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ABSTRACT: Sulfur trioxide (SO3) is a crucial compound for atmospheric sulfuric
acid (H2SO4) formation, acid rain formation, and other atmospheric physicochemical
processes. During the daytime, SO3 is mainly produced from the photo-oxidation of
SO2 by OH radicals. However, the sources of SO3 during the early morning and night,
when OH radicals are scarce, are not fully understood. We report results from two
field measurements in urban Beijing during winter and summer 2019, using a nitrate-
CI-APi-LTOF (chemical ionization-atmospheric pressure interface-long-time-of-
flight) mass spectrometer to detect atmospheric SO3 and H2SO4. Our results show
the level of SO3 was higher during the winter than during the summer, with high SO3
levels observed especially during the early morning (∼05:00 to ∼08:30) and night
(∼18:00 to ∼05:00 the next day). On the basis of analysis of SO2, NOx, black carbon,
traffic flow, and atmospheric ions, we suggest SO3 could be formed from the catalytic
oxidation of SO2 on the surface of traffic-related black carbon. This previously
unidentified SO3 source results in significant H2SO4 formation in the early morning
and thus promotes sub-2.5 nm particle formation. These findings will help in understanding urban SO3 and formulating policies to
mitigate secondary particle formation in Chinese megacities.

■ INTRODUCTION

Atmospheric SO3 is a vital intermediate in gaseous H2SO4
formation, which in turn is a crucial compound in acid rain
formation, new particle formation, secondary aerosol
formation, and other atmospheric physicochemical pro-
cesses.1−8 During the daytime, when the intensity of UVB
(ultraviolet radiation B) radiation that leads to the formation
of OH radicals is high, SO3 is mainly formed by atmospheric
photo-oxidation of SO2 by OH radicals. The mechanism of
formation of SO3 from photo-oxidation can be written as

+ + → +SO OH M HOSO M2 2 (R1)

+ → +HOSO O SO HO2 2 3 2 (R2)

However, during the early morning and at night, when OH
radicals are scarce, the sources of atmospheric SO3 remain
unclear. Stabilized Criegee intermediates (sCI; general
formula of R1R2COO) generated from the ozonolysis of
alkenes have been found to be an important gas-phase
oxidant for SO2 in addition to OH (eq R3):9,10

+ → +R R COO SO R R C O SO1 2 2 1 2 3 (R3)

Besides gas-phase oxidation of SO2 by OH radicals and
sCI, SO3 may also be formed from the heterogeneous
oxidation of SO2 on oxygen-functionalized graphene and soot
surfaces.11−13 He et al. have proposed that SO2 molecules can
react with surface epoxide groups of carbonaceous (or soot)
aerosols, leading to SO3 formation. These surface epoxy
groups are considerably enhanced by atmospheric aging of
soot particles in the presence of O2.

12,14 Additionally, a recent
theoretical study revealed high atmospheric water content
could promote the oxidation of SO2 to SO3 by O2 on
carbonaceous aerosol surfaces.15 Although extensive labo-
ratory studies have reported that persistent particulate H2SO4

and sulfate can be formed from catalytic heterogeneous
reaction between SO2 and carbon (soot) particles in the
presence of O2, O3, NOx, NH3, and water,16−19 the
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Figure 1. (A) Time series of SO3 during the winter (January 20 to March 31, 2019) and summer (June 1 to July 10, 2019), (B) median diurnal
patterns of SO3, UVB, and atmospheric water dimer concentrations during the winter and summer, and (C) median normalized intensities of
the atmospheric ion SO3·NO3

−. Rainy and snowy days were excluded. The shadows show the values from the 25th to 75th percentile. In panel
B, the dashed lines show diurnal variations of SO3 during haze and nonhaze days. The water dimer concentration was calculated on the basis of
temperature and relative humidity.26,39 In panel C, the signals of atmospheric ion SO3·NO3

− were normalized by the sum of NO3
− and HNO3·

NO3
− that are dominant natural charged ions in urban Beijing (Figure S7).
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intermediate precursors of particulate sulfate, and the
molecular-level details of this process, remain unclear. In
addition to atmospheric formation of SO3 via the oxidation of
SO2, a large amount of SO3 can also be emitted to the air
from coal-fired power plants and other industrial processes
related to coal combustion and then be rapidly converted to
H2SO4.

20−22

In the atmosphere, the water-catalyzed hydration of SO3
plays an essential role in H2SO4 formation (eq R4).

+ + → + +SO 2H O M H SO H O M3 2 2 4 2 (R4)

In reaction R4, the second water molecule acts as a catalyst
and significantly reduces the energy barrier of SO3
hydration.23,24 The rate coefficient of the reaction of SO3
with the water dimer [(H2O)2], or H2O-catalyzed hydrolysis,
is between 10−12 and 10−10 cm3 molecule−1 s−1, resulting in a
very short lifetime (<1 s) of SO3.

23−26 In the atmosphere,
besides water-catalyzed hydration, ammonia, sulfuric acid,
formic acid, nitric acid, and oxalic acid (among others) can
also act as catalysts for the SO3 hydration process and thus
facilitate H2SO4 formation.25,27−29

The detection of SO3 is challenging owing to its high
reactivity with water in ambient air. Various measurement
technologies have been utilized for SO3 detection in flue
gases, including the controlled condensation method,
absorption by isopropyl alcohol, selective reaction method
with calcium oxalate, and spectroscopy and mass spectrom-
etry methods.22,30 The detection limits of these methods are
unfortunately too high to measure trace-level SO3 in ambient
air. In some laboratory studies, the ions SiF5

−, SF6
−, NO3

−·
HNO3, and n-C3H7NH3

+ have been used as reagent ions to
detect SO3.

31−35

In this study, we deployed a nitrate-chemical ionization-
atmospheric pressure interface-long-time-of-flight (nitrate-CI-
APi-LTOF) mass spectrometer in two field measurements for
atmospheric SO3 and H2SO4 during the winter from January
20 to March 31 and during the summer from June 1 to July
10, 2019, in urban Beijing. This paper presents, for the first
time, the trace-level measurement of gaseous SO3 by a
nitrate-CI-APi-LTOF mass spectrometer in an urban
atmosphere. Additionally, atmospheric naturally charged
ions were also measured from November 9 to 22, 2018.
Combining the SO3 measurements with data on trace gases,
black carbon (BC), traffic flow, and atmospheric ions, we
suggest a possible mechanism of formation of SO3 in urban
Beijing. We also probe the effects of SO3 on atmospheric
H2SO4 and sub-2.5 nm particle formation.

■ MATERIALS AND METHODS

Detection of SO3 and H2SO4 by a Nitrate-CI-APi-
LTOF Mass Spectrometer. The working principle of the
nitrate-CI-APi-LTOF mass spectrometer is described in Text
S2 and many other studies.5,36 The high-resolution peak fit of
SO3·(NO3

−) and its isotope peak [34SO3·(NO3
−)] are

depicted in Figure S1. The nitrate-CI-APi-LTOF mass
spectrometer was calibrated by in situ-generated SO3 and
H2SO4

37 (Text S4). The calibration coefficients for SO3 and
H2SO4 are determined to be 1.7 × 1010 and 6.1 × 109 cm−3,
respectively (Figure S4). The ratio between the calibration
coefficients of SO3 and H2SO4 is 2.8, which is consistent with
the theoretical prediction of a difference of a factor of 3 in
the charging efficiency (Text S5). On the basis of repeat

experiments, the 1σ of the SO3 calibration coefficient was
±10%.
According to our quantum chemical calculation for the

binding thermodynamics of SO3·(NO3
−) and HNO3·(NO3

−)
ion−molecule clusters, the electronic binding energy of SO3·
(NO3

−) is −44.4 kcal/mol, which is substantially higher than
that of HNO3·(NO3

−) (−29.2 kcal/mol) (Texts S6 and S7
and Table S1). Thus, SO3 molecules can be efficiently
charged by nitrate ions. The highly favorable ligand exchange
reaction between neutral SO3 molecules and nitrate ions can
be written as

+ · → · +− −SO NO (HNO ) SO (NO ) HNO3 3 3 3 3 3 (R5)

Furthermore, on the basis of the quantum chemical
calculation, reaction R6 is exothermal by 8.7 kcal/mol in
free energy (Text S6). The lowest-free energy structure for
SO3·(NO3

−)·H2O is depicted in Figure S6. Therefore, the
hydrate complex intermediate (SO3·H2O) also can be
detected as SO3·(NO3

−).

· + ·

→ · · +

−

−

SO H O NO (HNO )

SO (NO ) H O HNO

3 2 3 3

3 3 2 3 (R6)

Besides the ligand exchange reaction, the reaction between
SO3 and NO3

− can also lead to SO4
− formation (eq R7).32

However, SO4
− can also be produced by the reaction of SO2

with O2
−·(H2O)n.

34,38 From our ambient data, the averaged
ratios of SO4

− to SO3·(NO3
−) were 0.26 ± 0.07 (winter) and

2.51 ± 2.60 (summer). During the summer, a large
abundance of O2

−·(H2O)n favored SO4
− formation. Hence,

only the signal of SO3·(NO3
−) was taken into account in the

SO3 quantification, and it could cause a slight under-
estimation of SO3 concentrations.

+ → +− −SO NO SO NO3 3 4 2 (R7)

Atmospheric ions were also measured with the CI-APi-
LTOF mass spectrometer by turning off the chemical
ionization unit. Details of other auxiliary measuring instru-
ments for trace gases, BC, meteorological parameters, and
sub-3 nm particles can be found in Texts S8 and S9. Also,
the calculation of condensation sink (CS) and quantification
of SO3 and H2SO4 were introduced in Texts S10 and S3.

■ RESULTS AND DISCUSSION
Abundance and Diurnal Behavior of SO3 in the

Winter and Summer. As shown in Figure 1A, the
abundance of SO3 was significantly higher in the winter
than in the summer. During the winter, the mixing ratios of
SO3 varied from ∼4.0 × 104 to 1.9 × 106 molecules cm−3. In
comparison, during the summer, SO3 concentrations ranged
from ∼5.0 × 103 to 1.4 × 105 molecules cm−3. Under 298 K
and 1 atm, the atmospheric SO3 concentration has been
proposed to reach 105 molecules cm−3 around noon.25 In this
study, because the influence of ambient ions (i.e., SO3·NO3

−)
was not excluded and the hydrate complex intermediate
(SO3·H2O) also could be detected as SO3·NO3

− (eq R6),
SO3 concentrations could be overestimated. Median diurnal
variations of SO3 and SO2 concentrations, water dimer
concentrations [(H2O)2; computed from the relative
humidity and temperature],26,39 and intensities of UVB
(280−315 nm) on all measurement days during the winter
and summer are illustrated in Figure 1B. The water dimer

Environmental Science & Technology Letters pubs.acs.org/journal/estlcu Letter

https://dx.doi.org/10.1021/acs.estlett.0c00615
Environ. Sci. Technol. Lett. 2020, 7, 809−818

811

http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.estlett.0c00615/suppl_file/ez0c00615_si_001.pdf
pubs.acs.org/journal/estlcu?ref=pdf
https://dx.doi.org/10.1021/acs.estlett.0c00615?ref=pdf


concentration during the summer was notably higher than
during the winter. In contrast, the mixing ratio of SO2 during
the summer was lower than that during the winter. In the
atmosphere, due to the large abundance of water, it is
generally accepted that hydration to H2SO4 is the main fate
of SO3.

24 As a second water molecule is needed to lower the
barrier of the SO3 hydration reaction, the reaction rate
effectively depends on the water dimer concentration.23,40

Therefore, the low SO3 concentrations during the summer
likely result from the large abundance of the water dimer and
low SO2 concentration.

During the winter and summer, SO3 showed similar diurnal
patterns (Figure 1B). During the winter, SO3 levels increased
from ∼05:00 and reached their peak at ∼08:30. The
abundance of SO3 was higher during the early morning
from ∼06:00 to ∼09:00 and night from ∼18:00 to ∼03:00
(the next day) than around noon. Similarly, during the
summer, SO3 concentrations increased from ∼4:00 and
reached their peak values at ∼07:00. A peak of SO3 in the
early morning (∼04:00 to ∼08:00) was also observed. During
both the winter and the summer, lower SO3 concentrations
were observed around noon when the water dimer
concentration reached its minimum level (Figure 1B).

Figure 2. (A) Median diurnal variations in the concentrations of SO3, SO2, black carbon (BC), NOx, the approximate abundance term
{([BC][SO2])/[(H2O)2]} of SO3, and gasoline and diesel vehicle flow of the “West Third Ring Road”, which was ∼550 m to the west of the
sampling station in 2017,41 and (B) correlation between the SO3 concentration and its approximate abundance term during the night and the
early morning (from 18:00 to 08:00 the next day) for the whole field measurement during the winter. In panel A, the units of BC, SO2, and
water dimer [(H2O)2] in approximate source terms were micrograms per cubic meter, molecules per cubic meter, and molecules per cubic
meter, respectively. In panel B, the SO3 concentrations were divided into logarithmic bins, and the median values in each bin are shown as
squares. The orange shadow represents the values from the 25th to 75th percentile.
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Besides water-catalyzed hydration, around noon, a large
abundance of other atmospheric components (e.g., H2SO4,
HCOOH, HNO3, and oxalic acid) also promoted the
conversion of SO3, leading to relatively short lifetimes. In
addition, diel patterns of SO3 on nonhaze and haze days in
winter are also shown in Figure 1B. The abundance of SO3

exhibited a similar daily pattern during both haze and
nonhaze days (Text S8), though the actual values were higher
on haze days.
The averaged mass spectra of atmospheric naturally

charged ions for a day are shown in Figure S7. The
dominant anions in urban Beijing are nitrate ions (NO3

− and
HNO3·NO3

−), similar to the case in Shanghai.5 Therefore,

the normalized intensity of SO3·NO3
− by the sum of nitrate

ions also can represent the abundance of SO3 in the air.
Figure 1C shows the diel variation of the normalized signals
of SO3·NO3

− in November 2018. The normalized signals also
exhibited two peaks, in the early morning (∼6:00 to ∼9:00)
and at night (∼17:00 to ∼20:00).

Potential Source Identification for SO3. To investigate
the possible sources of SO3 molecules during the early
morning and night, we monitored other trace gases (SO2 and
NOx), BC, and traffic flow of the main road nearby.41 During
the summer, the average SO3 concentration was 2.9 × 104

molecules cm−3, which is likely close to the detection limit of
the instrument. Hence, the possible source identification for

Figure 3. Median diurnal variations in the concentrations and intensities of SO3, the sulfuric acid (SA) monomer (H2SO4) and dimer, sub-2.5
nm particles, SO2, O3, UVB, and condensation sink (CS) during the (A) winter and (B) summer.
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SO3 was focused on winter data. During the winter, the
median concentrations of SO2, NOx, and BC in PM2.5
exhibited diurnal trends similar to those of SO3 (Figure
2A). On the basis of previous studies of SO2 and together
with stable weather conditions (low wind speeds and shallow
mixing layer) (Text S11 and Figure S8), the elevated SO2
concentration during the early morning could mainly be
attributed to local emissions (e.g., residential and industry
emission) and transportation.42−50 BC concentrations were
tightly linked with traffic emission dominated by diesel
vehicles (Figure 2A).
During the early morning, the UVB intensity was low,

which meant that OH radical concentrations from photo-
chemistry were also low, because of the linear correlation
between OH concentrations and the ozone photolysis
frequency [j(O1D)] in Beijing during daytime.51 During a
summer night in the suburban area of Beijing, OH radical
concentrations from ∼0.5 to 3 × 106 cm−3 still can be
observed.52,53 Nevertheless, during the winter in suburban
Beijing, the mean observed OH concentrations were <3 ×
105 cm−3 at night and <1 × 106 cm−3 in the early morning
(06:00−09:00).54,55 Hence, the oxidation of SO2 by OH
radicals was not the main source for SO3 during the early
morning and night. In addition, during the early morning, the
median ozone concentration was only ∼5 ppb, which was low
in comparison to the values during the rest of the day,
resulting in a minor contribution to SO3 production from the
reaction between sCI and SO2. Although SO3 molecules can
also be co-emitted with SO2,

20−22,56,57 transportation is not
feasible for SO3 owing to its short lifetime (<1s) in the air.
Previous studies based on quantum chemical calculations
have suggested that the heterogeneous reaction between SO2
and soot can lead to SO3 formation.11,12 If this mechanism
were to dominate SO3 formation, and further assuming that
the SO3 is removed by reaction with the water dimer, the
concentration of SO3 would be proportional to ([BC]-
[SO2])/[(H2O)2]. Figure 2A shows that during the early
morning (06:00−09:00) and night (from 18:00 to 6:00 the
next day), the median diurnal variations of SO3 and
([BC][SO2])/[(H2O)2] were consistent with each other.
Also, for the whole measurement period during the winter
from 18:00 to 08:00 the next day, the correlation between
SO3 and this approximate abundance term was positive [r =
0.7; P < 0.0001 (Figure 2B)]. Furthermore, on nonhaze days,
SO3 was tightly linked to particulate sulfate, implying SO3
may originate from heterogeneous reaction (Figure S9).
Therefore, our results together suggested the heterogeneous
reaction between SO2 and BC could be the possible source of
SO3 during the early morning and at night. However, other
formation mechanisms (e.g., Criegee intermediate and SO2)
may also contribute.9

Enhancement of Sulfuric Acid and Sub-2.5 nm
Particle Formation. Median diurnal variations of the
concentrations or intensities of H2SO4, the sulfuric acid
dimer (H2SO4·HSO4

−), SO3, sub-2.5 nm particles, CS, SO2,
ozone, and UVB during the winter and summer are shown in
panels A and B of Figure 3A and B, respectively. During the
winter and summer, elevated levels of SO3 and H2SO4 were
simultaneously observed in the early morning. During the
winter, the median concentrations of H2SO4 during the early
morning were comparable with that around noon. In
addition, it showed a good correlation (r = 0.7) between
atmospheric ions of HSO4

− and SO3·NO3
− during the early

morning (5:00−8:00) and night (from 18:00 to 5:00 the
following day) (Figure S10). Thus, the SO3 formed from
nonphotochemical processes enhanced H2SO4 formation
during the early morning and night. In a recent study in
urban Beijing, under clean conditions, oxidation of SO2 by
oxidants produced in the ozonolysis of alkenes (i.e., sCI and
“dark” OH) was suggested as a source of H2SO4 during the
night.58 This study also pointed out that, under polluted
conditions, additional sources of H2SO4 exist. Hence, during
the night in urban Beijing, H2SO4 can be enhanced both by
SO3 molecules produced by the heterogeneous reaction
between BC and SO2 and by the oxidation of SO2 by
oxidants from ozonolysis of alkenes.
As shown in Figure 3, during the winter or summer, the

median concentrations of H2SO4, H2SO4·HSO4
−, and sub-2.5

nm particles followed the same diurnal behavior. The
concentrations of H2SO4·HSO4

− and sub-2.5 nm particles
started to increase at ∼5:00. During the early morning during
the winter, the median concentrations of H2SO4·HSO4

− and
sub-2.5 nm particles were comparable with that around noon.
On the basis of the studies in urban Shanghai, if atmospheric
bases were abundant, the sulfuric acid dimer could be treated
as an indicator of nanocluster formation.5,59 In urban Beijing,
the concentrations of atmospheric bases (e.g., amines and
ammonia) may also be sufficient for efficient clustering. Thus,
the increased level of formation of SO3, possibly produced by
the oxidation of SO2 on top of soot particles, can intensify
the production of secondary particles and enhance gas to
particle conversion during the early morning and night. We
note that the contribution to nanoclusters of traffic, or the
reaction of SO3 with ammonia/methanol, cannot be wholly
excluded.25,60−62 Our results together point toward the need
to control the emission of SO2 and soot to mitigate
secondary aerosol formation in urban Beijing.
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day (November 10, 2018) (Figure S7), median diurnal
variation of the concentrations of SO3 and SO2, the
mixing layer heights (MLH), intensities of UVB, and
wind speeds during the winter (Figure S8), time profile
of the SO3 concentration and mass concentration of
sulfate in PM2.5 and median diel variation of SO3 and
sulfate for all nonhaze days during the winter
measurement period (Figure S9), relationship between
the atmospheric ion signals of HSO4

− and SO3·NO3
−

during the night (from 18:00 to 5:00 next day) and
early morning (5:00−8:00) from November 9 to 22,
2018 (Figure S10), and comparison of the binding
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−)
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