQ_FEATURE Propeptide: N-terminal propeptide 3 0.19 6.1 7.96E � 02 7.84E + 01

PIR_SUPERFAMILY PIRSF002258:collagen a1 (IV) chain 3 0.19 4.9 1.20E � 01 8.53E + 01

GOTERM_CC_FAT GO:0030934–anchoring collagen 3 0.19 3.7 1.87E � 01 9.52E + 01

INTERPRO IPR012680: Laminin G, subdomain 2 5 0.31 1.4 4.78E � 01 1.00E + 02

INTERPRO IPR001791: Laminin G 5 0.31 1.3 5.33E � 01 1.00E + 02

SMART SM00282: LamG 5 0.31 1.2 5.89E � 01 1.00E + 02

INTERPRO IPR013320: Concanavalin

A-like lectin/glucanase, subgroup

7 0.44 1.1 6.40E � 01 1.00E + 02

GOTERM_BP_FAT GO:0008544–epidermis development 15 0.94 0.9 7.54E � 01 1.00E + 02

GOTERM_BP_FAT GO:0007398–ectoderm development 16 1.00 0.9 7.71E � 01 1.00E + 02

Annotation Cluster 5 Enrichment Score: 3.00

GOTERM_CC_FAT GO:0060205–cytoplasmic

membrane-bounded vesicle lumen

16 1.00 4.1 3.02E � 06 4.40E � 03

GOTERM_CC_FAT GO:0031983–vesicle lumen 16 1.00 3.9 5.66E � 06 8.26E � 03

GOTERM_CC_FAT GO:0031093–platelet a granule lumen 15 0.94 4.1 6.30E � 06 9.20E � 03

GOTERM_CC_FAT GO:0031091–platelet a granule 17 1.07 3.4 1.86E � 05 2.71E � 02

GOTERM_CC_FAT GO:0044433–cytoplasmic vesicle part 30 1.88 1.8 2.16E � 03 3.11E + 00

GOTERM_CC_FAT GO:0031410–cytoplasmic vesicle 79 4.95 1.4 2.61E � 03 3.73E + 00

GOTERM_CC_FAT GO:0016023–cytoplasmic

membrane-bounded vesicle

69 4.33 1.4 3.20E � 03 4.57E + 00

SP_PIR_KEYWORDS Mitogen 10 0.63 3.2 3.32E � 03 4.86E + 00

GOTERM_CC_FAT GO:0031988–membrane-bounded vesicle 70 4.39 1.4 4.51E � 03 6.39E + 00

GOTERM_CC_FAT GO:0031982–vesicle 80 5.02 1.3 5.29E � 03 7.45E + 00

GOTERM_CC_FAT GO:0042470–melanosome 16 1.00 2.0 1.14E � 02 1.54E + 01

GOTERM_CC_FAT GO:0048770–pigment granule 16 1.00 2.0 1.14E � 02 1.54E + 01

GOTERM_CC_FAT GO:0030141–secretory granule 26 1.63 1.6 1.66E � 02 2.17E + 01

SP_PIR_KEYWORDS Cytoplasmic vesicle 25 1.57 1.3 1.55E � 01 9.19E + 01

Annotation Cluster 6 Enrichment Score: 2.64

GOTERM_BP_FAT GO:0030334–regulation of cell migration 35 2.19 2.4 3.65E � 06 6.69E � 03

GOTERM_BP_FAT GO:0006928–cell motion 72 4.51 1.7 5.81E � 06 1.06E � 02

GOTERM_BP_FAT GO:0040012–regulation of locomotion 36 2.26 2.1 2.53E � 05 4.64E � 02

GOTERM_BP_FAT GO:0051270–regulation of cell motion 36 2.26 2.1 2.84E � 05 5.20E � 02

GOTERM_BP_FAT GO:0001944–vasculature development 43 2.70 1.9 3.54E � 05 6.47E � 02

GOTERM_BP_FAT GO:0001568–blood vessel development 42 2.63 1.9 4.35E � 05 7.97E � 02

GOTERM_BP_FAT GO:0032101–regulation of response to

external stimulus

27 1.69 1.9 1.46E � 03 2.63E + 00

GOTERM_BP_FAT GO:0030335–positive regulation of cell migration 18 1.13 2.3 1.74E � 03 3.13E + 00

GOTERM_BP_FAT GO:0040017–positive regulation of locomotion 19 1.19 2.2 2.04E � 03 3.68E + 00

GOTERM_BP_FAT GO:0016477–cell migration 40 2.51 1.6 2.08E � 03 3.74E + 00

GOTERM_BP_FAT GO:0001525–angiogenesis 25 1.57 1.9 2.44E � 03 4.37E + 00

GOTERM_BP_FAT GO:0051272–positive regulation of cell motion 18 1.13 2.1 4.95E � 03 8.69E + 00

GOTERM_BP_FAT GO:0048514–blood vessel morphogenesis 31 1.94 1.7 5.86E � 03 1.02E + 01

GOTERM_BP_FAT GO:0051674–localization of cell 41 2.57 1.5 7.62E � 03 1.31E + 01

GOTERM_BP_FAT GO:0048870–cell motility 41 2.57 1.5 7.62E � 03 1.31E + 01

GOTERM_BP_FAT GO:0050921–positive regulation of chemotaxis 8 0.50 3.1 1.11E � 02 1.86E + 01

GOTERM_BP_FAT GO:0050920–regulation of chemotaxis 8 0.50 2.9 1.61E � 02 2.57E + 01

GOTERM_BP_FAT GO:0050927–positive regulation of

positive chemotaxis

6 0.38 3.6 2.14E � 02 3.27E + 01

GOTERM_BP_FAT GO:0050926–regulation of positive chemotaxis 6 0.38 3.6 2.14E � 02 3.27E + 01

GOTERM_BP_FAT GO:0007169–transmembrane receptor

protein tyrosine kinase signaling pathway

30 1.88 1.5 2.25E � 02 3.41E + 01

GOTERM_BP_FAT GO:0032103–positive regulation of

response to external stimulus

12 0.75 2.1 2.28E � 02 3.44E + 01

GOTERM_BP_FAT GO:0048520–positive regulation of behavior 8 0.50 2.7 2.62E � 02 3.85E + 01

GOTERM_BP_FAT GO:0008284–positive

regulation of cell proliferation

47 2.95 1.3 5.82E � 02 6.66E + 01

GOTERM_BP_FAT GO:0050795–regulation of behavior 8 0.50 2.0 1.05E � 01 8.70E + 01

GOTERM_BP_FAT GO:0048584–positive regulation of

response to stimulus

27 1.69 1.3 1.37E � 01 9.32E + 01

COLFI, fibrillar collagens C-terminal domain; ECM, extracellular matrix; FDR, false discovery rate; LamG, Laminin G domain; PDGF, platelet-derived
growth factor; TSP, thrombospondin; TSPN, TSPN-terminal domain.
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peritoneal carcinomatosis, and not the new subclassification,
had a significant and independent prognostic value. Due to the
facts that the negative influence of tumors of the subclass 2 on
overall survival increases over time and the high number of
differentially expressed genes obtained between these two sub-
classes, we suppose that tumors classified into these two sub-
classes render two biologically different tumor types. This also
seems to be true for both types of histologies: serous and non-
serous. Recently, The Cancer Genome Atlas Research (CGAR)
Network published integrated genomic analyses of high-grade
serous ovarian carcinoma.(28) Using approximately 1500 intrin-
sically variable genes, the CGAR Network found four clusters
using unsupervised non-negative matrix factorization that they
named “Differentiated”, “Immunoreactive”, “Mesenchymal”,
and “Proliferative”. Nevertheless, there was no survival differ-
ence associated with these four subclusters.
To identify the biological mechanisms and pathways differ-

entiating the two subclasses, further molecular biological
research has to be conducted. Improving our understanding of
the biology of EOC, especially the behavior of the tumor in

the peritoneum, is of critical importance. As a next step, we
plan to reduce this now independently validated 112 gene sig-
nature to a more practical and clinically applicable (i.e. smal-
ler) gene set. Using robust linear models, followed by a
validation step in a large, independent cohort of advanced-
stage EOC, we hope to answer the question whether this
enhanced subclassification approach can be used in clinical
practice. Furthermore, we want to validate the impact of this
signature in a large cohort of patients with non-serous tumors,
including clear cell tumors.
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